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Abstract

The electron transport in a 1D conductor with an isolated local defect such as

an impurity or a non-adiabatic contact is studied theoretically. New regime of

conduction in correlated 1D systems is predicted beyond the well-known regime

of tunneling resulting in the power-law I-V-curves. In this regime a quantum

wire becomes ”opened” at a voltage bias above the threshold value determined

by 2kF -component of impurity potential renormalized by fluctuations, giving

rise to a rapid increase of the dc current, Ī, accompanied by ac oscillations of

frequency f = Ī/e. Manifestations of the effect resemble the Coulomb blockade

and the Josephson effect. The spin bias applied to the system affects the I-V

curves due to violation of the spin-charge separation at the defect site. The 1D

conductor is described in terms of the Tomonaga-Luttinger Hamiltonian with

short range or long-range Coulomb interaction by means of the bosonization

technique. We derive boundary conditions that take into account relaxation in

the leads and permit to solve non-equilibrium problems. Charge fluctuations are

studied by means of Gaussian model which can be justified strictly in the limit

of large voltages or strong inter-electronic repulsion. Spin fluctuations are taken

into account strictly by means of the refermionization technique applicable in

case of spin-rotation invariant interaction.
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1. INTRODUCTION

It is well-known that in 1D systems the interaction between electrons can-

not be considered as a small perturbation and the system is described as the

Luttinger liquid (LL) that is an alternative to the Fermi liquid for 1D electronic

systems (for a review see Ref. [1, 2]), and the Landau’s Fermi-liquid picture

where low-energy excitations are single-electron quasiparticles that in many re-

spects behave like non-interacting electrons is not applicable. There are different

realizations of 1D electronic systems demonstrating properties of the LL. The

examples are semiconductor-based quantum wires in which dimensionality of

the conduction electrons is reduced by dimensional quantization and carbon

nanotubes, and such distinctive features of the LL as power-law suppression of

tunneling into 1D systems and spin-charge separation and have been confirmed

experimentally, see e. g. Ref. [3].

Electron-electron interaction greatly affects electronic transport in 1D sys-

tems. In particular, the back-scattering component of the impurity potential

in 1D systems with repulsive inter-electronic interaction scales to infinity under

renormalization group transformations. Hence, even isolated impurities form

effectively large barriers and strongly suppress conductance [4, 5, 6].

On the other hand, the limit of strong interaction between electrons in solids

usually leads to the Wigner crystallization. However, in 1D systems the long-

range order is destroyed by fluctuations [7]. So, strictly speaking, 1D Wigner

crystals do not exist, but the density-density correlation functions of 1D gas

with Coulomb repulsion contain the 4kF oscillating part which decays extremely

slowly [8], like e−c
√
ln x, that is slower than any power-law. As the period corre-

sponding to 4kF oscillations is exactly the average inter-electron spacing, such

a system can be considered as a 1D Wigner crystal with pseudo-long-range or-

der [8]. In case of short range inter-electronic interaction (which takes place in

gated quantum wires where the long-range part of the Coulomb interaction is

2



screened by electrons in the metallic gate) the 4kF density correlations decay

slowly as well, as the power-law with a small exponent.

Sliding of electronic crystals contributes to conductance, the most studied

case being quasi-1D CDW compounds [9]. Defects pin the CDW but when the

driving electric field exceeds a threshold field the CDW starts to slide resulting

in non-linear conductance and ac generation at washboard frequencies corre-

sponding to a shift of the CDW by one period [9]. As long as the LL can be

interpreted as a 1D form of the 1D Wigner crystal, one can expect a similar dy-

namic regime of depinning, sliding and ac generation in correlated 1D electron

system as well. We show that such a regime does exist, at least, in the quasi-

classical limit when quantum fluctuations at the impurity site are suppressed by

strong electron-electron interaction. Such a scenario was addressed earlier in our

letter [10] where the dynamic regime of conduction accompanied by oscillations

of frequency f = Ī/e was predicted in a spinless LL.

Full I-V curves of a single-channel LL with a single impurity were stud-

ied by means of thermodynamic Bethe ansatz technique by Fendley et al [11].

Egger and Grabert [12] calculated the I-V curves for specific value of interac-

tion parameter Kρ = 1/2 using the refermionization technique which makes

the Hamiltonian quadratic and, hence, solvable exactly. But no non-stationary

regime was found. Possibility of generation of self-sustained current oscillations

in a quantum wire in a properly designed load circuit was considered in Ref. [13],

but these oscillations are a consequence of instability induced by S-shaped I-

V curves, and their origin is different from the mechanism discussed in the

present work. We suppose that the main difference between our approach and

Refs. [11, 12, 13] is that the equilibrium distribution of incident particles (non-

interacting fermions, kinks and anti-kinks, etc) was assumed in these papers.

However, as the distribution of the particles transmitted through the defect is

not the equilibrium one, and the bosonic excitations of the LL are reflected from

the leads to the quantum wire even in case of adiabatic contacts since the re-

flection coefficient r =
1−Kρ

1+Kρ
[14]. Then the incident waves consist in part of the

particles reflected from the contact. So if the relaxation inside the conducting
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channel is small the distribution of the incident particles must not be necessarily

the equilibrium one, and this applies equally to fermions derived from bosons

after the refermionization. Therefore, one needs to calculate the distribution

function of the incident particles, and we perform this by means of boundary

conditions which take into account relaxation processes induced by coupling of

the quantum wire to the Fermi liquid of the current leads considered as a heat

bath. These boundary conditions are valid for non-ideal contacts, and they

generalize the boundary conditions by Egger and Grabert [12] and the results

of Safi and Schulz [14, 15] derived for expectation values and ideal adiabatic

contacts.

We think that the results of Refs. [11, 12, 13] are applicable in the limit of

conducting channels longer than the damping length of excitations due to cou-

pling of electrons inside the wire to a dissipative bosonic bath (phonons, density

fluctuations in a metallic gate, and so on). And we obtain the non-stationary

regime of conduction for practically important case of the quantum wire which

is shorter than the relaxation length, so that the relaxation is governed by

boundary conditions.

The structure of the paper is as follows. In Sec. 2 we formulate the prob-

lem, derive boundary conditions at the contacts, and derive equations of motion

for the displacement field at the impurity position. These equations resemble

equations of motion of cou0led quantum pendulums. In Sec. 3 we use our equa-

tions to study electronic transport in spinless LL. Using the Gaussian model

to account for fluctuations, we study I-V curves, analyze noise spectrum, study

non-Gaussian corrections and find that the Gaussian approximation is justi-

fied in the limit of strong interaction between electrons and large voltages. In

Sec. 4 we consider the spinful LL with strong enough interaction between elec-

trons when charge fluctuations at the defect position are small. However, spin

fluctuations are large and they are taken into account strictly by means of

refermionization method in spin sector valid in case of spin-rotation invariant

interaction (Kσ = 1). In Sec. 5 we show that non-adiabatic contacts induce non-

stationary effects similar to those induced by impurities. In Sec. 6 we formulate
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conclusions.

Below we set e, h̄ and kB to unity, restoring dimensional units in final ex-

pressions when necessary.

2. GENERAL FORMULATION

2.1. Problem formulation

We consider a correlated 1D conductor with an impurity at x = 0 and con-

nected to ideal Fermi-liquid reservoirs at x = ±L/2. The Hamiltonian of the

system with impurity consists of two terms H = H0 +Hi. The first one is the

bosonised Tomonaga-Luttinger (TL) Hamiltonian that maps the 1D system of

interacting electrons to free massless bosons described in terms of the displace-

ment fields Φ̂ν(t, x) and the conjugated momentum density Π̂ν(t, x) = ∂xΘ̂ν/π.

