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We explore a long Josephson contact transporting Cooper pairs between 1D charge-neutral chiral
Majorana modes in the leads via charged Dirac chiral modes in the normal region. We investigate
the regimes of (i) transparent contacts and (ii) tunnel junctions implemented in 3D topological
insulator/superconductor/magnet hybrid structures. The setup acts as a SQUID controlled by the
magnetic flux enclosed by the chiral loop of the normal region. This chirality leads to the fractional
h/e-periodic pattern of critical current. The current-phase relation can have sawtooth-like shape
with spikes at unusual even phases of 2πn.

I. INTRODUCTION

Intensive studies of Majorana fermion physics in solid
state materials were motivated by possible applications
of these states in topological quantum computation1,2. In
condensed matter, initially, Majorana fermions were pre-
dicted to exist in spinless p-wave superconductors (SC)
and fractional QHE3–5. Later, the realizations of Ma-
jorana bound states (MBS)6–8 and 1D charge-neutral
modes9 were proposed in hybrid structures where heli-
cal electronic system has a proximity effect with exter-
nal s-wave pairing potential and Zeeman exchange field.
The helical systems with spin and momentum locking
are realized in surfaces and edges of topological insu-
lators (TI), quantum spin-Hall films10 and semiconduc-
tors with strong spin-orbital coupling7,11. The transport
signatures of MBS are associated with anomalous 4π-
periodic Josephson effect3,6,12,13. On the other hand,
charge-neutral chiral Majorana modes (χMM) which are,
for instance, supported by SC-magnet junctions on 3D
TI surface9,14, are expected to show unconventional in-
terferometry if involved in charge transfer between nor-
mal metal leads. Various χMM-based devices operating
as Mach-Zehnder14,15, Fabry-Pérot16,17, and Hanbury-
Brown Twiss18 quantum interferometers have been pro-
posed. In context of quantum computation they can
serve as a readout tool of qubit states encoded by MBS
in vortex cores15.

In the paper we calculate DC Josephson current-phase
relation (CΦR) of a long spinless contact between 1D
gapless χMMs. The system under consideration repre-
sents a chiral Fabry-Pérot interferometer implemented on
a surface of 3D TI partially gapped by SC and magnetic
(M) islands. Similar ideas were explored in Refs. 14–
18. In these works normal dissipative transport of Dirac
fermions influenced by their splitting to Majorana modes
and the interference of the latter were studied. In con-
trast, we study the equilibrium phenomenon of Joseph-

son current carried by the Andreev states formed in the
chiral Dirac liquid. The latter connects between two su-
perconducting leads, which are effectively gapless due to
chiral Majorana modes at their edges. Spinless structure
of the junction follows from the absence of spin degen-
eracy of 2D helical surface states. Presence of Zeeman
field breaks time-reversal symmetry and produces gap-
less chiral channels at the magnetic domain boundaries.
In our system the normal conducting region consists of
two separated chiral Dirac channels supported by mag-
netic domain walls.

We explore two models of (i) transparent and (ii)
tunnel junctions. The first one involves four chiral Y-
junctions, operating as direct charged-to-neutral fermion
converters. The second one has two tunnel contacts
formed by thin layers of magnetic material where Ma-
jorana and normal Dirac channels are hybridized. The
length of the N-region, formed by two counter propa-
gating 1D Dirac modes, is assumed to be larger than
coherence length of the induced superconductivity. In
other words, the Thouless energy of the normal conduct-
ing part of the system under consideration is significantly
smaller than the proximity gap.

We take into account a contribution to the transport
from sub-gap 1D chiral states only, neglecting 2D bands.
Since our superconducting leads are gapless due to the
presence of χMMs, the spectral current is continuous and
consists of smeared Andreev levels. Assuming that su-
perconducting leads are large and have a fixed chemical
potential, we obtain the conventional 2π-periodicity of
the CΦR. In other words the non-equilibrium 4π-periodic
Josephson effect (which is predicted19 for systems with
zero-energy MBSs) turns out to be irrelevant here.

The chiral structure of the normal part consisting of
two 1D spinless Dirac modes allows to make Andreev
pairs non-local. This means that the pair resides on
two separated Dirac channels and one can apply mag-
netic flux f inducing Aharonov-Bohm phase φAB =
2πf/(h/e) = πf/Φ0, where Φ0 = h/(2e). It follows
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that the critical current has a fractional 2Φ0-periodicity
rather than the conventional Φ0 one. The realization of
the normal region by two separated chiral channels in
the present setup is one of the most relevant distinctions
from the junctions with 2D topological insulator where
Andreev pairs exist on the same edge20,21.

The paper is organized as follows. In Section II we
present main ideas of χMMs realization in hybrid struc-
tures on a surface of 3D topological insulator. In Section
III we consider the regime of transparent Josephson con-
tacts . We derive the S-matrix of the contacts by means
of matching the field operators in the chiral channels.
Next we calculate Josephson CΦR at arbitrary tempera-
ture and flux enclosed by Dirac modes. The Section IV
addresses the tunnelling regime, in which Majorana and
Dirac modes meet at the tunnel contacts formed by mag-
netic constrictions. In Section V we discuss the Majorana
representation of charged-to-neutral fermion scattering in
transparent and tunnel contacts. Section VI summarizes
the results of this paper. The technical details are pro-
vided in Appendices A and B.

