

Российская академия наук Отделение физических наук РАН Научный совет РАН по физике низких температур Академия наук Республики Татарстан Институт физических проблем им. П.Л. Капицы РАН Казанский федеральный университет

ХХХVII Совещание по физике низких температур

Программа, тезисы докладов

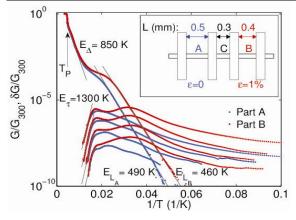
> Казань 29 июня - 3 июля 2015

Photoconduction and Low-Temperature Ohmic Conduction of Peierls Conductor o-TaS₃ under Uniaxial Strain

V.E. Minakova¹, A.N. Taldenkov², S.V. Zaitzev-Zotov¹

¹Kotel'nikov Institute of Radio Engineering & Electronics of RAS, 125009, Mokhovaya 11-7, Moscow, Russia

²National Research Centre «Kurchatov Institute», 123182, 1, Akademika Kurchatova pl., Moscow, Russia


e-mail: mina_cplire@mail.ru

It is well known [1] that in quasi-one-dimensional conductor orthorhombic TaS₃ (*o*-TaS₃) below the Peierls transition temperature, $T_P \approx 220$ K, all conduction electrons are condensed into a charge-density-wave (CDW) state and at low electric field, *E*, do not contribute to the conductance, *G*(*T*), provided by quasi-particles thermally exited over the Peierls gap and obeying an activation law with the activation energy $E_A \approx 800$ K (Ohmic conductance). *G*(*T*) becomes strongly non-linear at $E > E_T$ (E_T – the threshold field for CDW depinning) due to CDW sliding, which is accompanied by generation of narrow-band-noise (NBN), whose frequency is proportional to CDW velocity. Below $T \leq T_P/2$ the Ohmic conductance in the chain direction begins to deviate from the initial activation law, a new activation energy, E_L , being approximately half [2], while the perpendicular conductance preserves the initial value $E_A \perp \approx 800$ K in all temperature range. A transition to the new activation law is often accompanied by an appearance of a plateau with a weakly dependent conductance connecting the different activation parts of *G*(*T*)-curve. The nature of the low-temperature Ohmic conduction is attributed to collective excitations of the CDW, presumably solitons [2, 3].

At high *T* the CDW wave vector, *q*, is slightly incommensurate with the lattice one and tends to commensurability when *T* decreases to $T \approx 30$ K [4]. A strain, ε , applied in the chain direction, is a powerful tool of influence on *q*, leading to unusual changes in transport properties of *o*-TaS₃ [5-11], such as: different strain-dependences for the Ohmic conductance (with a maximum at a critical strain ε_c) and for the nonlinear one (with a minimum at ε_c); strain-induced decrease of T_P and an increase of E_4 ; disappearing of NBN and an emergence of ultra-coherent CDW near ε_c . The results imply an increase of incommensurability value with a growth of the strain [11], i.e. a growth of solitons concentration. Till now all the strain-induced phenomena in *o*-TaS₃ were studied at high temperature range between T = 66 K and T_P . Here we present the results of the experimental study of the uniaxial strain influence on the low-temperature Ohmic conduction, which appears at the same temperature region [3].

For the study we have prepared a structure (see insert in Fig. 1) on the base of high-quality o-TaS₃ crystal ($E_T \sim 0.5$ V/cm, cross section $S \sim 3 \ \mu\text{m}^2$) consisting of three segments: part A – without strain, central buffer part C, part B – with a strain $\varepsilon = \Delta L_B/L_B \approx 1\%$ (where ΔL_B is a change in a part B length L_B), a contact width was ~ 0.2 mm. All conductance measurements were done along the chain direction in two-probe configuration in the voltage-controlled regime. IR LED, providing light intensity $W = (10^{-4} - 30) \ \text{mW/cm}^2$ at the sample position, was used; the photon energy $\hbar \omega = 1.3 \ \text{eV}$, optic Peierls gap value $2\Delta_{opt} = 0.25 \ \text{eV}$ at $T = 40 \ \text{K}$ [12]. The usual AC modulation method (modulation frequency $f = 4.5 \ \text{Hz}$, meander) was used for the photoconduction measurements.