Here ν = ρ, σ denotes charge and spin channels, correspondingly. The standard

TL Hamiltonian in the Fourier transformed form reads [1, 2]

Ĥ0 =
πvF
2

∑

ν=ρ,σ

∫

dq

2π

{

Π̂2
ν +

1

π2K2
ν

q2Φ̂2
ν

}

. (1)

Here the LL parameters Kν , playing the role of the stiffness coefficients of the

elastic string described by Hamiltonian (1), are related to the electron-electron

interaction potential, and measure the strength of interaction between electrons.

In the spin-rotation invariant case considered in our study, Kσ = 1, Kρ(q) =

1/
√

1 + g(q)
πvF

, where g(q) is the Fourier transformed interaction potential. In

case of the short-range interaction the dependence of g on wave-vector q is

usually neglected. For repulsive interaction Kρ < 1. In infinite 1D gas with

long-range Coulomb interaction described by the approximate form VC(x) =

e2

ǫ
√
x2+d2

, where ǫ is a background dielectric constant and d is a diameter of

quantum wire, one obtains g(q) = 2 e2

ǫ K0(|qd|)] [8]. Thus,

Kρ(q) =
1

√

1 + γK0(|qd|)
, γ =

2e2

πh̄vF ǫ
≈ 2

137π

(

c

vF

)

1

ǫ
, (2)

where γ is dimensionless parameter which measures the strength of the Coulomb

repulsion between the electrons.
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In case of the long-range interaction and finite length of the conducting

channel the Coulomb potential is modified by screening of the interaction by

current leads. The exact form of the screening depends on the geometry of

the system. We consider 3D metallic leads forming sheets of a plane capacitor

connected by the quantum wire. Then the screening by the leads can be depicted

in terms of the image charges, and the interaction potential between charges

located at x and x′ is described as

V (x, x′) =
∞
∑

n=−∞
[VC(x− x′ + 2nL)− VC(x+ x′ + 2nL+ L)] , (3)

where the term with n = 0 describes the direct Coulomb interaction, and other

terms are induced by image charges. Its contribution to the ν = ρ term in the

Hamiltonian (1) in the coordinate representation reads

∫

dxdx′
{

∂xΦ̂ρ(x)V (x, x′)∂x′Φ̂ρ(x
′)
}

(4)

Since the operator of the particle density is given by expression ρ̂ = −(
√
2/π)∂xΦ̂(x),

this term has rather transparent physical meaning.

Interaction with the impurity is described in terms of the phase fields Φ̂ν(t, x)

at the impurity position x = 0 [1, 2]

Ĥi = −W
π

cos
√
2Φ̂ρ(0) cos

√
2Φ̂σ(0), (5)

where the impurity strength W is related to the back-scattering part of the

impurity potential. The forward scattering is not included because it can be

eliminated from the problem by redefinition of the field Φ̂ρ [1]. The impurity

Hamiltonian is related to 2kF -components of electron density and in the Lut-

tinger model used here it does not contain higher harmonics, which are present

in more general models [2].

Current in the system can be calculated in terms of Φ̂ρ by means of thermo-

dynamic averaging of the expressions for the operator

Î =

√
2

π
∂tΦ̂ρ. (6)

6



The expectation value of the displacement field in (6) can be found from equa-

tion of motion for the Heisenberg operator Φ̂ρ(t, x). Commuting Φ̂ρ with the

Hamiltonian we find for the case of short range interaction

(

v2ρ∂
2
x − ∂2t

)

Φ̂ρ(t, x) =
√
2πvFW sin

√
2Φ̂ρ cos

√
2Φσδ(x), (7)

where vρ = vF /Kρ is the velocity of charge (plasmonic) excitations. Equation

of motion for the spin field has similar form, it can be obtained from (7) by

substitution subscripts ρ by σ and vice versa.

At the contacts we apply the boundary conditions which take into account

injection of electrons induced by external bias and relaxation processes induced

by coupling of the quantum wire to 2D or 3D Fermi liquid in the current leads.

The boundary conditions are considered in details in the next subsection.

2.2. Boundary conditions

Boundary conditions for the single mode (spinless or spin-polarized) wire

contacting with a 2D or 3D leads were derived in Ref. [16]. Here we generalize

this result for the spinful case. In order to derive the boundary conditions we

use the ideas of the scattering approach (for a review see Ref. [17]).

We assume that electrons in the leads do not interact and that longitudinal

(along the x-axis) and transverse motions are separable. Here we concentrate

on the case of contacts at x = ±L/2 with an arbitrary transverse profile of the

potential. The longitudinal motion in the leads is characterized by wave vector

k, spin s and energy εl =
k2

2m . The transverse motion is described by energy

εn, the total energy being ε = εl + εn, where n is an index labeling transverse

modes.

In case of non-interacting electrons we match the electron field operators in

the lead and in the wire and, using independency of the annihilation operators

ĉn,k of the incident electrons on the properties of the contact, we derive bound-

ary conditions for the lowest subband, which is responsible for an electronic

transport in the wire. The detailed derivation is given in the Appendix.
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It is convenient to express the boundary conditions in terms of physical

values: the current ĵ = vF

(

ψ̂†
Rψ̂R − ψ̂Lψ̂L

)

, the smooth part of charge density

perturbations ρ̂ = ψ̂†
Rψ̂R + ψ̂†

Lψ̂L, and the 2kF -component of charge density

perturbations ρ̂F = ψ̂†
Lψ̂Re

2iqF x+c.c., which is related to the Friedel oscillations,

where ψ̂R,L are field operators for right and left moving electrons in the wire.

The details of derivation can be found in the appendix. Then the boundary

conditions at the left(right) contact read

vF
T
ρ̂± ĵ + vF f ρ̂F =

1

V

∑

n,n′

ĉ+
n

′ ĉne
i(ε

n
′−εn)t. (8)

Here T is a parameter that characterizes reflection from the contact, and T = 1

corresponds to an adiabatic contact. Parameter f descibes the amplitude of the

Friedel oscillations, it is a number of the order unity if T is not close to unity,

and f ≃
√

2(1− T ) if the contact is neally adiabatic, 1 − T ≪ 1. Thus the

Friedel oscillations disappear if the contacts are ideal. These parameters are

local in the sense that they depend only on the properties of the given contact

and do not depend neither on the lead at the opposite end of the 1D channel

nor on the presence of an impurity or electron-electron interaction provided the

latter vanishes in the leads. The explicit expressions for T and f are given in

the Appendix.

In order to check the validity of conditions (8), we considered a wire with

non-interacting 1D electrons attached to smoothly widening nearly adiabatic

leads. We also assumed that there might be a potential step of the height

U0 ≪ εF at the interface. In this case we can find the solution directly, using

the quasiclassical approximation in the lead and matching the quasiclassical

solution outside the 1D conductor with the exact solution inside the channel.

And we found that the condition (8) fulfils again and yields the conductance

G = TG0 in agreement with the Landauer formula.

As we need the boundary conditions in the bosonic representation, we have

to bosonize (8). Note that the LL theory is valid provided that all energies

are small in comparison with the Fermi energy, while the amplitude of the term

vF f ρ̂F which is responsible for the Friedel oscillations is of the order of the Fermi
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energy if f = 2
√
1− T is not small. Therefore, we limit our study by nearly

adiabatic contacts with
√
1− T ≪ 1, and neglect terms of the higher order in

f . Transforming then in a standard way the fermionic operators to charge and

spin density variables [2] we obtain the boundary conditions for bosonic field

Φ̂ρ at the left (right) contacts

vF ∂xΦ̂ρ ∓ ∂tΦ̂ρ +
√
2fεF sin(

√
2Φ̂ρ ∓ kFL) cos

√
2Φ̂σ = P̂L,R

ρ , (9)

vF ∂xΦ̂σ ∓ ∂tΦ̂σ +
√
2fεF cos(

√
2Φ̂ρ ∓ kFL) sin

√
2Φ̂σ = P̂L,R

σ , (10)

where P̂L,R
ν = 2πvF N̂

L,R
ν , NL,R

ν is the operators of excess number of charge (ν =

ρ) and spin (ν = σ) densities in the left (L) and right (R) leads, respectively.