II. MAJORANA MODES IN 3D TI HYBRID
STRUCTURE

As was proposed by Fu and Kane6, the χMM is sup-
ported by SC/magnet/3D-TI structure like that shown
in Figure 1, with an effective low-energy 1D Hamiltonian
following from a solution of a 2D Bogolyubov-de Gennes
equation. The 2D surface states are described by the
Rashba Hamiltonian. The system is assumed to have
a chemical potential µ = 0, corresponding to the Dirac
point. The induced s-wave SC pairing potential is given
by ∆eiΦSC in the y < 0 half plane, while at y > 0 there is
magnetic material inducing Zeeman exchange field Mσz.
The full Hamiltonian reads

H =
1

2

∫
dxdyΨ+hΨ ,

h = ivτzz · (σ ×∇)−Mθ(y)σz

+ (τ+∆e−iΦSC + τ−∆eiΦSC )θ(−y), (1)

where the field operator of the 2D surface is Ψ =
[ψ↑, ψ↓, ψ

+
↓ ,−ψ

+
↑ ]T , and σ and τ are Pauli matrices in

spin and Nambu spaces, respectively. The field Ψ sat-
isfies the charge conjugation constraint Ψ = σyτyΨ∗,
while the eigenstates obey ξp = σyτyξ

∗
−p. The low-energy

|εp| < ∆,M eigenvalues of the Bogolyubov-de Gennes
equation hξp = εpξp are single degenerate and correspond
to a 1D chiral mode with the linear spectrum

εp = sign(M)vp. (2)

Single degeneracy of eigenvalues implies that Bogolyubov
quasiparticle operator

χp =

∫
dxdy(ξ(M)

p )†(x, y) ·Ψ(x, y) (3)

represents a Majorana mode obeying χp = χ+
−p. The

corresponding wave function of the χMM reads

ξ(M)
p (x, y) =

1

2
g(M)(y)



ei(
π
4−

ΦSC
2 )

−sign(M)e−i(
ΦSC

2 +π
4 )

−sign(M)ei(
ΦSC

2 +π
4 )

−ei(
ΦSC

2 −π4 )


eipx.

(4)
The momentum p here is directed along x-axis and

g(M)(y) = ey(l−1
sc θ(−y)−l−1

m θ(y))/
√

2(lsc + lm) is the trans-
verse shape of 1D guiding channel. The coherence lengths
(transversal decay lengths) are given by lsc = ~v/∆ and
lm = ~v/M . The superscript (M) in Eqs. (3) and (4)
emphasizes the Majorana nature of the mode.

FIG. 1. Superconductor/magnetic insulator boundary on the
surface of 3D topological insulator. The boundary supports
a chiral Majorana mode with the chirality depending on the
sign of the magnetization.

Another building block of chiral interferometers is a
domain wall on a surface of a 3D TI where the magneti-
zation sign is changed. If we consider such a −M/+M
boundary along the x-axis, which is described by the
term Mσzsign(y) in the Bogolyubov-de Gennes Hamil-
tonian, we end up with the Dirac chiral mode with the
same spectrum found for χMM (2). In the Nambu no-
tation any of ε eigenvalues are doubly degenerate and

related to orthogonal electron and hole eigenstates ξ
(e)
p

and ξ
(h)
p = σyτyξ

(e)∗
−p , where

ξ(e)
p (x, y) =

1√
2
g(D)



1

isign(M)

0

0


eipx (5)

and g(D) = exp(−|y|/lm)/
√

2lm. There are two indepen-
dent excitations with energy ε in Nambu notation in this
−M/+M case – the electron with momentum p and Bo-
golyubov operator ψp and the −p hole with ψ+

−p. This
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field is complex ψp 6= ψ+
−p and corresponds to a charged

mode. We introduce here 1D operators ψ(x), χ(x)

χ(x) = χ+(x) =

∫
dp

2π
χpe
−ipx, ψ(x) =

∫
dp

2π
ψpe
−ipx

with the anticommutation rules given by

{ψ+(x1), ψ(x2)} = δ(x1 − x2),

{ψ(x1), ψ(x2)} = 0,

{χ(x1), χ(x2)} = δ(x1 − x2) .

The same relations hold in the Heisenberg picture at
equal times t1 = t2. After that the secondary quantized
operators in the low energy range |ε| < ∆,M can be
found as sums over subgap chiral states. For the charge-
neutral Majorana excitations we obtain

ΨM (x, y) =

∫
dp

2π
ξ(M)
p (x, y)χp,

while for the Dirac mode the field reads

ΨD(x, y) =

∫
dp

2π

(
ξ(e)
p (x, y)ψp + ξ(h)

p (x, y)ψ+
−p

)
.

Substituting these fields into the second quantized
Bogolyubov-de Gennes Hamiltonian and performing the
transverse integration we obtain the following 1D Hamil-
tonians:

HM = sign(M)
iv

2

∫
dxχ(x)∂xχ(x) (6)

and

HD = sign(M)iv

∫
dxψ+(x)∂xψ(x). (7)

The Hamiltonians (6) and (7) correspond to coherent
propagation of the excitations in 1D guiding channels
with the Fermi velocity v and chirality dependent on
the sign of the magnetization. The 1/2 in the Majo-
rana Hamiltonian HM reflects the fact that independent
excitations in the χMM can be considered either at pos-
itive or negative energies only. Say, the bottom branch
of the chiral mode (2) at p < 0 is redundant.

The wave functions ξ(M) or ξ(e) show that the spin
direction is locked to the momentum. More specifically,
the spin textures of the guiding channels of Majorana
and Dirac modes are orthogonal to the momentum direc-
tion in the particular case of Rashba type Hamiltonian
(1). As a consequence the spin textures are antiparal-
lel in the counterpropagating channels. More generally,
any scattering at a junction will be accompanied by the
corresponding spin rotation.

