Форма 501. Краткий научный отчет

1.1. Номер проекта

14-02-01236

1.2. Руководитель проекта

Минакова Валерия Евгеньевна

1.1. Название проекта

Синтез квазиодномерных проводников с волной зарядовой плотности и изучение в них коллективного и одночастичного механизмов переноса заряда с помощью фотопроводимости

1.4. Код и название конкурса

А - Конкурс инициативных научно-исследовательских проектов 2014 года

1.5. Год представления отчета

2014

1.6. Вид отчета (цифра 2 - этап 2014 г.)

2

1.7. Аннотация

Проведены экспериментальные исследования явлений переноса заряда в следующих квазиодномерных проводниках с волной зарядовой плотности (ВЗП): моноклинном ${\rm TaS_3}~(m\text{-}{\rm TaS_3})$ и ромбическом ${\rm TaS_3}~(o\text{-}{\rm TaS_3})$ с примесями ${\rm In}~{\rm u}~{\rm без}~{\rm hux})$. Основное внимание уделено исследованию омической проводимости (режим, когда ВЗП запиннингована и не дает вклад в проводимость) в области низких температур (где появляется отклонение ее температурной зависимости от первоначального термоактивационного закона, связанного с наличием пайерлсовской щели в спектре возбуждений), а также фотопроводимости, появляющейся в этой же температурной области.

Обнаружена и изучена фотопроводимость m-TaS $_3$ при температурах T < 70 K. Обнаружена корреляция температурных и полевых зависимостей фотопроводимости и темновой проводимости при T < 70 K, а также их сильная зависимость от качества образца. Основные особенности фотопроводимости моноклинных и ромбических образцов схожи. Обнаружены следующие новые особенности фотопроводимости m-TaS $_3$: 1) зависимость энергии активации фотопроводимости от температуры, 2) существование тонкой структуры зависимости фотопроводимости от электрического поля, 3) перио-

дическая ступенчатая структура на спектральных зависимостях фотопроводимости на краю пайерлсовской щели. С помощью спектральных исследований определена величина оптической пайерлсовской щели в $m\text{-TaS}_3$, $2\Delta_{opt}=0.18$ эВ.

В образцах o-TaS $_3$ с интеркалированным с помощью температурной диффузии In обнаружен сильный рост амплитуды фотопроводимости в спектральной области 0.15-0.25 эВ, линейно зависящий от времени диффузии In и скорреллированый со сдвигом температуры пайерлсовского перехода и увеличением порогового поля нелинейной проводимости. Сделан вывод, что величина пайерлсовской щели в чистом o-TaS $_3$ при T<50 K составляет $2\Delta_{opt}=0.25$ эВ, а фотопроводимость при меньших энергиях связана с объемными примесными состояниями.

Впервые начаты исследования влияния поляризации света (в направлениях вдоль и поперек оси наибольшей проводимости кристалла) на спектры фотопроводимости. В o-TaS $_3$ обнаружено превосходство амплитуды поперечного фотоотклика над продольным в высокочастотной области спектра $\hbar\omega > 0.25$ эВ, и, наоборот, продольного фотоотклика над поперечным в низкочастотной области $\hbar\omega < 0.25$ эВ. Сделан вывод, что энергию $\hbar\omega = 0.25$ эВ, где амплитуды обоих фотооткликов сравниваются, можно считать краем пайерлсовской щели в o-TaS $_3$.

1.8. Полное название организации, предоставляющей условия для выполнения работ по Проекту физическим лицам

Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук

Подпись руководителя проекта

Форма 503. Развернутый научный отчет

3.1. Номер Проекта

14 - 02 - 01236

3.2. Название Проекта

Синтез квазиодномерных проводников с волной зарядовой плотности и изучение в них коллективного и одночастичного механизмов переноса заряда с помощью фотопроводимости

3.3. Коды классификатора, соответствующие содержанию фактически проделанной работы

02 - 202

3.4. Объявленные ранее цели Проекта на 2014 год

К концу 2014 года предполагалось:

- 1. Синтезировать монокристаллы $o ext{-}\mathrm{TaS}_3$ с различными концентрациями примесей Nb и номинально чистые образцы $o ext{-}\mathrm{TaS}_3$ с протяженными ростовыми дефектами.
- 2. Исследовать влияние этих факторов на низкотемпературную омическую проводимость и фотопроводимость.
- 3. Провести сравнение новых результатов с полученными нами ранее аналогичными данными на образцах o-TaS $_3$ без структурных изменений.