The expectation values of the operators PL,R
ν and correlation functions of their

fluctuating parts δP̂L,R
ν = P̂L,R

ν − 〈P̂L,R
ν 〉 can be calculated easily from the

right-hand part of (8). The average of PL,R
ρ for charge channel is proportional

to the potentials UL,R
ρ applied to the left (right) contact, 〈PL,R

ρ 〉 = UL,R
ρ /

√
2.

Similarly, the expectation values 〈N̂L,R
σ 〉 equal to the excess spin densities in

the leads, and 〈P̂R
σ − P̂L

σ 〉 = Vσ/
√
2 where Vσ is a “spin bias”.

Correlation functions are identical for both channels and for both contacts,

while correlations between left and right contacts and between charge and spin

operators are absent. In the frequency representation correlation functions read

〈δP̂ (ω)δP̂ (ω′)〉 = 4π2ωN(ω′)δ(ω + ω′). (11)

where N(ω′) is the Planck distribution function. The fluctuating part of the

boundary conditions takes into account that the leads play a role of a heat

bath and leads to the equilibrium distribution functions of the excitations in

the quantum wire.

If there is a metallic gate near the quantum wire we must take into account

screening by the gate. Following the approach of Ref. [12] we find that the

screening by the gate results in a modification of the factor in the first term

of (9). Then the boundary conditions for the case of short-range interaction

acquire the form

vF
K2

ρ

∂xΦ̂ρ ∓ ∂tΦ̂ρ +
√
2fεF sin(

√
2Φ̂ρ ∓ kFL) cos

√
2Φ̂σ = P̂L,R

ρ . (12)
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The modification of the factor before the spatial derivative can be also illus-

trated by means of the simple model in which the factor Kρ is equal to 1 at the

non-interacting lead x = −L/2− 0 and step-like reaches its value in the wire at

x = −L/2+0. Then we integrate the equation of motion (7) from x = −L/2−0

to x = −L2/+0 and obtain that Φ̂ρ is a continuous function of x but its spatial

derivative satisfies

∂xΦ̂ρ(−L/2− 0) =
1

K2
ρ

∂xΦ̂ρ(−L/2 + 0),

which explain transition from (9) to (12)

In case of a wire adiabatically connected to ideal Fermi-liquid reservoirs at

x = ±L/2 the boundary conditions (10) and (12) reduce to
(

vF
K2

ν

∂x ∓ ∂t

)

Φ̂ν(x= ± L/2)=P̂L,R
ν , ν = ρ, σ (13)

in agreement with the results of Ref. [12, 14, 15].

It looks natural that in case of gated quantum wire the gate screens exter-

nally applied electric field and the problem is described in terms of boundary

conditions, as it was discussed in Ref. [12]. Of course, inside the wire there is

also an electric field induced by non-uniform distribution of electrons, but this

electric field is taken into account by the interaction between electrons. How-

ever, it looks less clear whether one can describe the driving voltage by boundary

conditions when there is no gate (the case of long-range interaction). Therefore,

in case of long-range Coulomb interaction we considered two approaches. First,

we inserted the driving dc electric field into the Hamiltonian, when the external

field appears in the equation of motion for the displacement field Φ̂ρ(x, t). Sec-

ond, we derived equations of motion for the phase fields with driving dc voltage

taken into account by boundary conditions. But the equation of motion for the

displacement field Φ̂ρ(t) at the defect site turned out to be the same and the

results of two approaches for the case of dc voltage in both cases are equivalent.

2.3. Equations of motion of the displacement field at the impurity site

In this section we derive equations of motion for the phases Φ̂ρ and Φ̂σ at the

impurity for the wire with adiabatic contacts. Consider first the case of short-

10



range interaction. We solve equation of motion (7) for Φ̂ν(ω, x) formally using

Fourier transformation with respect to time, and match the solutions at the

impurity site using boundary conditions (13). In this way we express operators

Φ̂ν(ω, x) in terms of their values at the impurity site, x = 0, and after inverse

Fourier transformation obtain equations of motion for the displacement field at

the impurity site. The equations read

∂tΦ̂ρ +
W√
2
Z ⊗ sin

√
2Φ̂ρ cos

√
2Φ̂σ = F ⊗ P̂ρ, (14)

∂tΦ̂σ +
W√
2
sin

√
2Φ̂σ cos

√
2Φ̂ρ = P̂σ

(

t− L

2vF

)

. (15)

Here ⊗ means convolution in time, Pν = P̂R
ν − P̂L

ν , Z(t) and F (t) are defined

by means of Fourier components

Z(ω) = Kρ
1− iKρ tanωtL
Kρ − i tanωtL

, F (ω) =
Kρ

2[Kρ cosωtL − i sinωtL]
, (16)

where tL =
LKρ

2vF
. Oscillatory dependence of Z(ω) and F (ω) describes multiple

reflections of the bosonic excitations of the LL from contacts. This statement

can be illustrated by the expression for Z in time representation

Z(t) = Kρ

[

δ(t) + 2

∞
∑

m=1

rmδ (t−mtL)

]

, r =
1−Kρ

1 +Kρ
, (17)

where r is the reflection coefficient of plasma excitations from the contacts [14].

Consider now the case of long-range Coulomb interaction between the elec-

trons. Formally, the interaction potential in the system of finite length (3) is

symmetric with respect to the contacts and periodic with period 2L. Therefore,

we can expand the field operators in Fourier series and find a simple and easily

soluble equation of motion for Fourier components. Then using the boundary

conditions we obtain equations of motion similar to (14-15) but with different

memory functions F and Z

Z(ω) =
iωR+ − 2ω2(R2

+ −R2
−)

1 + 2iωR+
, F (ω) =

iωR−
1 + 2iωR+

, R±(ω) =
vF
L

∞
∑

k=−∞

(±1)k

ω2 − q22kv
2(q2k)

with qn = πn
L , v2 = v2F [1 + 2γK0(|qd|)]. The exact analytical summation in R±
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is difficult, but the sums can be calculated with logarithmic accuracy as

R+(ω) =
Kρ(qω)

2ω tan ωL
2vω

, R−(ω) =
Kρ(qω)

2ω sin ωL
2vω

, Kρ(qω) =
1

√

1 + 2γK0(|qωd|)
,

where qω is a solution of equation ω = qωv(qω). This approximation results in

expressions for Z and F that coincide with (16) but with Kρ(qω) depending on

frequency.

In the simplest case of the single-mode (spinless) LL the equation of motion

for the phase at the impurity site reads

∂tΦ̂(t) +WiZ ⊗ sin 2Φ̂ = F ⊗ P̂ . (18)

Equations (14-15) and (18) resemble equations of motion of an overdamped

pendulums, therefore, one can expect that when the system is driven by a

constant external bias the phase increases non-uniformly, which in our case

means presence of both dc and ac current. It is not easy to solve the non-linear

equations for operators in general case. So we solve them in the limit of strong

inter-electronic interaction when fluctuations of the phase field Φ̂ρ are relatively

small and can be described by Gaussian approximation. Fluctuations in the

spin channel are not small and are not Gaussian, however, they will be taken

into account strictly by means of refermionization.