III. TRANSPARENT REGIME

A. S-matrix of a transparent contact

In this section we consider the Josephson junction
shown in Figure 2. This consists of two counterpropagat-
ing chiral Dirac modes which scatter at the left and right
contacts with the superconducting leads. Each of these
contacts consists of a pair of chiral Y-junctions where
electrons convert into a pair of Majorana fermions with
opposite chiralities or vice versa (see Figure 3). The full

FIG. 2. Scheme of transparent Josephson junction on the
surface of 3D topological insulator. Red lines stand for gap-
less Majorana fermion channels and arrows reflect chiralities.
Superconducting electrodes, marked as green, have phase dif-
ference Φ. Light and dark grey bars are magnetic materi-
als which induce exchange fields of the opposite polarizations
±M. The line of the sign change of M supports chiral charged
modes marked as blue. Magnetic flux f in −M region induces
Aharonov-Bohm phase φAB = πf/Φ0.

FIG. 3. Structure of the contact. Black arrows shows spin
texture of the chiral modes.

S-matrix of this contact is derived from two operator re-
lations for both upper and lower Y-junctions, described
by Sout and Sin matrices found in Refs. 14 and 15. Let
us assume first that ΦSC = 0 in the electrode. The ma-
trix Sin involves phase difference between electron and
hole converting into two Majorana fermions. This phase
is denoted as α and is included in the scattering matrix
as follows ηout

χout

 = Sin

ψin
ψ+
in

 (8)
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Sin =

1/
√

2 1/
√

2

i/
√

2 −i/
√

2

eiα 0

0 e−iα

 . (9)

The fields entering Eq. (8) are Heisenberg operators at
a given energy. The Sout matrix was found in Ref. 15
by means of time reversal transformation of Sin which
changes the magnetization sign M → −M

Sout(M) = STin(−M). (10)

We assume here that both Y-junctions have identical ge-
ometries (and, in particular, α is the same). In this work
we set the value of α as a free parameter which is to be
found from a particular geometry of the Y-junction. The
scattering in the upper Y-junction in Figure 3 reads asψin

ψ+
in

 = Sout

ηin
χin

 . (11)

We match Majorana operators ηin and ηout for the given
energy ε as ηin,ε = eikεηout,ε, where the dynamic phase
kε = εd/v is accumulated by the Majorana excitation
in course of the propagation from the lower to the up-
per Y-junction separated by the distance d. The full
S(ΦSC=0)-matrix of the left contact is found straight-
forwardly after the exclusion of η fields from Eqs. (9),
(10) and their Hermitian conjugates. To reinstate a non-
zero SC phase of the electrode ΦSC (colored as green in
Figure 3), we employ the transformation ψ → eiΦSC/2ψ,
yielding

S =



1
2e
i(kε+2α) i√

2
ei

2α−ΦSC
2

1
2e
i(kε−ΦSC)

i√
2
ei

2α+ΦSC
2 0 −i√

2
e−i

2α+ΦSC
2

1
2e
i(kε+ΦSC) −i√

2
ei

ΦSC−2α

2
1
2e
i(kε−2α)

 . (12)

This unitary S-matrix has particle-hole symmetry

S(ε) = ZS∗(−ε)Z, Z =

0 0 1
0 1 0
1 0 0

 .
and acts on (ψin,ε, χin,ε, ψ

+
in,−ε)

T . It describes the par-
tial Andreev reflection in spinless Dirac channel, which
is combined with neutral Majorana excitations. The An-
dreev part of this process is accompanied by a Cooper
pair absorption by the SC electrode.

B. Current-phase relation of transparent junction

In the following consideration we assume that chiral
Dirac channels have equal lengths, are parallel to each
other and separated by the distance d. Using the above
approach based on S-matrix (12), we find ψ-operators of

charged fermions as linear combinations of uncorrelated
field operators χl and χr of incident Majorana modes.
The latter are characterized by the Fermi distribution
function:

〈χ†ε,iχε,j〉 =
v−1δi,j

1 + eε/T
, χε = χ†−ε =

∫
χ(t)eiεtdt. (13)

where v−1 is the density of states in the χMM channels.
We assume kB = 1 everywhere and recover it in final ex-
pressions. Using operator relations, we calculate chiral

local densities of states ρ
(a)
ε , ρ

(b)
ε and currents ja, jb. The

linear spectrum of the system (2) means that chiral cur-
rent ji is proportional to charge density and, hence, the
Josephson current j is given by

j = ja − jb = −ev(〈ψ+
a ψa〉 − 〈ψ+

b ψb〉). (14)

The positive direction of the current is defined from left
to right SC, bias voltage is zero and the SC phases on the
electrodes are equal to ±Φ/2, as shown in Fig.2. While
solving for Dirac ψε,i-operators, we take into account the
dynamic ϕε and the Aharonov-Bohm φAB phases

ϕε =
ε

ET
, φAB = π

f

Φ0
.

The Thouless energy ET here equals to inverse dwell time
of the interferometer (or the level spacing in the N-region)

ET =
~v

2L+ 2d
. (15)

Dynamic phase ϕε is accumulated by ε-electron or −ε-
hole enclosing the interference loop of total length 2L+
2d. Calculations of expressions for ψε,i are analogous to
those presented in Appendix B for tunnel junction.

Within this S-matrix formalism, valid for energies in
the range |ε| < ∆,M , we find the following result for the
CΦR:

j(Φ, φAB) =
e

~

∫
Jε(Φ, φAB)nF (ε, T )dε , (16)

where the distribution function is determined by that of
the incoming χMMs defined in (13). The spectral current
Jε can be associated with the local densities of states in

the arms a, b via Jε = ev(ρ
(a)
ε − ρ(b)

ε ). The densities of

states ρ
(a)
ε , discussed in Section IV C 2, have dimension

of inverse velocity, hence, Jε is dimensionless. We obtain

Jε(Φ, φAB) =

− sinϕε sin Φ

1 +
(

cos(φAB+4α)+cos Φ
2

)2

− (cos(φAB + 4α) + cos Φ) cosϕε

.