3.5. Степень достижения поставленных в Проекте целей

Поставленные задачи были решены частично. Было проведено исследование низкотемпературной омической проводимости и фотопроводимости образцов о-TaS₃ с концентрацией Nb 0.5%. По сравнению с чистыми образцами обнаружены следующие изменения: отсутствие режима квадратичной рекомбинации носителей при низких температурах, увеличение энергии активации низкотемпературной омической проводимости $E_L \ (\approx 20 \ \%)$, уменьшение времени рекомбинации возбужденных светом носителей, а также уменьшение энергии активации его температурной зависимости (почти в 2 раза), изменение спектральных зависимостей фотопроводимости, в частности, появление внутрищелевых состояний. Интересный факт – при всех существенных изменениях проводимости и фотопроводимости, перечисленных выше, величина транспортной пайерлсовской щели $2\Delta_{tr}$ при высоких температурах, полученная из активационной температурной зависимости омической проводимости, а также эта же величина при низких температурах $2\Delta_{tr}^*$, извлеченная из температурных зависимостей фотопроводимости по разработанной нами методике [S. V. Zaitsev-Zotov, V. E. Minakova. Journal Physique IV, 131, 95 (2005); S. V. Zaitsev-Zotov, V. E. Minakova. Phys. Rev. Lett. 97, 266404 (2006)], оказались точно такими же, что и в нелегированных образцах.

Дальнейшее развитие этих исследований было прервано неожиданным препятствием. В связи с окончанием старого запаса кварцевых трубок для изготовления ампул, использующихся при синтезе квазиодномерных соединений, пришлось перейти к новому кварцу, что привело к значительному ухудшению качества кристаллов как ромби-

ческой, так и моноклинной модификации TaS_3 — повышению в несколько раз величин пороговых полей нелинейной проводимости и их большому разбросу даже для кристаллов, выращенных в одной ампуле. Эти факторы свидетельствуют о неконтролируемом количестве инородных примесей. Поиск и перебор различных типов кварца из разных источников пока не дал нужных результатов. Поэтому реализация заявленной технологической части проекта — получение кристаллов с контролируемым количеством и типом примесей и получение номинально чистых образцов с протяженными ростовыми дефектами — оказалась на данный момент невозможной. Экспериментальная часть работ по этим направлениям временно приостановлена до преодоления технологических трудностей.

В связи с изменившейся технологической базой планы были скорректированы, и были выбраны новые направления экспериментальных исследований.

- **І.** Фотопроводимость и темновая проводимость *m*-TaS₃. Получившийся широкий спектр образцов различного качества моноклинной фазы TaS₃ (соединения, воспроизводимо не синтезируемого никем в мире, кроме нас) был использован для детального исследования темновой проводимости (омической и нелинейной) и фотопроводимости в этом соединении и сравнения с аналогичными данными для *o*-TaS₃. Данную задачу планировалось решать на более позднем этапе проекта. Получены и частично опубликованы новые результаты. Работа продолжается.
- II. Фотопроводимость и темновая проводимость *o*-TaS₃ с примесями In. Задача о влиянии примесей трансформировалась: вместо примесей Nb использовались примеси In, которые вводились не во время синтеза кристалла, а интеркалировались в уже готовый номинально чистый кристалл с помощью температурной диффузии. Проведено детальное исследование темновой проводимости (омической и нелинейной) и фотопроводимости кристаллов с различной концентрацией In. Основная часть работы сделана. Получены и опубликованы новые результаты. Работа близка к завершению.
- III. Влияние поляризации света на фотопроводимость. Появление возможности использования поляризованного света позволило провести дополнительные (не запланированные ранее) исследования фотопроводимости изучение влияния поляризации света на спектры фотопроводимости имеющихся объектов исследования: o-TaS₃, m-TaS₃, а также образцов o-TaS₃ с примесями In. Получены и частично опубликованы новые результаты. Работа продолжается.

3.6. Полученные в 2014 году важнейшие результаты

I. Фотопроводимость и темновая проводимость m-TaS₃.

- 1. Обнаружена и исследована фотопроводимость m-TaS $_3$ при T < 70 K, а также впервые проведено детальное исследование темновой проводимости (омической и нелинейной) при этих же температурах в образцах m-TaS $_3$ различного качества.
- 2. Обнаружена корреляция температурных зависимостей фотопроводимости и темновой омической проводимости при $T < 70~\mathrm{K}$, а также их сильная зависимость от качества образца в этой температурной области.
- 3. Обнаружена скачкообразная зависимость энергии активации фотопроводимости от температуры.
- 4. Обнаружено существование тонкой структуры как в зависимости фотопроводимости от электрического поля при $T < 30~{\rm K}$, так и в аналогичной зависимости темновой проводимости, а также их корреляция.
- 5. Впервые с помощью спектральных исследований фотопроводимости измерена величина оптической пайерлсовской щели в $m\text{-TaS}_3,\ 2\Delta_{opt}=0.18$ eV.
- 6. На спектральных зависимостях фотопроводимости на краю пайерлсовской щели обнаружена периодическая ступенчатая структура с периодом ≈ 50 meV.