3. DYNAMIC REGIME OF CONDUCTION IN THE SPINLESS

LUTTINGER LIQUID

3.1. Gaussian approximation

In this section we will consider the most technically simple case of the single-

mode LL with short-range interaction between electrons.

First, we represent the bosonic field operator at the impurity site as a sum

of its expectation value and fluctuating part, Φ̂ = Φ + φ̂, Φ = 〈Φ̂〉. Then we

perform thermodynamic averaging of both sides of Eq. (18) and obtain equation

for expectation value Φ of the field operator at the impurity site

∂tΦ(t) +WiZ ⊗ 〈sin 2Φ̂〉 = F ⊗ V, (19)
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Equation (19) is not a closed equation for Φ(t) since it contains an expec-

tation value of sin 2Φ̂(t) which depends both on expectation value Φ and on

fluctuations φ̂ of the displacement field. Therefore, in order to calculate the

expectation value we need to study fluctuations. The equation of motion for

the fluctuating part φ̂ of the displacement field we obtain subtracting (19) from

(18). Then we simplify the problem assuming that fluctuations are Gaussian.

Strictly speaking, the fluctuations are not Gaussian, and in general case this

is just a model assumption. However, we show below that this approach can

be justified in case of strong inter-electronic repulsion and in the limit of high

voltages, where the Gaussian fluctuations dominate.

Thus we solve the problem by means of the self-consistent harmonic ap-

proximation [1], in which fluctuations are assumed to be Gaussian. In this

approximation, we replace

sin 2φ̂→ 2hφ̂, h ≡ e−2〈φ̂2〉, (20)

and instead of (19) we obtain more simple equation for the expectation value

Φ(t)

∂tΦ(t) +WiZ ⊗ h sin 2Φ = F ⊗ V, (21)

and a linear equation for fluctuations

∂tφ̂(t) + 2WiZ ⊗ h cos 2Φφ̂ = F ⊗ δP̂ (t1). (22)

Coefficients of this equation depend both on the mean square fluctuations 〈φ̂2(t)〉
and on the expectation value Φ, so it must be solved self-consistently with (21).

If the applied dc voltage is small enough, equations (21) and (22) have

stationary solutions for phase Φ and for mean square fluctuations 〈φ̂2〉. In the

stationary case (21) reads

Wih sin 2Φ = V, (23)

and Fourier transformed (22) reduces to the simple form

− iωφ̂(ω) + 2WihZ(ω) cos 2Φφ̂(ω) = F (ω)δP̂ (ω). (24)
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This equation can be solved easily. Taking into account correlation functions

given by (11), (24) and (16) we can calculate mean square fluctuations

〈φ̂2〉 =
K2

ρ

2

∫ ∞

−∞

ω coth ω
2T dω

(ω2 +W 2
c )[(1 +K2

ρ) + (1−K2
ρ) sin(ωtL − αω)]

, (25)

where αω = arctan
W 2

c −ω2

2ωWc
, Wc = 2WiKρh cos 2Φ. Since Wc depends on 〈φ̂2〉,

(25) determines the self-consistency condition for 〈φ̂2〉. The result of integra-

tion depends on relation between VT and temperature T . First, we consider the

limit of zero temperature. In pure LL this integral would diverge logarithmically

both at high and low frequencies. The divergence at the upper limit in the TL

formalism must be cut off at frequency Λ of the order of the bandwidth or the

Fermi energy. The infrared divergence at low frequencies is a distinctive feature

of 1D systems, and in the presence of impurity the infrared divergence is cut off

at a frequency related to the impurity potential. In addition, the denominator

contains the oscillating factor induced by reflections of fluctuations from con-

tacts. If the length of the quantum wire is large enough the main contribution

to the integral is determined by frequencies ωtL ≫ 1 and oscillations contribute

little to the integral and we obtain

〈φ̂2〉 = Kρ

2(1−Kρ)
ln

Λ

2WiKρ cos 2Φ
. (26)

Now using this equation we can calculate maximum value of the left hand side

of (24) which determines the value of the threshold voltage VT below which the

static solutions for mean phase Φ exist. We find

VT = 2Wi





2Wi

√

K3
ρ

Λ





Kρ

1−Kρ

√

1−Kρ. (27)

We see that the threshold voltage at low temperatures is determined by the

impurity potential renormalized by quantum fluctuations. In case of interelec-

tronic repulsion, Kρ < 1, the mean square fluctuations 〈φ̂2〉 and, hence, VT

are finite, while in non-interacting system, when Kρ = 1, fluctuations become

infinite and VT is destroyed by quantum fluctuations. Thus we find that the

solution for Φ is stationary at V < VT , that is current cannot pass an impurity.
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This result is a consequence of our approximation in which only Gaussian fluctu-

ations were taken into account. If we took into account fluctuations of solitonic

type for which the phase increases by π due to tunneling, we would obtain a

small tunneling current at V < VT described by the well-known power-law I-V

curves [1]. Thus the current is small at V < VT and starts to increase rapidly

at V > VT .

In case of finite temperatures the self-consistency equation has solutions

which correspond to a finite value of fluctuations only if T < Tc ∼ VT,0 ≡
VT (T = 0, L = ∞), so there is a characteristic temperature above which VT is

destroyed by thermal fluctuations and the impurity does not suppress electronic

transport.

If the quantum wire is short enough, L ∼ vρ/VT,0, we must not average (25)

over oscillations at ωtL ∼ 1. At these frequencies 〈φ̂2(ω)〉 in (25) is proportional

to ω−1 as before but with a different factor. As a consequence VT is suppressed

in short wires, and impurities do not destroy the linear conduction when L <

Lc ∼ v/VT,0. This happens due to increase of fluctuations at the impurity site

because fluctuations are reflected back from the contacts, while the distance to

the contacts becomes smaller than the correlation length of the fluctuations.

3.2. I-V curves and noise spectrum at high voltages

As it was noted already, it is difficult to obtain I-V curves at low voltages

accurately because of time dependence of the mean square value of fluctuations.

The problem is simplified at high voltages, V ≫ VT , when the mean square

value 〈φ̂2〉 becomes nearly constant with small oscillating component. In this

case (21-22) can be solved perturbatively assuming that the oscillating parts of

both mean square fluctuations 〈φ̂2〉 and of the mean phase Φ are small.

In this subsection we consider the limit of relatively long conducting channel,

VT tL ≫ 1, but not too long, so that the wire is short in comparison with the

damping length related to relaxation due to coupling to phonons etc. In this

case we have to use the exact form of Z(t) in equation for the expectation value

(21) but can keep only the first delta-function in kernel Z(t) in equation for
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fluctuations (22). In time representation this means that we take into account

current pulses reflected from the contacts but we ignore correlations between

fluctuations shifted by time ntL necessary for the excitation to return to the

impurity after multiple reflections from the contacts. Then (22) acquires simple

form and can be solved easily

φ̂ =

∫ t

−∞
dt1

∫ ∞

0

dt1F (t1 − t2)δP̂ (t2)e
−
∫

t

t1
W (t2)dt2

, (28)

where W (t) = 2KρWih(t) cos 2Φ(t). Using (28) we can calculate mean square

fluctuations 〈φ̂2〉. As we consider the long channel we average, again, over

oscillatory factor in F (t) and find

〈φ̂2〉 = Kρ

4

∫ t

−∞
dt1 dt3

∫

dωω coth
ω

2T
e
−
∫

t

t1
W (t2)dt2−

∫

t

t3
W (t2)dt2−iω(t1−t3)

.