Fig. 1 shows temperature dependences of the Ohmic conductance for the segments A, $G_A(T)$, (upper blue curve) and B, $G_B(T)$, (red curve) together with corresponding sets of temperature dependences of photoconductance, $\delta G_A(T)$ and $\delta G_B(T)$, at different W (all values

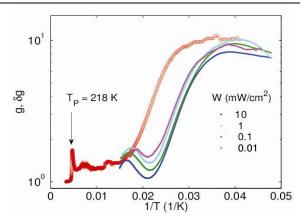


Fig. 1. Temperature dependences of Ohmic conductance G(T) for the segments with and without strain (upper curves) together with corresponding sets of temperature dependences of photoconductance $\delta G(T)$ at following light intensities *W*, top down: 10, 1, 0.1, 0.01 mW/cm². The insert shows the drawing of the studied structure.

Fig. 2. Temperature dependence of the straininduced relative change of the Ohmic conductance $g=G_B/G_A(T)$ (red circles) and a set of the similar dependences of the photoconductance change $\delta g=\delta G_B/\delta G_A(T)$ (dots) at different *W*.

 G_A , G_B , δG_A , δG_B are normalized to corresponding room-temperature conductances, G_{A_300} and G_{B_300}). At high *T* the stain-induce changes of the dependences are not so dramatic: one can see a smoothing of the Peierls transition, a T_P decrease ~ 6 K and a small (\approx 30 %) G(T)growth, while E_A does not noticeably change for this sample. The activation energy of the photoconductance, E_τ , reflecting temperature dependence of the non-equilibrium current carrier recombination time [3], also does not show a noticeable change under the strain. The low-temperature changes are much more substantial: an additional large contribution to both the conductance and photoconductance (an increase of the main peak and an appearance of a new one) is observed. The value of E_L slightly (\approx 7 %) increases with the strain.

Fig. 2 shows temperature dependences of the strain-induced relative changes of both the conductance $g=G_B/G_A$ and photoconductance $\delta g=\delta G_B/\delta G_A$ (for each *W*). The sharp peak of *g* at T_P corresponds to suppression of T_P by the strain. Whereas *g* and δg experience a step-like growth at slightly different temperatures, the final low-temperature values of *g* and δg (for all *W* levels, which differ by 3 orders) being practically the same.

The observed features are consistent with a simple model implying strain-induced increase of concentration of solitons which contribute into both conduction and photoconduction. Further investigations are required to verify this assumption.

The work was supported by RFBR project 14-02-01236.

- [1] P. Monceau, Adv. Phys., 61, 325 (2012); G. Grűner. Rev. Mod. Phys. 60, 1129 (1988).
- [2] T. Takoshima et al. Sol. State Commun., 35, 911 (1980).
- [3] S.V. Zaitzev-Zotov, V.E. Minakova, Phys.Rev.Lett., 97, 266404 (2006).
- [4] K. Inagaki, M. Tsubota, K. Higashiyama et al., J. Phys. Sos. J., 77, 093708 (2008).
- [5] V.B. Preobrazhensky, A.N. Taldenkov, I.Yu. Kal'nova, JEPT Lett., 40, 944 (1984).
- [6] V.B. Preobrazhensky, A.N.Taldenkov, Synth.Met., **29**, F321 (1989) and references therein.
- [7] R.S. Lear, M.J. Skove, E.P. Stillwell, J.W. Brill, Phys.Rev.B, 29, 5656 (1984).
- [8] T.A. Davis, W. Schaffer, M.J. Skove, E.P. Stillwell, Phys.Rev.B, 39, 10094 (1989).
- [9] Z.G. Xu, J.W. Brill, Phys.Rev.B, 43, 11037 (1991).
- [10] Kanta Das, M. Chung, M.J. Skove, G.X. Tessema, Phys.Rev.B, 52, 7915 (1995).
- [11] S.G. Zybtsev, V.Ya. Pokrovskii, Physica B, 460, 34 (2015).
- [12] S.V. Zaitsev-Zotov, V.F. Nasretdinova, V.E. Minakova. Physica B, 460, 185 (2015).

XXXVII Совещание по физике низких температур

Программа и тезисы докладов

29 июня – 3 июля 2015 г.

Подписано в печать 23.06.2015 Бумага офсетная. Печать цифровая. Формат 60х84 1/16. Гарнитура «Times New Roman». Усл. Печ. Л. 43,94 Тираж 240 экз. Заказ 98/6

Отпечатано с готового оригинал-макета в типографии Издательства Казанского университета

420008, г. Казань, ул. Профессора Нужина, 1/37 тел. (843) 233-73-59, 233-73-28