II. Фотопроводимость и темновая проводимость o-TaS $_3$ с примесями In.

- 1. С помощью метода температурной диффузии впервые проведено поэтапное (накопительное) интеркалирование In из предварительно изготовленных контактов в *o*-TaS₃.
- 2. Впервые проведено исследование влияния легирования индием на фотоэлектрические характеристики, энергетическую плотность состояний и перенос заряда.
- 3. Обнаружено, что сильный рост амплитуды фотопроводимости в спектральной области 0.15-0.25 эВ линейно зависит от времени диффузии In и скорреллирован со сдвигом температуры пайерлсовского перехода и увеличением порогового поля нелинейной проводимости.
- 4. Показано, что состояния, появляющиеся в электронном спектре при внедрении In, являются объемными, а концентрация In вдоль образца неоднородна и сильно зависит от расстояния до контакта.
- 5. Результаты исследования позволяют утверждать, что величина пайерлсовской щели в чистом $o\text{-TaS}_3$ при T<50 K составляет не менее 0.25 эВ.
 - 6. Предложена простая модель модулированной в k-пространстве энергетической ще-

ли, хорошо описывающая спектральные данные исследованных нами квазиодномерных соединений: $K_{0.3}MoO_3$, NbS_3 , m- TaS_3 , а также чистых образцов o- TaS_3 (в высокоэнергетической области спектра).

III. Влияние поляризации света на фотопроводимость.

- 1. Впервые проведены предварительные исследования влияния поляризации света на спектры фотопроводимости квазиодномерных соединений. Объекты исследований: $o\text{-TaS}_3$, $m\text{-TaS}_3$, а также образцы $o\text{-TaS}_3$ с примесями In.
- 2. В образцах o-TaS $_3$ (с примесями и без них) обнаружен различный характер коэффициента анизотропии фотопроводимости $R(\hbar\omega) = \delta G(\hbar\omega, P_\perp)/\delta G(\hbar\omega, P_\parallel)$ в области высоких ($\hbar\omega > 0.25$ эВ) и низких ($\hbar\omega < 0.25$ эВ) энергий спектра, а именно: на границе этих областей при $\hbar\omega = 0.25$ эВ амплитуда фотоотклика $\delta G(\hbar\omega, P_\perp)$ при поляризации P_\perp поперек оси наибольшей проводимости кристалла равна амплитуде фотоотклика $\delta G(\hbar\omega, P_\parallel)$ при поляризации P_\parallel вдоль оси наибольшей проводимости; для фотонов высоких энергий преобладает поперечный фотоотклик ($R(\hbar\omega)$ увеличивается до 1.5-2 при 0.35 эВ); и, наоборот, для фотонов низких энергий превалирует продольный фотоотклик ($R(\hbar\omega) = 0.2$ при 0.15 эВ).
- 3. Выдвинуто предположение, что энергия фотонов $\hbar\omega=0.25$ эВ, для которой $R(\hbar\omega)=1$ (одинаковая в разных образцах, в том числе с примесями In и без них), соответствует истинному значению пайерлсовской щели в $o ext{-}\mathrm{TaS}_3$.

3.7. Степень новизны полученных результатов

Все перечисленные выше результаты являются новыми и имеют приоритетный характер.

3.8. Сопоставление полученных результатов с мировым уровнем

Один из важных и до сих пор не решенных вопросов в физике квазиодномерных проводников с ВЗП является вопрос о природе низкотемпературной омической (ВЗП запиннингована) проводимости, а именно: вопрос о происхождении дополнительной проводимости, добавляющейся к проводимости квазичастиц, возбужденных через пайерлсовскую щель, при температурах, приблизительно вдвое ниже температуры пайерлсовского перехода T_P . Появление дополнительной проводимости приводит к почти двукратному уменьшению энергии активации низкотемпературной омической проводимости по сравнению с омической проводимостью в интервале $T_P/2 \lesssim T < T_P$. Такое поведение характерно как для соединений с ВЗП (голубых бронз, $(TaSe_4)_2$ I

[*P. Monceau, Adv. Phys.* **61** (2012) 325]), так и для соединений с волнами спиновой плотности [*G. Grüner. Rev. Mod. Phys.* **66** (1994) 1].

m-Та S_3 является практически не изученным квазиодномерным соединением с ВЗП в силу сложности его воспроизводимого синтеза (нам известно только около десятка опубликованных работ по этому соединению). При этом m-Та S_3 характеризуется простой элементарной ячейкой, двумя пайерлсовскими переходами при температурах $T_{P1} = 240 \text{ K}$ и $T_{P2} = 160 \text{ K}$, высокими когерентными свойствами [Yu. I. Latyshev, V. E. Minakova, Ya. S. Savitskaya, V. V. Frolov. Psysica B, 143, 155 (1986)], рекордным коэффициентом анизотропии проводимости среди всех соединений этого класса.

До начала данной работы вопрос о подрастании низкотемпературной омической проводимости в m-TaS $_3$ не стоял, так как темновая проводимость (омическая и нелинейная) в m-TaS $_3$ ниже температуры T < 77 К была практически не изучена. Анализ предшествующих работ показал, что эти измерения были проведены в единственной работе и на единственном образце [M. E. Itkis, F. Ya. Nad, P. Monceau. J. Phys.: Condens. Matter~2~(1990)~8327]. При этом омическая проводимость не меняла энергии активации во всем температурном диапазоне вплоть до 25 К. Фотопроводимость m-TaS $_3$ вообще не изучалась.