(17)

This is a non-singular 2π-periodic function which re-
flects the structure of the broadened Andreev levels.
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As we mentioned in the Introduction, conventional 2π-
periodicity with respect to Φ is related to the assump-
tion of equilibrium (no transport voltage). This means
that there are no parity effects resulting in anomalous 4π
Josephson effect.

The integration in Eq. (16) is reduced to a sum over
positive Matsubara fermionic frequencies iT (2πn + π).
We note that the dynamical phase takes the values
ϕε → iT (2πn + π)/ET at these Matsubara frequencies.
Evaluating the sum, we obtain the CΦR

j(Φ, φAB) = 4π
ekBT

~
sin Φ

×
∞∑
n=0

1

2e
π
kBT (1+2n)

ET − cos(φAB + 4α)− cos Φ
. (18)

This is one of the central results of this paper. It de-
scribes the DC Josephson current at arbitrary tempera-
ture and takes into account contributions from the sub-
gap 1D states.

At zero temperature the summation in j(Φ, φAB) is
replaced by an integration over x = 2πTn

ET
and the result

reads

jT=0(Φ, φAB)

= −2
e

~
ET

ln
(

1− cos(φAB+4α)+cos Φ
2

)
cos(φAB + 4α) + cos Φ

sin Φ. (19)

The CΦR at zero temperature T is presented in Figure
4 for the value of the Aharonov-Bohm phase chosen as
φAB = −4α. At this value the first Φ-derivative of the
current is divergent as ∝ ln |Φ| at Φ→ 0. This divergence
illustrates the tendency of the CΦR to have spikes at even
phases Φ = 2πn. In Section IV C we discuss the limit of
full Andreev reflection, where the CΦR has a sawtooth
form, also with spikes at Φ = 2πn.

Two separated Dirac modes connecting the two su-
perconductors form a SQUID loop. In view of the chi-
rality of the junction the Andreev pair belongs to both
Dirac channels, since a reflection into the same channel
is forbidden. Considering the junction as a SQUID loop
controlled by a magnetic flux applied to the −M light
gray bar in Fig.2, we observe the fractional 2Φ0 = h/e-
periodic pattern for the critical current. In Figure 5 we
plot the critical current as a function of the flux-induced
Aharonov-Bohm phase φAB = πf/Φ0. The curve is sym-
metric under the assumption that 4α = π. (We recall
that α is related to the geometry of the Y-junctions.)
The critical current jc in this plot is normalized by its
maximal value jc,max. At arbitrary α the curve in Fig-
ure 5 would be horizontally shifted. The positions of the
peaks of jc are given by φAB,max = −4α+ 2πn.

Superconducting phase, Φ

FIG. 4. T = 0 CΦR of the transparent junction at φAB = π.
Divergent Φ-derivatives at Φ→ 2πn are observed.

AB

Aharonov-Bohm phase in N-region, φAB + 4α− π

FIG. 5. Fractional h/e-periodic pattern of critical current
jc(φAB) at T = 0. The critical current jc(φAB) is normal-
ized to the maximal value jc,max and plotted as a function of
Aharonov-Bohm phase φAB = πf/Φ0, where f is the mag-
netic flux.

IV. TUNNELING REGIME

A. Scattering matrix of a tunnel contact

The realization of the tunneling regime of the Joseph-
son junction studied in this paper is presented in Figure
6. The left and the right tunnel contacts are implemented
as constrictions of the magnetic material (see Figure 7).
Similar to the previous Section III, the Dirac channels
a and b are colored as blue lines and have equal lengths
la = lb = L and geometries. In contrast to the trans-
parent regime, in the tunneling regime the Dirac mode is
not terminated but rather forms a closed loop. Hence, we
introduce the total phase acquired over the loop a sum
of the Berry phase π and the Aharonov-Bohm phase,
φext ≡ π + πf/Φ0. The constriction of the +M magnet
plays the role of an insulating barrier.

We employ the effective 1D Hamiltonians (6,7) and add
a local tunneling term. The resulting Hamiltonian reads

H = iv

∫
ψ+∂xψdx−

iv

2

∫
χ∂xχdx+

+ tχ
(
ψei

ΦSC
2 − ψ+e−i

ΦSC
2

)
. (20)

This Hamiltonian describes counter propagating Majo-
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rana and Dirac modes which mix at x = 0. The micro-
scopic structure of the contact is accounted for by the
small tunneling amplitude t� v, which is an additional
parameter of our theory.

In Appendix A, using Hamiltonian (20), we derive the
scattering matrix St of the tunnel contact acting on fields
(ψin,ε, χin,ε, ψ

+
in,−ε)

T . The scattering matrix reads

St =


1

1+λ
i
√

2λ
1+λ e

−iΦSC
2

λ
1+λe

−iΦSC

i
√

2λ
1+λ e

i
ΦSC

2
1−λ
1+λ

−i
√

2λ
1+λ e−i

ΦSC
2

λ
1+λe

iΦSC −i
√

2λ
1+λ ei

ΦSC
2

1
1+λ

 . (21)

The formal solution (21) obtained in Appendix A is valid
for any value of t and the dimensionless parameter λ
characterizing the scattering is given by

λ(t) = tan2 t√
2v
. (22)

Yet, since the Hamiltonian (20) is physically justified
only in the weak tunneling limit t � v, we obtain
λ ≈ (1/2) t2/v2 � 1. The amplitude of the domi-
nant process of normal reflection is given by 1/(1 + λ).

The scattering to the Majorana channel scales as ∼
√
λ,

whereas the Andreev reflection amplitude has the lowest
amplitude ∼ λ.

FIG. 6. Scheme of the Josephson junction in the tunnelling
regime.

FIG. 7. Structure of the tunneling contact implemented as
a constriction of the magnetic material marked as dark gray.
The area of hybridization between the wave functions of the
counter propagating neutral and charged chiral channels is
indicated by a bar.