(29)

To solve this equation we need to calculate, first, W (t) which is determined by

fluctuations. In order to do this we solve (21) and (29) for fluctuations seeking

for 〈φ̂2〉 in the form 〈φ̂2〉 = c cosω0t + s sinω0t, where ω0 ≡ 2πĪ, and 〈· · ·〉t
denotes averaging in time. We assume also that c, s ≪ 1. Substituting this

form into (29) and keeping only leading terms we obtain in the limit of low

temperatures

〈φ̂2〉 = Kρ

2

[

ln
Λ

b
− πW0

ω0
cosω0t〈φ̂2〉t −

2W0

ω0
ln
ω0

b
sinω0t

]

, (30)

where W0 = 2WiKρe
−2〈φ̂2〉t , b = 〈W (t)〉t = |c|W0.

Thus we have found that the main logarithmic contribution to 〈φ̂2〉t is de-

termined by relation similar to (25) valid in case of small voltages, but with

different infrared cut-off frequency b which is much smaller than Wc in (25).

From the self-consistency condition we find

c = −πKρW0

2ω0
, s =

2c

π
ln

2ω2
0

πW 2
0

, W0 =WiK
1+Kρ

1−2Kρ

ρ

(

πW 2
i

2ΛV

)

Kρ

1−2Kρ

. (31)

Here we have expressed W0 from (27) in terms of VT at zero temperature in the

limit of the long wire.

We see that at high voltages the solution with finite amplitude of the oscil-

lations exists only at Kρ < 1/2, i.e., when inter-electronic interaction is strong
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enough. The result differs from that for the regime of small voltages when fluc-

tuations do not destroy the dynamic regime at any repulsion strength, Kρ < 1.

Now, using (30), we can solve (21) in the limit of high voltages, V ≫ VT ,

and calculate current. The total current calculating near the contact consists

of dc part, Ī = V G0 + Inl, where Inl is non-linear correction to Ohm’s law, and

of ac part, Iac sinω0t, which oscillates with frequency ω0 = 2πĪ/e ≈ eV/h̄ (in

dimensional units)

Iac =

√
2G0W0

√

1 +K2
ρ − (1−K2

ρ) cosω0tL
, (32)

Inl = −2G0W
2
0

V

[

ln
2V 2

πW 2
0

+
1

(1 +K2
ρ)− (1−K2

ρ) cosω0tL

]

. (33)

The oscillating factors in these expressions are due to reflections of current pulses

generated at the impurity from the contacts. The presence of such characteristic

oscillations in the static I-V curves was first noted by Dolcini et al [18].

In the same approximation we can calculate the noise spectrum and we find

two maxima of the noise spectrum around frequencies ω = ±ω0

〈δÎ(ω)δÎ(ω′)〉 ≈ πΓ(1 − 2Kρ) sinπKρG
2
0V

2(1−Kρ)
T δ(ω + ω′)

2(1−Kρ)1−KρK
3Kρ
ρ ||ω| − ω0|1−2Kρ

. (34)

Note that the maxima are present under the same condition Kρ < 1/2 for which

the solution with finite amplitude of the oscillations at high voltages was found.

According to (34) the integral noise power is of the order of ∼ G2
0W

2
i which is

much larger than the ac signal power ∼ I2ac at frequency ω0.

In case of long-range Coulomb interaction the correlation function can be

found similarly, and we find at ω ≫ vF /L

〈δÎ(ω)δÎ(ω′)〉 ∼ W 2
i

8γ||ω| − ω0| ln 2vF
ωd

(

ln
|ω|||ω| − ω0|

W 2
i

)
1

4πγ

δ(ω + ω′).

3.3. Validity of Gaussian approximation

Now we discuss conditions under which the Gaussian model that we have

used to describe fluctuations can be justified quantitatively. Note that fluctua-

tions of the displacement field φ̂ in pure 1D system are Gaussian because the TL
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Hamiltonian is quadratic, and mean square fluctuations are infinite, 〈φ̂2〉 = ∞.

Impurity makes fluctuations at the impurity site finite, see (26), but fluctuations

become non-Gaussian because of the cosine impurity term in the Hamiltonian.

As the current passes the impurity, the impurity term oscillates, and frequency

of the oscillations increases with voltage increasing. This results in a decrease

of the time-averaged impurity potential making the impact of the impurity ef-

fectively smaller. Therefore one should expect that relative contribution of the

non-Gaussian part to fluctuations must decrease in comparison with the Gaus-

sian part. Then at voltages V ≫ VT we can try to calculate non-Gaussian

contribution to fluctuations perturbatively.

We select two contributions of the fluctuating part of the phase, φ̂ = φ̂G +

φ̂1, where the first term is the Gaussian contribution which satisfies simplified

equation (22), while φ̂ satisfies full equation (18). Considering non-Gaussian

part φ̂1 as a small correction we linearize (18) and obtain equation for φ̂1.

Considering, again, zero temperature and long conducting channel, VT tL ≫ 1,

when Z(t) ≈ Kρδ(t) we derive equation of motion for the third cumulant C3.

In the first approximation, C3(t) = 〈φ̂1(t)φ̂G(0)2〉.

∂tC3(t) +W (t)C3(t) = 4WiKρh(t) sin 2Φ(t)〈{φG(t)φG(0)}〉2.

Solution of this equation has the form

C3(t) = −
∫ t

−∞
dt1e

−
∫

t

t1
W (t2)dt2

4WiKρh(t1) sin 2Φ(t1)〈{φG(t1)φG(0)}〉2

Calculating the integral, and keeping the leading terms we find

C3(0) ≈ 0.35Kρ

[

1−Kρ ln
4V 2

πW 2
0

]

. (35)

Similarly, we can calculate the fourth cumulant C4 = 〈φ̂1φ̂G(0)3〉. Then we

can compare non-Gaussian contributions with Gaussian contributions (30), and

find that non-Gaussian contributions are relatively small compared to Gaussian

contributions, C3 ≪ 〈φ̂2G〉3/2, C4 ≪ 〈φ̂2G〉2 at small Kρ and large voltages.
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4. DYNAMIC REGIME OF CONDUCTION IN THE SPINFUL

LUTTINGER LIQUID

4.1. Refermionization in the spin channel

In the spinful LL, similarly to the results of Sec. 3, the Gaussian approxima-

tion for fluctuations in the charge channel can be justified in the limits of strong

interaction and at high voltages. But in the spin channel, fluctuations at the

impurity site are always non-Gaussian. However, if interaction is spin-rotation

invariant (Kσ = 1) and the impurity is situated in the middle of the wire we

can solve the problem strictly using the refermionization method. This method

consists in introducing new fermionic variables for spin channel. Equations of

motion for these variables are linear, and, hence, soluble. Refermionization was

used successfully to treat charge fluctuations in the spinless case for the specific

value of interaction parameter Kρ = 1/2 [12, 19] and to describe spin fluctua-

tions in the spinful case for Kσ = 1 [20, 21]. Following the approach of Ref.[12]

we introduce new phase fields

φ̂±(x) =
1√
2

[

Φ̂σ(x) + Θ̂σ(x)
]

± 1√
2

[

Φ̂σ(−x)− Θ̂σ(−x)
]

. (36)

New fields are completely decoupled and the impurity term couples to the field

φ̂+ only. Then we introduce new fermion variables
√

1

2πa
eiφ̂+ = ĝψ̂, ĝ = ĉ+ ĉ†, (37)

where ĝ/
√
2 is an auxiliary Majorana fermion operator, and derive equations

of motion for Heisenberg operators ψ̂ and find that they depend on x − vF t.

Equations of motion for operators ψ̂1,2(t) = ψ̂(x = ∓0, t) at the impurity site

and for ĝ have the form

vF (ψ̂2 − ψ̂1) = iĝf, ∂tĝ = i[f(ψ̂1 + ψ̂2)− f(ψ̂†
1 + ψ̂†

2)], (38)

where f(t) =
√
2πaW cos

√
2Φ̂ρ.