Наша группа владеет уникальной технологией воспроизводимого синтеза этого соединения, не имеющей аналогов в мире. В предпринятой нами работе было проведено комплексное изучение темновой проводимости (омической и нелинейной) и фотопроводимости. Для получения более полной картины явления как раз и пригодились образцы с широким разбросом величины порогового поля нелинейной проводимости, E_T , определяемой количеством примесей и характеризующей качество образца. Было обнаружено, что низкотемпературное подрастание омической проводимости в m-TaS₃ также имеет место, и степень отклонения омической проводимости от первоначального активационного закона с понижением температуры сильно зависит от качества образца, которое также сильно влияет и на температурную зависимость фотопроводимости. Кроме того, была обнаружена корреляция как температурных, так и полевых зависимостей обеих величин. Сравнение характеристик фотоотклика в m-TaS₃ с полученными ранее данными для o-TaS₃ показало, что в главных чертах фотоотклики в обеих фазах соединения схожи, однако много дополнительных особенностей фотоотклика, не измеримых в o-TaS₃, удалось обнаружить в m-TaS₃. Среди них: скачко-

образная зависимость энергии активации фотопроводимости от температуры; существование тонкой структуры зависимости фотопроводимости от электрического поля; периодическая ступенчатая структура спектральной зависимости фотопроводимости вблизи края пайерлсовской щели. Такие отличия фотопроводимости моноклинной фазы от ромбической, по-видимому, обусловлены более совершенной структурой m-TaS₃, по сравнению с o-TaS₃. Такое предположение согласуется с предложенным ранее объяснением существенно большей степени когерентности ВЗП в m-TaS₃ по сравнению с o-TaS₃ [Yu. I. Latyshev, V. E. Minakova, Ya. S. Savitskaya, V. V. Frolov. "CDW conduction study under RF-field in monoclinic TaS₃. Psysica B, 143, 155 (1986)]. Природа новых обнаруженных особенностей фотопроводимости m-TaS₃ пока до конца не понята, и для ее прояснения требуются дальнейшие исследования.

В отличие от m-TaS₃ ромбическая фаза этого соединения, o-TaS₃, изучена значительно лучше. Хотя и для этого соединения многие вопросы, касающиеся природы низкотемпературной проводимости, структуры пайерлсовской щели и даже самой ее величины, остаются открытыми. Так, известно, что величина транспортной пайерлсовской щели в чистых образцах, $2\Delta_{tr}$, полученная из измерений температурных зависимостей проводимости [P. Monceau. "Electronic Properties of Inorganic Quasi-onedimensional Conductors Part 2. (Ed. by P. Monceau. Dortrecht: D. Reidel Publ. Comp., 1985] и константы Холла [Ю. И. Латышев, Я. С. Савицкая, В. В. Фролов. Письма в ЖЭТФ 83, 446 (1983)], составляет $2\Delta_{tr} = 800 - 1000 \text{ K } (\approx 0.15 \text{ эВ})$. Величина оптической пайерлсовской щели, извлеченная из спектров болометрического отклика по началу поглощения (назовем ее $2\Delta'_{opt}$), равнялась $2\Delta'_{opt}=0.125-0.15$ эВ $[M. E. Иткис, \Phi. Я. Надь. Письма в ЖЭТФ 39, 373 (1984); S. L. Herr, G. Minton,$ J. W. Brill. Phys. Rev. В 33, 8851 (1986)]. Наши исследования спектров фотопроводимости $[B. \Phi. Hacpemduhoвa, C. B. Зайцев-Зотов. Письма в <math>X\Theta T\Phi$ 89, 607 (2009)], позволили зафиксировать внутрищелевые состояния, появляющиеся при энергиях фотонов $\hbar\omega > 0.15$ эВ, а также получить первоначальные оценки величины $2\Delta_{opt}$ в o-TaS₃, оказавшиеся заметно большими $(2\Delta_{opt} > 0.22 \text{ эB})$ и сильно различающимися даже для высококачественных образцов от разных производителей. Что касается вопроса о плотности состояний вблизи края пайерлсовской щели, то экспериментальных данных о них до появления наших работ по фотопроводимости почти не было [S. L. Herr, G. Minton, J. W. Brill. Phys.Rev. B 33, 8851 (1986); G. Minton, Brill. Solid State Commun. 65,1069 (1988)], а количественные теории, позволяющие рассчитать энергетическую структуру, до сих пор не созданы. Информация о влиянии примесей на плотность состояний ниже T_P также практически отсутствовала, хотя о сильном влиянии примесей на электрофизические свойства квазиодномерных проводников с ВЗП было хорошо известно.