B. Current-phase relation in the tunneling regime

Using the scattering matrix St calculated above (21),
we obtain the following results for the spectral current
and the CΦR (for details see Appendix B):

Jε(Φ, φAB) =
−4λ3 sin Φ sinϕε

((1 + λ2) cosϕε + cosφAB − λ2 cos Φ)
2

+ 4λ2 sin2 ϕε
. (23)

j(Φ, φAB) = 4π
ekBT

~
λ2 sin Φ

∞∑
n=0

1

(1 + λ2) cosh
(
πkBT (2n+1)

ET

)
+ 2λ sinh

(
πkBT (2n+1)

ET

)
+ cosφAB − λ2 cos Φ

. (24)

Here the Thouless energy is given by ET = ~v/(2L).
From the CΦR in (24) we see that at high temperatures,
T � ET , only n = 0 term contributes to the sum (24).
In this limit we observe a sinusoidal CΦR and the critical

current jc is exponentially suppressed:

j(Φ) ≈ 4πekBTλ
2

~(1 + λ)2
exp(−πkBT/ET ) sin Φ. (25)
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The factor λ2

(1+λ)2 is proportional to the full transparency

of the junction being the product of the transparencies
of the left and the right contacts. This result is similar
to the CΦRs for a conventional S/N/S junction with the
N-region being a long quantum wire22–24.

In the low temperature regime, T � ET , the CΦR is
no longer sinusoidal and the critical current jc ∼ ET de-
cays as 1/L. Flux dependent oscillations of jc are more
sharper compared to those in the transparent regime.
The resonant shape of the non-Fraunhofer h/e-periodic
modulation is shown in Figure 9 for weak tunneling
λ = 0.1. The shift of the maximum of jc by π results
from the presence of the Berry phase.

C. Formal continuation of the tunneling solution to
the regime of finite transparency

The solution for the scattering matrix (21) follows for-
mally from the tunneling Hamiltonian (20) at any value
of t (see Appendix A). Yet, it is only physically justified
for t/v � 1, or λ � 1. We ask ourselves what hap-
pens if we extend (21), formally, to an arbitrary value of
t/v in the tunneling Hamiltonian (20) and consider the

scattering matrix (21) at any value of λ = tan2(t/
√

2v).
We observe that at λ = 1 the CΦR obtained for the
transparent regime (18) is recovered (up to the geom-
etry dependent phase α). In other words, transparent
contacts formed by Y-junctions correspond to the inter-
mediate strength λ = 1 of tunnel contacts, rather than
to the regime λ→∞.

In this subsection we investigate the CΦR and the den-
sity of states in the N-region at arbitrary λ. In particular,
we analyze the regime of full transparency, λ→∞, where
the scattering matrix St reaches the unitary limit and
corresponds to the full Andreev reflection in the Dirac
channel.

Note, that the relation between λ and t/v, obtained
in Appendix A, assumes a certain microscopic structure
of the contacts and, thus, could also be different. We
discuss this in more details in Appendix A.

1. Critical current and CΦRs

As mentioned above, the formal result for CΦR for the
tunneling regime (24) is identical to that for the trans-
parent regime (18) at λ = 1, up to geometry depen-
dent phase α. In Figures 8,9 we illustrate the evolution
of CΦRs and critical currents jc upon increase of the
transparency parameter λ. We plot the results at small
λ = 0.36, related to tunneling approximation, and their
continuation to higher λ = 4 and 25.

In the limit λ → ∞ the scattering matrix St (21)

Superconducting phase, Φ

FIG. 8. Bold curve: CΦR found in (24) for tunnel junction at
dimensionless tunneling strengths λ = 0.36. Dashed curves:
continuation of the results for CΦR (24) to finite transparen-
cies λ = 4 and λ = 25. The current j(Φ) is measured in
units of the Thouless energy ET with Aharonov-Bohm phase
φAB = π (φext = 0) and at low temperature T = 0.01ET .
The λ = 25 curve indicates the tendency to the formation of
spikes at unusual even phases 2πn.

AB

Aharonov-Bohm phase in N-region, φAB

FIG. 9. Dimensionless critical current jc(φAB)/jc,max of
the tunnel (λ = 0.1) and transparent at (λ = 1 and 4α =
π) junctions as a function of Aharonov-Bohm phase φAB =
2πf/(h/e). Maximum of the critical current is shifted due
to the presence of Berry phase. Dashed curves correspond to
results at finite λ = 0.5, 2 found from the tunneling approach.
All figures are plotted at low temperature T = 0.01ET .

reaches the unitary limit

St(λ→∞) =


0 0 e−iΦSC

0 −1 0

eiΦSC 0 0

 .

This matrix describes the process of full Andreev reflec-
tion, where an electron converts into a hole with a phase
shift of wave function equal to the phase of the SC elec-
trode. At T = 0 and λ→∞, where jc is independent on
φAB , the CΦR (24) shows a sawtooth shape with spikes
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at even phases

j(Φ) = 4
e

~
ET arctan cot

Φ

2

= 2
e

~
ET (π − Φ) for 0 < Φ < 2π. (26)

In conventional ballistic spinful 1D S/N/S junctions
the CΦRs are known to be sawtooth-like28. In contrast
to our result (26) the spikes are usually odd π + 2πn
and the slope is positive. This difference follows from an
additional phase of π acquired by a fermion in a spin-
ful junction after two Andreev reflections from the con-
tacts. For spinful systems, full Andreev reflection is as-
sociated with the time-reversal transformation iσyK of
the fermion wave function. Being reflected two times
from the left and right contacts, the spinful fermion gets
a π phase. In spinless junction under consideration this
phase is zero.