Density perturbations of new fermions are related in a standard way to the

gradient of the displacement field

ψ̂+
x ψ̂x − 〈ψ̂+

x ψ̂x〉0 =
1

2π
∂xφ̂+(x). (39)
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Consider, again, the limit of strong electron-electron interaction when fluctu-

ations in the charge channel are small and represent the field operator at the im-

purity site as a sum of its expectation value and fluctuating part, Φ̂ρ = Φρ+ φ̂ρ,

Φρ = 〈Φ̂ρ〉, taking into account the fluctuations φ̂ρ in the linear approxima-

tion. Then commutators of f at different times are small and we can ignore

time-ordering and solve (38) for ĝ(t)

ĝ = 2i

∫ t

dt1[f(t1)ψ̂1(t1)− f(t1)ψ̂
†
1(t1)] exp

[

− 2

vF

∫ t

t1

f(t2)
2dt2

]

.

Now using (38) and anticommutator {ĝ(t), ψ̂†
1(t)} = if

vF
we can obtain the fol-

lowing expression for cos
√
2Φ̂σ:

cos
√
2Φ̂σ(t) = 2iπaW

∫ t

−∞
dt1 cos

√
2Φ̂ρ(t1)e

[

− 2
vF

∫

t

t1
f(t2)

2dt2

]

(40)

×
{

[ψ̂1(t1)− ψ̂†
1(t1)]ψ̂1(t) + ψ̂†

1(t)[ψ̂1(t1)− ψ̂†
1(t1)]

}

.

We insert (40) into the equation of motion for the charge phase (14). In

the limit of small fluctuations averaging over charge and spin variables can

be performed separately since the fluctuations in spin and charge sectors are

independent. Expectation values of fermionic densities in averaged equation

(40) can be associated with distribution function of new fermions by the relation

〈ψ̂†
1(t1), ψ̂1(t2)〉 =

∫

dε

2πvF
n(ε, t)eiε(t1−t2), (41)

where t = (t1 + t2)/2. Pairings 〈ψ̂1(t1), ψ̂1(t2)〉 = 0 because operators with

subscript 1 are related to the incident spin excitations which are not affected

by the impurity because the coefficient of reflection from the contact r = 1−Kσ

1+Kσ

is equal to zero for Kσ = 1. Note that this is different from the case of charge

channel considered in Ref. [12], because charge excitations incident on the im-

purity contain the fraction transmitted through the impurity and reflected then

from the contact.

Now we need to find distribution function n(ε, t). To do this we, first, sub-

tract boundary conditions (13) at x = −L/2 and x = L/2 for spin sector and

obtain

vF∂xφ̂+

(

−L
2
, t

)

= P̂σ. (42)
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We express the derivative ∂xφ̂+ using (39), take the expectation value and find

the condition for the fermion density expressed in terms of the distribution

function
∫

dε

2π
[n(ε, t)− nF (ε)] = Vσ(t). (43)

Next we multiply equations (42) taken at different times t1 and t2 and calculate

the expectation value. Reducing products of four fermions to sum of products

of pairs in a standard way and using (11) we end up with the kinetic equation

∫

n(ε− ω, t)[1− n(ε, t)]dε =
ω

2

(

1 + coth
ω

2T

)

. (44)

Solution of equations (43-44) has the form of the equilibrium function with the

chemical potential equal to spin bias

n(ε, t) = [1 + e
ε−Vσ(t)

T ]−1. (45)

Note that the distribution function has such a form because at Kσ = 1 there

are no reflections of excitations from the contacts. In case of spinless electrons

with Kρ = 1/2 we would obtain kinetic equation different from (44) which does

not have solution in the form of the equilibrium distribution because particles,

incident on the impurity, contain a fraction that passed the impurity and then

reflected (r =
1−Kρ

1+Kρ
= 1

3 ) from the contact. Therefore, the equilibrium form of

the distribution function of fermions assumed in Ref. [12] needs a justification.

Using (45) in (41) we insert (40) into (14) and perform integration over

energies. Then we find closed equation for the charge phase

∂tΦ̂ρ +
w√
2
Z ⊗ sin

√
2Φ̂ρ(t)

∫ ∞

0

dt1
T cos

√
2Φ̂ρ(t− t1)

sinhπT t1
(46)

×e−2w
∫

t

t−t1
cos2

√
2Φ̂ρ(t2)dt2

cosVσ

(

t− t1
2

)

t1 = F ⊗ P̂ρ,

where w = 2πaW 2/vF is the characteristic potential related to the impurity

potential renormalized by spin fluctuations. This expression is strict in the

limit of strong interaction, and now we will discuss the conditions of validity of

our approach that assumes smallness of the fluctuations at the impurity site.
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To estimate fluctuations we will simplify (46) taking into account logarithmic

divergence of the integral at t1 = 0. Then with the logarithmic accuracy we

perform integration neglecting t1 dependence of the regular part of the integrand

and using the standard ultraviolet cut-off of the integration at t1 ∼ 1/Λ. This

gives

∂tΦ̂ρ + V0Z ⊗ sin 2
√
2Φ̂ρ = F ⊗ P̂ρ, V0 =

w

2π
√
2
ln

Λ

w
, (47)

This equation is similar to (18) for a single-mode LL and can be made identical

to (18) by changing notations. Therefore, for the case of short-range interaction

we can use the results of Sec. 3. Then we find that in the limit of low voltages

fluctuations are small provided Kρ ln
Λ
w ≪ 1, while from (30-31) we find that in

the limit of large voltages fluctuations are small under condition Kρ ln
Λω0

w2 ≪ 1.

In case of long-range interactions we solve 47 in linear approximation in

fluctuating part of the displacement field φ̂ρ = Φ̂ρ − Φρ, Φρ = 〈Φ̂ρ〉 and find

φ̂ρ =
F (ω)δP̂ρ

−iω + C
, C = 2

√
2V0〈Z ⊗ cos 2

√
2Φρ〉t,

where 〈〉t means time-averaging. To calculate constant C we must solve (47) for

expectation value Φρ. Here we will assume that temperature T is low enough,

T ≪ V0, and limit our estimation by the cases of small and large voltages.

According to study of the dynamics in Sec. 3 we obtain, again, with logarithmic

accuracy

〈δΦ̂2
ρ〉 ≈

√

1

8γ
ln

(

vF
√
γ

dV0

)

.

In the limit of large voltages the phase increases linearly 2
√
2Φ ≈ ω0t with

ω0 = 2πf = 2πĪ ≈ 2V , and with the logarithmic accuracy we find

〈δΦ̂2
ρ〉 ≈

√

1

8γ
ln

(

vFω0
√
γ

dV 2
0

)

.

Then we conclude that in case of long-range Coulomb interaction fluctuations

of the displacement field at the impurity site in the charge channel are not large

at values of parameter γ of the order of unity or larger, which is satisfied for

typical values of Fermi velocity, confer (2).
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4.2. I-V curves and current oscillations

To calculate current we must solve (46). In the quasiclassical limit we can

neglect fluctuations and substitute Φ̂ρ by its expectation value Φρ. But it is

not simple to find the solution analytically, therefore, we restrict our study by

limiting cases. The simplest case is the regime of current bias. For the time-

independent voltage bias Vσ we obtain

V (t) =
ω0

2
+

w√
2

∫ ∞

0

dt̃ dt1 Y (t̃) sin
ω0(t− t̃)

2
cos

ω0(t− t̃− t1)

2
(48)

× cosVσt1
T

sinhπT t1
exp

{

−wt1 − z cos

[

ω0t1
2

+ ω0(t− t̃)

]}

,

where Y (ω) = Z(ω)/F (ω), z = 2w
ω0

sin ω0t1
2 .