Известно также, что фототермоионизационная спектроскопия позволяет определять очень малые количества примесей в полупроводниках по спектрам фотопроводимости — предел обнаружения составляет $10^{-6}-10^{-7}\,$ см $^{-3}$ или $10^{-15}-10^{-16}\,$ ат. %. В квазиодномерных проводниках теория также предсказывает изменение оптических спектров в пайерлсовском состоянии при введении примесей — при малых концентрациях наблюдаются пики, а при больших — хвост состояний внутри и сдвиг начала поглощения $2\Delta'_{opt}=2\Delta_{opt}(1-k^2)^{1/2},$ где $k=A/v_F$ и A — амплитуда обратного рассеяния на примеси, а v_F — скорость Ферми.

В нашей работе в качестве легирующей примеси использовался Іп, вводимый в образец из предварительно изготовленных контактов методом температурной диффузии (предложенным в работе [J.C. Gill. Phys. Rev. B 53, 15586 (1996)] для легирования другого пайерлсовского проводника – NbSe₃ и изучения влияния легирования на свойства ВЗП). Впервые проведено комплексное исследование накопительного эффекта введения примесей In на спектры фотопроводимости, а также температурную и полевую зависимости темновой проводимости о-ТаЅ3. Обнаружено, что поэтапное (накопительное) легирование номинально чистого образца индием, диффундирующим из контактов, приводит к линейному увеличению сигнала фотопроводимости в области 0.15-0.25 эВ в зависимости от времени диффузии, а также к согласованному со спектральными изменениями изменениям вольт-амперных характеристик и понижению температуры пайерлсовского перехода. Для контрольного образца с золотыми контактами подобных изменений в спектрах фотопроводимости или темновой омической проводимости не обнаружено. Сделан вывод, что истинная величина пайерлсовской щели составляет $2\Delta_{opt} = 0.25 \text{ эВ}$, а фотопроводимость при энергиях, меньших $2\Delta_{opt}$, связана с примесным вкладом в согласии с теорией. Измерение распределения концентрации индия вдоль образца после 23 часов диффузии показало неоднородность концентрации In по образцу и сильную ее зависимость от расстояния до контактов. Такое исследование, впервые проведенное в o-TaS₃, показало, что скорость диффузии In в o-TaS₃ существенно ниже, чем в NbSe₃. Работа находится в заключительной стадии.

За последний год у нас появилась дополнительная возможность спектральных исследований фотопроводимости пайерлсовских проводников – изучение эффекта поляризации света на фотоотклик. Использовалось два типа поляризации света – вдоль и поперек оси наибольшей проводимости кристалла. Предварительные исследования показали существенное различие спектральных зависимостей амплитуды фотооткликов при продольной и поперечной поляризации, а также их зависимость от температуры. Оказалось, что для разных образцов (с примесями и без них) амплитуды продольного и поперечного фотооткликов сравниваются в одной и той же точке, соответствующей энергии фотонов $\hbar\omega = 0.25$ эВ, что позволило сделать предположение, что именно эту энергию нужно считать краем оптической пайерлсовской щели в o-TaS $_3$. Таким образом, новым независимым способом было получено значение $2\Delta_{opt} = 0.25$ эВ, коррелирующее с вышеописанными результатами, полученными при интеркаляции In. Работа находится в стадии интенсивных исследований.

3.9. Методы и подходы, использованные в ходе выполнения Проекта Технологическая часть.

- 1) Для синтеза кристаллов TaS_3 обеих модификаций использовалась оригинальная (в случае m- TaS_3 уникальная) технология с использованием градиентного метода. Он основан на проведении в замкнутом объеме процессов синтеза TaS_3 за счет гетерогенной реакции между Ta и S и кристаллизации в температурном поле с малым градиентом. Длительность процесса варьировалась от трех до 10 суток. В ряде случаев использовались промежуточные термоциклирования.
- 2) Для интеркаляции In в o-TaS $_3$ мы использовали метод температурной диффузии, предложенный в работе [J.C. Gill. *Phys. Rev. B* **53**, 15586 (1996)]: образец o-TaS $_3$ с прижимными контактами из индия выдерживался при температуре T = 120 K в потоке аргона в течение фиксированного промежутка времени (1 10 часов).
- 3) Для исследования однородности распределения интеркалированных примесей In в поперечном направлении использовалась процедура травления образца *o*-TaS₃ с интеркалированным индием плавиковой кислотой HF и промывки его в дистиллированной воде. Такая процедура была необходима для последующего сравнения фотоэлектрических и электрофизических характеристик до и после травления и подтверждения объемного характера появляющихся в электронном спектре примесных состояний.
 - 4) Контроль распределения концентрации примесей In вдоль образца осуществлялся

с помощью электронного микроанализатора в Институте проблем технологии микроэлектроники и особочистых материалов РАН (ИПТМ РАН).