2. Density of states

We calculate density of states at arbitrary λ in a-
branch with the use of ψa from (B8) derived in Appendix
B. The density of states in chiral Dirac modes are ’halfs’

of the spectral current, because Jε = ev(ρ
(a)
ε −ρ(b)

ε ) if in-
coming Majorana fermion modes χr,l are not correlated.
We introduce the local retarded Green function (calcu-
lated at an arbitrary coordinate x in the a-branch) as

G(a)(t, t′)=− iθ(t−t′)〈{ψa(x, t), ψ+
a (x, t′)}〉.

The Fourier transform of this function,

G(a)
ε =

∫
〈{ψa,ω, ψ+

a,ω}〉
dω

ε− ω + io
,

gives for the density of states

ρ(a)
ε = − 1

π
ImGε = 〈{ψa,ε, ψ+

a,ε}〉.

Assuming the density of states of χMM in the SC gap is
constant, i.e. 〈{χi,−ε, χi,ε}〉 = v−1, we obtain

ρ(a)
ε (Φ, φAB) = v−1

2λ
(
1 + λ2 + cos(φAB − ϕε)− λ2 cos(Φ + ϕε)

)
((1 + λ2) cosϕε + cosφAB − λ2 cos Φ)

2
+ 4λ2 sin2 ϕε

.

(27)

In Figure 10 we plot the density of states ρ
(a)
ε at three

values of dimensionless tunneling parameter λ. At weak

tunneling, λ = 0.3 (see Fig. 10 (a)), the maxima of ρ
(a)
ε

are slightly dependent on Φ. Horizontal lines resemble
smeared mesoscopic levels of an isolated 1D Dirac wire
of length L. These maxima can be shifted vertically by a
flux induced Aharonov-Bohm phase φAB , because their
position is given by

εn = (2πn− π − φAB)ET .

The result for the intermediate transparency λ = 1,
equivalent to the transparent junction, is shown in Fig.
10 (b). We see that the density of states is strongly
smeared in this case.

The continuation of ρ
(a)
ε to high transparency (λ� 1)

shows that the spectral density is given by 2π-periodic
narrow lines of Andreev levels. Their structure can be
found from the singularities of (27) at λ→∞ as

εAn = ±ET (Φ + 2πn). (28)

In Figure 10 (c) we plot the density of states at λ = 5
which consists of half of the full set of smeared Andreev
levels (28). Note, that level positions are independent
of the Aharonov-Bohm phase. This follows from the
fact that the electron and the reflected hole get opposite
Aharonov-Bohm phases, which compensate each other in
closed paths.

FIG. 10. Spectral density of states (27) of the right movers,

ρ
(a)
ε (Φ, ε) in the upper a-arm of the junction. The energy ε

is counted in units of Thouless energy ET . Blue and white
colors correspond to low and high densities respectively. (a)
weak tunneling regime, λ = 0.3; the horizontal lines are rem-
iniscent of the quantized levels of the isolated N-region; (b)
intermediate transparency, λ = 1, the results coincide with
those for a transparent junction at α = π/4; (c) the case
λ = 5 illustrates the continuation to the high transparency
limit (full Andreev reflection), where bright narrow lines are
half of full set of smeared Andreev levels. Aharonov-Bohm
phase φAB = −π/2 for all three plots.

V. SCATTERING IN TERMS OF MAJORANA
MODES

One can describe the scattering between the Dirac and
Majorana chiral modes by representing the ψ operators
in the N-channel with the help of two auxiliary charged-
neutral Majorana operators γ1 and γ2. These modes do
not carry charge separately but their superpositions do.
The different SC phases of the opposite contacts result
in a fusion of the auxiliary γ1 and γ2 modes, which is
responsible for a Cooper pair transfer from one lead to
the other.

In this section we discuss the scattering in the Ma-
jorana basis for the tunneling and transparent contacts.
We analyze in detail the regime λ = 1 (keeping α as a
free parameter), since it corresponds to the case of the
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transparent junction (18) up to geometry dependent α
and the Berry phases.

The Majorana basis is defined through the following
transformation for both the left and the right contacts

ψi =
1√
2

(γ1,i + iγ2,i)e
−iΦSC/2, (29)

where the index i here stands for in and out channels.
The St-matrix (21) under this transformation at arbi-
trary λ reads


γ1,out

χout

γ2,out

 =


1 0 0

0 1−λ
1+λ − 2

√
λ

1+λ

0 2
√
λ

1+λ
1−λ
1+λ



γ1,in

χin

γ2,in.

 (30)

According to (30) γ1 mode is always fully decoupled,
consistent with the scattering theory of Li, Fleury and
Büttiker17. In the weak tunneling limit λ� 1 the modes
χ and γ2 scatter into each other with the amplitude
∼
√
λ. In the opposite unitary limit λ → ∞ all modes

are decoupled from each other but both χ and γ2 invert
signs meaning that the corresponding Dirac fermions ex-
perience the full Andreev reflection. In the intermediate
case λ = 1 (Figure 11, left) the modes χ and γ2 fully
convert into each other: γ2,out = χin and χout = −γ2,in.

The presence of the scattering phase α in the scattering
matrix (12) of the transparent Dirac-Majorana contacts
changes the situations considerably. We apply again the
transformation (29) to ψ-operators and obtain the fol-
lowing S-matrix in the Majorana basis (setting d = 0)

γ1,out

χout

γ2,out

 =


cos2 α − sinα − sin 2α

2

− sinα 0 − cosα

sin 2α
2 cosα − sin2 α



γ1,in

χin

γ2,in

 .
(31)

This matrix coincides with that of (30) in the limit λ = 1
only if α = 0. For the other values of α all the modes
are mixing with each other. At arbitrary α there is mix-
ing between all of the modes except of χin and χout.
Mixing between χin and χout is possible if we a add sec-
ond contact with a different SC phase. We illustrate the
scattering in the particular case of α = ±π/2 in Figure
11 (right), where the incoming χ-mode converts into γ1

mode and vise versa. Note that, in this case, γ2 mode is
not converted to the others but gets an inversion of the
sign, γ2,out = −γ2,in.