If we perform time averaging of (48) we find the static I-V curves.

Vdc =
ω0

2
+
w

4

∫ ∞

0

dt1
T cosVσt1
sinhπT t1

[

sinω0t1 I1(z) + sin
ω0t1
2

I0(z)

]

e−wt1 ,

This result is the same for both short-range and long-range interaction, which

is not very strange since we consider here the limit of strong interaction, and

fluctuations in the charge channel are neglected. The general view of the I-V

curves for different values of the spin bias is presented in Fig. 1. In the limit

of small current, ω0 ≪ w, the second term dominates and I ∝
√

ω0

w . In the

opposite limit of large currents, ω0 ≫ w, the results are similar for both voltage

and current bias and the asymptotic I-V curve is parallel to the Ohm’s law

corresponding to conductance quantum 2G0 = e2/(πh̄) with the excess voltage

Vexc =
w
8 .

Time dependence of voltage (48) can be characterized by amplitudes of har-

monics n > 0. At small currents, ω0 ≪ w, amplitude of harmonics decays

slowly, approximately as 1/
√
n. In the limit of large currents, ω0 ≫ w, har-

monics decay as power law, and with logarithmic accuracy we obtain for n > 0

Vn ≈ w
8π |Y (nω0)|

(

w
2ω0

)n−1

ln Λ
ω0
.

Consider now the case of the voltage bias when the system is driven by ex-

ternal voltage V +V1 cosωt, and assume the limit of large voltages, V ≈ ω0 ≫ w

when the second term in the left-hand-side of (46) is a small perturbation. The
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Figure 1: I-V curves at different temperatures T and spin bias Vσ. Voltage is measured in

units of the characteristic potential w, and current in units of w/G0. Dotted line: Ohm’s law

I = 2G0V . Solid lines: Vσ = 0 for T = 0, 0.2w,1.0w from bottom to top. Dashed lines: T = 0

for Vσ = 0.1w, 0.3w, 0.5w from bottom to top. The initial part of the I-V curves is shown in

the inset.

ac voltage modifies I-V curves, and the most impressive part of this modification

is the resonant steps analogous to the Shapiro steps in the Josephson junctions.

In contrast to Josephson junctions these steps are not at constant voltage, but

at constant current I = ef like in the regime of Coulomb blockade [22] and

in the regime of sliding CDW in linear-chain conductors [9]. At this current

the frequency of the ac voltage is equal to the frequency of current oscillations

in the wire. The width of the step at V ≫ w and V1 ≪ V can be calcu-

lated straightforwardly using perturbative approach. We find with logarithmic

accuracy

Vstep =
V1w

πV
|F (ω0)| ln

Λ

ω0
.

Non-zero dc spin bias induces a spin current which contains both dc and ac

parts. The spin current can be calculated according to relation Iσ =
√
2

π ∂t〈Φ̂σ〉,
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where Φ̂σ can be found from equation of motion (15) using equations (37) and

(41). In the limit of large voltages, ω ≫ w the spin current can be presented in

a simple analytic form

Iσ =
Vσ
2π

(

1 +
w

πω0
sinω0t

)

.

5. NON-IDEAL CONTACT

As non-ideal contacts induce Friedel oscillations in the quantum wire, one

can expect that such contacts must induce the effects in transport which are

similar to those in the system with impurity studied in previous sections. This

statement is supported by the results of our letter [16] where we have studied

the spinless LL with two identical non-adiabatic contacts. However the problem

of transport through non-adiabatic contact to a quantum wire with a spinful

interacting electron gas was not solved. In this section we consider electronic

transport through a clean quantum wire described as a spinful LL with one ideal

adiabatic and the second non-ideal contact. The main difficulty in solving this

problem is, again, large fluctuations of the displacement field Φ̂σ. And, again,

we solve this problem by means of refermionization in the spin channel.

To study the role of the non-ideal contacts we act similarly to the previous

sections, solving equation of motion for the displacement fields with boundary

conditions. Consider boundary conditions for the spin channel with Kσ = 1

with ideal adiabatic contact at x = L and non-adiabatic contact at x = 0. Then

boundary conditions read

(vF ∂x − ∂t)Φ̂σ(x = 0) = P̂L
σ −

√
2fεF sin

√
2Φ̂σ cos

√
2Φ̂ρ (49)

(vF ∂x + ∂t)Φ̂σ(x = L) = P̂R
σ .

As Φ̂σ(x, t) satisfies the equation of motion

(

v2F ∂
2
x − ∂2t

)

Φ̂σ(t, x) = 0, (50)

we can find solution for Φ̂σ(x, t) in terms of its values at the contacts. Using then

boundary conditions (49) we obtain equation of motion for the displacement field
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at the non-ideal contact

∂tΦ̂σ +
√
2fεF sin

√
2Φ̂σ cos

√
2Φ̂ρ =

1

2
[P̂L

σ (t) − P̂R
σ (t− tL)]. (51)

This equation resembles equation of motion for the displacement field at the

impurity site. We map the problem of non-ideal contact to the impurity problem

in the LL with ideal contacts at x = ±L and an impurity characterized by

back-scattering matrix element W̃ at x = 0. The equation of motion for the

displacement field and boundary conditions for such an impurity read

(

v2F ∂
2
x − ∂2t

)

Φ̂σ(t, x) =
√
2vF W̃ sin

√
2Φ̂σ cos

√
2Φ̂ρδ(x), (52)

(vF ∂x ∓ ∂t)Φ̂σ(x = ∓L) = Q̂L,R.

Here we denote external sources of fluctuations as Q̂, and later we will relate

them to the source terms P̂ . The equation of motion for the phase at the

impurity site x = 0 for this model has a form

∂tΦ̂σ +
W̃√
2
sin

√
2Φ̂σ cos

√
2Φ̂ρ =

1

2
[Q̂L(t− tL)− Q̂R(t− tL)]. (53)

Comparing now equations (51) and (53) we find that equations of motion

become identical if we choose

W̃ = 2fεF , Q̂L(t) = P̂L(t+ tL), Q̂R(t) = P̂R
σ (t).

Thus using such substitutions we can use the results for spin channel ob-

tained in Sec 4.1 for quantum wire with one non-ideal contact.

Now let us consider the charge channel. Following the method used in

Sec. 2.3 we find solution of equation of motion for Φ̂ρ(x, ω) satisfying the bound-

ary conditions. In such a way we obtain expression for the displacement field

which depends on the values of both Φ̂ρ and Φ̂σ at the boundary with non-

adiabatic contact, as both these fields are present in the non-linear term of the

boundary condition (10). Then using this solutions at x = 0 we find non-linear

equations of motion for Φ̂ρ(x = 0) which are similar to (14), but with different

memory function Z and different right-hand containing the source terms PL,R
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in a non-symmetric way

∂tΦ̂ρ + fεFZ ⊗ sin
√
2Φ̂σ cos

√
2Φ̂ρ = Z ⊗ P̂L

ρ − F ⊗ P̂R
ρ .

For the short-range interaction Fourier components of the memory functions

read

Z(ω) = Kρ
1− iKρ tan 2ωtL

2Kρ − i(1 +K2
ρ) tan 2ωtL

, F (ω) =
Kρ

2Kρ cos 2ωtL − i(1 +K2
ρ) sin 2ωtL

.

In case of long-range electron-electron interaction we act as in Sec. 2.3 and find

similar relations for memory functions but with Kρ(qω) depending on frequency

(confer Sec. 2.3).

In the limit of strong interaction these equations give the results similar to

the case of impurity. Thus we find that the problem of electron transport in

quantum wire with one non-ideal and the second ideal contacts is mapped to

the impurity problem. Then all the results obtained in Sec. 4 can be used for

the case of non-ideal contacts if we substitute the impurity potential W for

fεF which is the amplitude of the Friedel oscillations induced by the non-ideal

contact.