5) В ряде случаев для приготовления контактов использовался метод лазерного напыления. В частности, для изготовления золотых контактов к контрольному образцу o-TaS₃, прошедшему аналогичный процесс многочасового нагрева при $T=120~{\rm K}$ в потоке аргона и не продемонстрировавшему изменений ни в спектре фотопроводимости, ни в температуре пайерлсовского перехода. Данная установка позволяет делать высококачественные (низкоомные, стабильные, без инородных примесей) контакты практически из любых (даже тугоплавких) материалов (наиболее частые – Au, Pt, Ag, In) ко всем квазиодномерным соединениям с ВЗП. Кроме того, с ее помощью возможно получение различных конфигураций контактов (в том числе многозондовых с малой шириной контакта и расстояния между ними и поперечных к кристаллам шириной 5- $10~\mu{\rm m}$). В настоящее время с установкой возникла проблема, требующая экстренного решения — требуется замена сгоревшему вакуумному турбомолекулярному насосу.

Экспериментальная часть.

- 1) Для проведения исследований использовалась разработанная нами методика измерений малых токов (до 10^{-15} A), позволяющая продвинуться в область низких температур.
- 2) Для исследования особенностей фотопроводимости в полученных объектах использовалась разработанная нами уникальная методика всестороннего и систематического исследования фотопроводимости, проводимого как при стационарном, так и при модулированном освещении, включающего в себя: исследование зависимостей фотопроводимости от температуры, напряжения на образце, мощности и частоты модуляции освещения, исследование кинетики фотопроводимости и, наконец, спектральной зависимости с прибавившейся возможностью исследования зависимости от поляризации света.
- 3.10.1.1 Количество научных работ по Проекту, опубликованных в 2014 году 7
- 3.10.1.2 Из них в изданиях, включенных в перечень ВАК $^{\circ}$
- 3.10.1.3. Из них в изданиях, включенных в системы цитирования (Web of Science, Scopus, Web of Knowledge, Astrophysics, PubMed, Mathematics,

Chemical Abstracts, Springer, Agris, GeoRef

0

3.10.2. Количество научных работ, подготовленных в ходе выполнения Проекта и принятых к печати в 2014 году (цифрами)

3

- 3.11. Участие в 2014 году в научных мероприятиях по тематике Проекта
- 1. XVIII Международный симпозиум «Нанофизика и наноэлектроника», Нижний Новгород, 10-14 марта 2013 г.
- 2. XII Конференция «Сильно коррелированные электронные системы и квантовые критические явления», 19 июня 2014, Институт физики высоких давлений им. Л.Ф. Верещагина РАН, г. Троицк.
- 3. International Research School and Workshop on Electronic Crystals ECRYS-2014, August 11-23, 2014, Cargese, France.
- 3.12. Участие в 2014 году в экспедициях по тематике Проекта, которые проводились при финансовой поддержке Фонда
- 3.13. Финансовые средства, полученные в 2014 году от РФФИ (в руб.) 420000,00
- 3.14. Адреса *(полностью)* ресурсов в Интернете, подготовленных авторами по данному Проекту
- 1. http://arxiv.org/abs/1411.0167
- 2. http://arxiv.org/abs/1410.7002
- 3. http://arxiv.org/abs/1411.0253
- 3.15. Библиографический список всех публикаций по Проекту, опубликованных в 2014 году, в порядке значимости: монографии, статьи в научных изданиях, тезисы докладов и материалы съездов, конференций и т.д.
- 1. V.E. Minakova, V.F. Nasretdinova, S.V. Zaitsev-Zotov. «Photoconduction in Peierls conductor monoclinic TaS_3 », Physica B: Physics of Condensed Matter, http://dx.doi.org/10.1016/j.physb.2014.11.066.
- 2. S.V. Zaitsev-Zotov, V.F. Nasretdinova, V.E. Minakova. «Charge-density waves physics revealed by photoconduction». Physica B: Physics of Condensed Matter, http://dx.doi.org/10.1016/j.physb.2014.11.067.
- 3. V.F. Nasretdinova, E.B. Yakimov, S.V. Zaitsev-Zotov, «Indium doping-induced change