VI. SUMMARY

To conclude, we analyzed two limits of 1D long ballistic
Josephson junctions where the leads are formed by gap-
less 1D chiral Majorana channels.These junctions can be

FIG. 11. Scattering in normal Dirac ψ,ψ+ and neutral-charge
channels χ written in terms of auxiliary Majorana modes
γ1, γ2. Left: tunnel contact described by St-matrix (21) at
λ = 1. Right: transparent contact described by S-matrix
(12) at α = ±π/2.

realized as hybrid structures involving 3D topological in-
sulator surface in proximity with s-wave superconducting
electrodes and magnetic materials. The normal region of
these setups is formed by two chiral Dirac modes spaced
by a magnetic material. Such a normal part is effectively
spinless because the spin textures are locked to profiles
of magnetic domain walls.

In the first part of the work we have calculated the
CΦR in the regime of high transparency. In this limit
the left and the right contacts of the junction consist
each of two Dirac-Majorana converters built by mag-
net/superconductor interfaces. We find that this sys-
tem has a continuous spectral current, a 2π-periodic non-
sinusoidal CΦR at low temperatures and an h/e-periodic
dependence of the critical current on the magnetic flux.
The critical current amplitude at zero temperature is
given by Thouless energy which is proportional to inverse
dwell time of the normal region. The junction can act as
a SQUID because the two Dirac channels are spatially
separated. An Andreev pair in this case appears to be
spatially non-local, which offers a possibility of inducing
an internal Aharonov-Bohm phase. This leads to one of
our central results: the critical current shows fractional
h/e-periodic pattern.

In the second part of the work we have studied an-
other realization of the junction where Dirac and Majo-
rana channels are coupled through a tunnel barrier. The
CΦR of such a tunnel junction was found in terms of
the tunneling Hamiltonian approach and corresponding
scattering matrix. The resulting critical current patterns
show sharper resonant peaks as compared to those for
the transparent junction. We have also studied the for-
mal extension of the tunneling solution to the high trans-
parency regime and compared it with the one obtained
in the first part of the work.

Interferometers involving chiral Majorana modes14–18

could find their applications as measuring devices of
topological qubits15. In this paper we have explored
a dual setup, in which the equilibrium Josephson cur-
rent is carried by interfering chiral Dirac electrons be-
tween chiral Majorana leads. Embedded into schemes
with vortices and/or magnetic or SC islands supporting
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zero-energy Majorana pairs, a Josephson based quantum
interferometer might be of advantage, e.g., for perform-
ing quantum readout of topological qubits.

VII. ACKNOWLEDGMENTS

The authors thank I.V. Protopopov, I.S. Burmistrov,
A.L. Rakhmanov, A.V. Rozhkov, P.M. Ostrovsky, W.V.
Pogosov, S.N. Artemenko and, especially, Yu. Makhlin
for fruitful discussions. We acknowledge financial sup-
port by DFG Priority Program 1666, by German-Israeli
Foundation, and by the EU Network Grant InterNoM.
The research of A.D.M. was supported by the Russian
Science Foundation under grant No. 14-22-00281.

Appendix A: Derivation of the scattering matrix of
a tunnel contact

The local form of tunneling Hamiltonians (20) is an ap-
proximation, because, microscopically, such contacts are
formed by constrictions of finite size as depicted in Fig-
ure 7. If the constriction is wide and the hybridization
is negligible, the parallel chiral channels along SC/+M
and +M/−M junctions have opposite (orthogonal) spin
textures. In the tunneling area, shown as the constric-
tion of the magnetic material in the black bar, the eigen-
functions can be approximated by superpositions of the
eigenfunctions of the isolated Dirac and Majorana chan-
nels, ξ(e), ξ(h) and ξ(M). This means that an electron
coming into the tunneling area starts to oscillate between
hole- and Majorana-like states with a rate, proportional
to a hybridization of the channels, estimated as Me−Mdy ,
where dy is a transversal constriction length. Finally, the
incoming electron scatters into a superposition of outgo-
ing electron, hole and neutral excitation in the Majorana
channel. From this qualitative picture one can conclude
that the scattering matrix should be periodic with re-
spect to the phase of these oscillations, given as a product
of hybridization energy and the constriction dwell time
Me−Mdy/vdx/v.

Here, we derive this periodic behavior of the St-matrix
from the local tunneling Hamiltonian (20). We employ
the Heisenberg equations of motion

(v∂x − ∂t)ψ(x)

(v∂x − ∂t)χ(−x)

(v∂x − ∂t)ψ+(x)

 = itδ(x)T


ψ(x)

χ(x)

ψ+(x)

 , (A1)

where the tunnel matrix is given by

T =


0 e−i

ΦSC
2 0

ei
ΦSC

2 0 −e−i
ΦSC

2

0 −ei
ΦSC

2 0

 , (A2)

We write χ(−x) in these equations in order to make the
chirality of the Majorana mode the same as that of the
charged channel. In this representation we can consider
incoming and outgoing states as those at x < 0 and at
x > 0 respectively.