6. CONCLUSIONS

Using the approach based on the bosonised Tomonaga-Luttinger Hamilto-

nian we have studied electronic transport in 1D conductors with a single isolated

impurity or with non-ideal contacts to leads of higher dimension, and predicted

a new dynamical regime of conduction in which the the dc-current is supple-

mented by ac oscillations with the wash-board frequency f = Ī/e.

As thermal fluctuations strongly reduce the effect of impurity on conductance

at temperatures T > T0 ∼ VT , and the effect is also destroyed by fluctuations in

relatively short wires, shorter than the length of the order of v/VT , the dynamic

regime predicted in our work can be observed at low enough temperature in

a relatively long quantum wire, the minimal length and maximal temperature

being related to the magnitude of the defect potential and the strength of inter-

electronic repulsion.
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The impurity potentialW can be of different origin and of different strength.

The value of W can be quite small if a defect is made artificially, say, by a

potential of a point contact. If the defect is induced by an impurity atom in

the conduction channel then the potential can be quite large, of the order of the

Fermi energy. In semiconductor based quantum wires with shallow impurity

the value of W is expected to be of the order of few millivolts. In this case the

range of frequencies of generated ac signal can be quite large, up to practically

important teraherz region, depending on material of the quantum wire and the

origin of the defect.
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Appendix A. Derivation of the boundary conditions

Here we derive boundary conditions for a non-ideal contact of the quantum

wire with bulky leads. For the sake of clarity derivation is given for the case of an

abrupt rectangular contact but it can be directly generalized using quasiclassical

approach for the case of smooth contacts with a sharp potential step. We start

from the expansion for the fermionic field operator over eigen functions of the

transverse part of the Hamiltonian in the 1D channel wn and in the lead vn.

ψ̂(x, y, z) =

∞
∑

n=0

ψ̂n(x) [wn(y, z)θ(L/2− |x|) + vn(y, z)θ(|x| − L/2)] , (A.1)

Then we solve equation of motion for electronic field operators in the leads

using the continuity of both the field operators and their derivatives at |x| =
L/2. This allows us to express the solution for the n-th transverse eigenstate in

terms of the field operator ψ̂b at the boundary. Since the results are very similar
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for both contacts we concentrate on the left lead. At x < −L/2 we obtain a

solution in the left lead

ψ̂(x) = ψ̂b cos k(x+ L/2) +
1

k
∂xψ̂b sin k(x+ L/2), (A.2)

where ψ̂b is the field operator at the left boundary, i.e. at x = −L/2. This

expression contains both incident and outgoing waves. According to the causal-

ity principle, the incident wave ψ̂in(x) is determined by a state of the lead far

away from the barrier. Therefore, ψ̂in(x) must not depend on properties of the

barrier. Equating the incident part of (A.2) to the form describing free particles

we find

ψ̂b −
i

√

2m(ε− εn)
∂xψ̂b =

4π√
L

∑

k>0

ĉn,s,kδ

(

ε− εn − k2

2m

)

, (A.3)

where ĉn,s,k is an annihilation operator of an electron in the lead.

Equation (A.3) relates the field operator at the boundary to the equilibrium

states of the n-th transverse mode in the lead. We need a relation between

the boundary value of the field operator corresponding to the lowest transverse

eigenstate of the conducting wire and the incident state of the lead. To find this

relation, we project (A.3) onto the eigenstates wn of the wire.

Since transverse states of the lead are not eigenstates of the wire, we obtain

an infinite system of linear equations for boundary values of the field operators

ψ̂j describing different transverse eigenstates j of the wire

∂xψ̂jδj,0 +
∑

j′

rjj′ ψ̂j′ =
1√
V

∑

n=n,k>0

zj,nĉn2πδ (ε− εn) , (A.4)

where zj,n = 〈wj , vn〉2ikn, rj,0 =
∑

n
〈wj , vn〉ikn〈vn, w0〉, rj,j′ 6=0 =

∑

n
〈wj , vn〉ikn〈vn, wj′ 〉+

δj,j′κj , and kn =
√

2m(ε− εleadn ) is a longitudinal momentum of the n-th mode

in the lead, κj =
√

2m(ε1Dj − ε) is a decay parameter of the j-th mode in 1D,

and the Hermitian product is defined in a standard way 〈f, g〉 =
∫

f∗(r⊥)g(r⊥)dr⊥.

The solution of (A.3)-(A.4) for the lowest subband j = 0 which is responsible for

an electronic transport in the wire yields the boundary condition for fermionic
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fields ψ̂0

A(ε)ψ̂0 +B(ε)∂xψ̂0 =
1√
V

∑

n=n,k>0

γnĉn2πδ(ε− εn), , (A.5)

where B =
{

r−1
}

0,0
A, γn = A

∑

j

{

r−1
}

0,j
zj,n, and

{

r−1
}

is a matrix inverse

to rj,j′ . The existence of inverse matrix is guaranteed by the existence of the

only solution of matching problem in case of self-conjugate total Hamiltonian.

Note, that coefficients A, B and γ depend only on transverse wavefunctions wj ,

vn and do not depend neither on the lead at the other end of the 1D channel

nor on the presence of an impurity or electron-electron interaction if the latter

vanishes in the lead including the boundaries. The boundary condition for the

right contact has the same form but with complex-conjugate coefficients.

Although the explicit expressions for the coefficients A,B and γ are obtained

for the case of abrupt rectangular contacts, the derivation below demands only

the linearity of the boundary condition (A.5) and a general requirement of ful-

filment of anticommutation relation, and specific values of A, B and γ are not

important.

We can derive a useful relations between coefficients in (A.5) imposing a

requirement of fulfillment of anticommutation relations for electronic field oper-

ators. To do this we consider non-interacting electrons, for which we can easily

solve the equations for the field operators inside the wire, and calculate the con-

ductance (and, hence, the transmission probability at the Fermi energy). This

allows us to reduce the number of undetermined constants. We obtain that

anticommutation relations for ψ̂0 fulfil if and only if

|A∗(ε)B(ε)−B∗(ε)A(ε)| = 1

2mV

∑

n=n,k

|γn|22πδ(ε− εn). (A.6)

Although we have considered non-interacting electrons in a wire without an

impurity, this relation is valid in general case since A, B and γ are determined

only by transverse wavefunctions.

As it is more convenient to express boundary conditions in terms of physical

values, we multiply (A.5) by its Hermitian conjugate and transform the obtained
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equation to the time representation using relation (A.6) and assuming that the

coefficients are slowly varying functions of energy in the region close to the Fermi

energy. Finally, we find the boundary condition (8) at the left (right) contact

for each spin direction. The boundary conditions contain two parameters,

T =
vF

V (|A(εF )|2 + q2F |B(εF )|2)
∑

n=n,k

|γn|22πδ(εF − εn), (A.7)

f =
V
(

|A(ε)|2 − q2F |B(ε)|2
)

∑

n=n,k

|γn|22πδ(εF − εn)
.

To understand the physical meaning of T it is instructive to consider a

system of non-interacting electrons without an impurity in the wire. Since the

problem without the interaction and an impurity can be solved exactly, we can

find a conductance of non-interacting system using equations of motions for

non-interacting electrons and boundary conditions (A.5). Then we obtain the

conductance G = G0T . Comparing the latter expression with the Landauer

formula we conclude that T coincides with transmission probability of a non-

interacting system without an impurity, and 0 < T ≤ 1. Since the right-hand

side of (A.7) depends only on the properties of the contact the latter conclusion

is valid for a general case (however, in the general case we cannot claim that T

given by (A.7) coincides with the transmission probability).
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