- in the photoconduction spectra of o-TaS₃», Physica B: Physics of Condensed Matter, http://dx.doi.org/10.1016/j.physb.2014.11.065
- 4. V.E. Minakova, V.F. Nasretdinova, S.V. Zaitsev-Zotov. «Photoconduction in Peierls conductor monoclinic TaS₃». International Reseach School and Workshop on Electronic Crystals ECRYS-2014, August 11-23, 2014, Cargese, France, Ed. N. Kirova, Univ. Paris-Sud 11, Orsay, France, Cargese, France, p. 135, (2014).
- 5. S.V. Zaitsev-Zotov, V.F. Nasretdinova, V.E. Minakova. «Charge-density waves physics revealed by photoconduction». International Reseach School and Workshop on Electronic Crystals ECRYS-2014, August 11-23, 2014, Cargese, France, Ed. N. Kirova, Univ. Paris-Sud 11, Orsay, France, Cargese, France, p. 90, (2014).
- 6. V.F. Nasretdinova, S.V. Zaitsev-Zotov. «Polarization dependence of the photoconduction spectra of o-TaS₃». International Research School and Workshop on Electronic Crystals ECRYS-2014, August 11-23, 2014, Cargese, France, Ed. N. Kirova, Univ. Paris-Sud 11, Orsay, France, Cargese, France, p. 58, (2014).
- 7. V.F. Nasretdinova, S.V. Zaitsev-Zotov. «Indium doping induced change in the photoconduction spectra of o-TaS₃». International Research School and Workshop on Electronic Crystals ECRYS-2014, August 11-23, 2014, Cargese, France, Ed. N. Kirova, Univ. Paris-Sud 11, Orsay, France, Cargese, France, p. 136, (2014).
- 8. В.Ф. Насретдинова, С.В. Зайцев-Зотов, «Влияние легирования индием на энергетическую плотность состояний внутри пайерлсовской щели ромбического TaS₃», Труды XVIII Международного симпозиума "Нанофизика и наноэлектроника", Институт физики микроструктур РАН, Нижний Новгород, 10-14 марта 2013 г., Нижний Новгород, Изд-во Новгородского университета, 2014, Том 2, стр. 571.
- 9. В.Е. Минакова, В.Ф. Насретдинова, А.М. Никитина и С.В. Зайцев-Зотов, «Особенности фотопроводимости и низкотемпературной омической проводимости пайерлсовского проводника моноклинного TaS3», XII Конференция «Сильно коррелированные электронные системы и квантовые критические явления», 19 июня 2014, Институт физики высоких давлений им. Л.Ф. Верещагина РАН, г. Троицк, Тезисы докладов, стр. 23.
- 10. В.Ф. Насретдинова, С.В. Зайцев-Зотов, «Влияние поляризации излучения на спектры фотопроводимости р-ТаS3», XII Конференция «Сильно коррелированные электронные системы и квантовые критические явления», 19 июня 2014, Институт физики высоких давлений им. Л.Ф. Верещагина РАН, г. Троицк, Тезисы докладов,

стр. 23.

3.16. Приоритетное направление развития науки, технологий и техники $P\Phi$, которому, по мнению исполнителей, соответствуют результаты данного Проекта

3.17. Критическая технология $P\Phi$, которой, по мнению исполнителей, соответствуют результаты данного Проекта

3.18. Основное направление технологической модернизации экономики России, которому, по мнению исполнителей, соответствуют результаты данного Проекта

Подпись руководителя проекта

Форма 510. Заявка на 2015 год

10.2.1. Номер Проекта

14-02-01236

10.2. Основной код классификатора

02

10.2.2. Дополнительные коды классификатора

02 - 202

10.3. Ключевые слова

квазиодномерные проводники, пайерлсовский переход, волна зарядовой плотности, фотопроводимость, энергетическая структура

10.4. Цели на 2015 год, связь с основной задачей Проекта

Основными задачами проекта на весь срок являются:

1. Синтез кристаллов TaS_3 с различными структурными изменениями и изготовление из них образцов (в том числе и ультратонких) с контактами. К возможным изменениям структуры можно отнести: легирование образца (изменение концентрации и типа примесей), изменение кристаллографической модификации, продольное растяжение образца, изменение изотопного состава, а также создание искажений структуры, в

частности, создание протяженных ростовых дефектов.

- 2. Экспериментальное исследование изменений коллективной и одночастичной проводимостей в полученных объектах с целью выяснения природы низкотемпературной омической проводимости.
- 3. Экспериментальное исследование особенностей фотопроводимости в образцах с различными структурными изменениями с целью поиска неодночастичного вклада в фотопроводимость.

Основными целями на 2015 год являются:

Технологическая часть.

- 1. Преодолеть вышеописанные трудности с технологией синтеза и вырастить чистые кристаллы обеих модификаций TaS_3 .
- 2. Основная цель в технологической части проекта совмещение двух имеющихся у группы методик методики измерения темновой проводимости и всех характеристик фотопроводимости и методики продольного растяжения образца, позволяющей искусственно переводить *o*-TaS₃ из несоизмеримого в соизмеримое состояние, и даже далее в несоизмеримое состояние другого знака. Основные трудности разместить все в малом объеме и избавиться при этом от эффектов нагрева образца и наводок от источника света.
- 3. Восстановить сломавшуюся вакуумную установку для лазерного напыления контактов к квазиодномерным проводникам купить и заменить сгоревший турбомолекулярный насос (Данная установка используется еще в двух проектах РФФИ, проводимых в ИРЭ им. В.А. Котельникова РАН).

Экспериментальная часть.

- 1. Продолжить исследования влияния поляризации света на спектры фотопроводимости в различных имеющихся у нас квазиодномерных соединениях с ВЗП для прояснения природы низкотемпературной омической проводимости, а также для подтверждения существования и прояснения природы зависящих от электрического поля внутрищелевых электронных состояний.
- 2. В случае синтеза чистых кристаллов m-TaS $_3$ продолжить исследования темновой проводимости и фотопроводимости для выяснения природы новых обнаруженных особенностей фотопроводимости в этом соединении.
 - 3. Завершить исследования влияния легирования индием на фотопроводимость о-

TaS₃, проведя исследования температурных зависимостей фотопроводимости и изучив влияние легирования In на характер рекомбинации неравновесных носителей заряда.

4. Приступить к исследованию темновой низкотемпературной проводимости (омической и нелинейной) и фотопроводимости в растянутых образцах. Возможно, дополнительная информация об изменениях низкотемпературной проводимости и фотопроводимости в растянутых образцах поможет также разобраться в причине появления и природе ультракогеррентной ВЗП, возникающей при продольном растяжении образцов o-TaS₃ (этот новый эффект обнаружен недавно в работе [S.G. Zybtsev, V.Ya. Pokrovskii. "Strain-induced formation of ultra-coherent CDW in Quasi-One-Dimensional Conductors". Physica B: Physics of Condensed Matter, http://dx.doi.org/10.1016/j.physb.2014.11.066????????]).

10.5. Ожидаемые в конце 2015 г. научные результаты

К концу 2015 г. ожидаем получить следующие научные результаты:

- 1. Создать уникальную методику изучения низкотемпературной проводимости и всех аспектов фотопроводимости пайерлсовских проводников с продольным растяжением.
- 2. Обнаружить влияние продольного растяжения образцов o-TaS $_3$ на низкотемпературную проводимость и фотопроводимость.
 - 3. Исследовать воздействие легирования индием на процессы рекомбинации в o-TaS₃.
- 4. Детально исследовать влияние поляризации света на спектры фотопроводимости в различных имеющихся у нас квазиодномерных соединениях с ВЗП.

10.6. Объем финансирования на 2015 г., запрашиваемый в РФФИ (с предварительной расшифровкой затрат)

На 2015 г. необходимый объем финансирования составляет 800000 руб, он включает в себя:

- 1. Затраты на зарплату 300000 руб.
- 2. Доля в покупке турбомолекулярного насоса 200000 руб.
- 3. Затраты на расходуемые материалы и ампулы 60000 руб.
- 4. Затраты на жидкие газы –100000 руб.
- 5. Затраты на командировки 130000 руб.
- 6. Мелкие расходы 10000 руб.

10.7.1. Сроки проведения в 2015 г. экспедиции по тематике проекта, если

это необходимо (месяц начала - месяц окончания

- 10.7.2. Ориентировочная стоимость экспедиции (в руб.)
- 10.7.3. Регион проведения экспедиции
- 10.7.4. Название района проведения экспедиции
- 10.8.1. Перечень оборудования и материалов, которые необходимо приобрести, изготовить или отремонтировать для успешного выполнения Проекта; обосновать необходимость его приобретения

Для успешного выполнения проекта необходимо следующее оборудование и материалы:

1. Вакуумный турбомолекулярный насос FF-100/110E — наша доля в покупке составляет около 200000 руб.

Данный насос является основной частью вакуумной установки для лазерного напыления контактов к квазиодномерным проводникам. Старый насос сгорел и ремонту не подлежит. Установка для лазерного напыления контактов помимо данного проекта используется для выполнения двух других проектов РФФИ:

- 1) № 14-02-01240 «Взаимовлияние механических и электрических эффектов в квазиодномерных проводниках с волной зарядовой плотности», руководитель В.Я. Покровский
- 2) № 13-02-01228 «Нелинейная проводимость и переход полупроводник-изолятор в слоистых вискерах трисульфида титана», руководитель И.Г. Горлова.

Цена насоса на данный момент – 463000 руб (6806\$), в покупке насоса планируем долевое участие всех трех перечисленных проектов РФФИ.

- **2. Кварцевые ампулы и расходуемые материалы** для синтеза квазиодномерных проводников 60000 руб.
- 3. Жидкие газы (гелий, азот) для низкотемпературных измерений 100000 руб. 10.8.2. Перечень командировок (в том числе и зарубежных, необходимых для выполнения Проекта. Обосновать их необходимость и указать приблизительную стоимость

Для успешного выполнения проекта необходимы следующие командировки:

- 1. Участие в 11-ом Международном Симпозиуме по кристаллическим органическим металлам, сверхпроводникам и магнетикам «ISCOM-2015» (Бад Гёггинген, Германия) одна из основных международных конференций по физике квазиодномерных проводников; 2 человека; ориентировочная стоимость 100000 руб.
- 2. Участие в 2-х российских конференциях; 1 человек; ориентировочная стоимость 30000 руб.

10.9.1. Планируемая численность участников Проекта в 2015 году (цифрой) 5

10.9.2. Полный список членов коллектива на 2015 год (не более 10 человек, указать ФИО и должность)

- 1. Минакова Валерия Евгеньевна, старший научный сотрудник
- 2. Насретдинова Венера Фатиховна, младший научный сотрудник
- 3. Никитина Анна Мейровна, ведущий технолог
- 4. Зыбцев Сергей Григорьевич, старший научный сотрудник
- 5. Талденков Александр Николаевич, старший научный сотрудник

Подпись руководителя проекта