It follows from the x-integration of (A1,A2) around
the point of contact x = 0 that the relation between the
tunneling matrix T - and the scattering matrix St reads

St = exp [i(t/v)T ] . (A3)

Calculating the exponent we obtain

St =


1

1+λ
i
√

2λ
1+λ e

−iΦSC
2

λ
1+λe

−iΦSC

i
√

2λ
1+λ e

i
ΦSC

2
1−λ
1+λ

−i
√

2λ
1+λ e−i

ΦSC
2

λ
1+λe

iΦSC −i
√

2λ
1+λ ei

ΦSC
2

1
1+λ

 , (A4)

where the dimensionless tunneling strength λ(t) is given
by

λ(t) = tan2 t√
2v
. (A5)

This tunneling St-matrix is unitary and obeys the
particle-hole symmetry St(ε) = ZS∗t (−ε)Z like S. The

eigenvalues of (A4) are given by ei
√

2t/v; e−i
√

2t/v; 1.
The solution method leading to (A4) and (A5) is not

universally accepted. Rather, a different ansatz was used
in various problems on transport in 1D systems such as
tunneling between edge states of QHE25, impurity scat-
tering in Luttinger liquid at g = 1/226 or resonant An-
dreev reflection from zero-mode Majorana bound state27.
Following these works we should have taken the local ψ-
and χ-operators at point x = 0 as

ψ =
ψ(−0) + ψ(+0)

2
, χ =

χ(−0) + χ(+0)

2
. (A6)

Relations (A6) produce then the same solution for the
scattering matrix as in (A4). However, the parameter λ
is now different and is given by

λ̃(t) =
t2

2v2
. (A7)

The two solutions coincide in the weak coupling limit
t/v � 1. For larger values of t the difference is substan-

tial. For instance, the unitary limit λ̃ → ∞ is achieved
with (A6) and (A7) at t→∞. In contrast, with (A3) it

is reached at tn =
√

2(π/2 + πn)v.
We conjecture that the solution method, leading to

(A3) applies if the constriction is smooth enough, so that
the validity of the low energy description provided by (1)
and (20) is not violated in any point of the constriction.
Then, Eq. (A1) is solved as a regular differential equation.
On the other hand, the ansatz (A6) is probably applicable
for sharp enough constrictions. This ambiguity should be
resolved by solving 2D BdG equations for the constriction
geometry.
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Appendix B: Derivation of CΦR in the tunneling
regime

In this appendix we present technical details of the
calculation of the Josephson current. We find the CΦR
as the difference between the chiral currents in a and
b arms by using the tunnel junction scattering matrix
St, given by (A4). We take the 1-st and the 3-d lines of
(A4), disregarding the outgoing Majorana field χout (line
2), and obtain ψout,ε
ψ+
out,−ε

 =

=

 1
1+λ

λe−iΦSC
1+λ

λeiΦSC
1+λ

1
1+λ


 ψin,ε
ψ+
in,−ε

+
i
√

2λ

1 + λ
χin,ε

e−i
ΦSC

2

−ei
ΦSC

2

 .
(B1)

The matrix in the r.h.s. of Eq. (B1) contains ampli-
tudes of normal and Andreev reflection, while the last
term describes coupling with the equilibrium Majorana
in-channel. This term is responsible for the spectral cur-
rent (23) being continuous, due to the gapless spectrum
of the incoming lead Majorana mode.

To proceed we rewrite Eq. (B1) as followsψout,ε
ψ+
in,−ε

 =MΦSC

ψ+
out,−ε

ψin,ε

+ i
√

2λχin,ε

 ei
ΦSC

2

e−i
ΦSC

2

 .
(B2)

The matrix MΦSC in (B2) is given by

MΦSC =

λeiΦSC 1− λ

1 + λ −λe−iΦSC

 .
Using (B2) we formulate the boundary conditions for

the left and right contacts. We introduce the field Ψε,x =
[ψa,ε, ψ

+
b,−ε, ψ

+
a,−ε, ψb,ε]

T
x , which depends on ε and on the

coordinate x along the Dirac channels. Indices a and b
stand for the upper and lower Dirac modes (see Figure
6). We start from the left contact where ΦSC = Φ/2 and

x = −L/2. Using (B2) and its Hermitian conjugate at
ε→ −ε as well as the property of the real Majorana field,
χ+
l,−ε = χl,ε, we derive γ0 −MΦ/2

−M∗Φ/2 γ0

Ψε,−L/2 = i
√

2ληΦ/2χl,ε. (B3)

Here γ0 is the 2 × 2 identity matrix in the left upper

block and ηΦ/2 = [ei
Φ
4 , e−i

Φ
4 ,−e−iΦ

4 ,−eiΦ
4 ]T . Note, that

for the left contact b-components of Ψε,−L/2 are in-fields
while a-components are out-fields: ψa,−L/2 = ψout and
ψb,−L/2 = ψin. The rank of the 4×4 matrix in (B3)
equals 2 and the eigenvalues are equal to 0, 0, 2, 2 regard-
less of the values of λ and Φ. The condition for the right
contact is obtained from (B3) by the replacements

Φ→ −Φ, χl → χr, Ψε,−L/2 → sxγxΨε,L/2. (B4)

The Pauli matrix sx, introduced in (B4), mixes the 2× 2
blocks in (B3) acting as a particle-hole transformation,
while γx acts inside of the blocks. The product sxγx
interchanges a and b indices in Ψε,x. We find that the
fields in the middle of N-region, Ψε,0 ≡ Ψε,x=0, can be
expressed via the operators at the ends of the Dirac chan-
nels, Ψε,−L/2 and Ψε,L/2, using the dynamical and geo-
metrical phases:

Ψε,−L/2 = DεFΨε,0, (B5)

Ψε,L/2 = sxγxDεFsxγxΨε,0. (B6)

Here Dε = diag[e−iϕε/4, eiϕε/4, e−iϕε/4, eiϕε/4] and F =
diag[e−iφext/4, e−iφext/4, eiφext/4, eiφext/4]. The external
phase φext equals to the sum of Aharonov-Bohm and
Berry phases and the dynamical phase ϕε accumulated
an electron of energy ε or a hole of energy −ε, enclosing
the interference loop of the length 2L. Here

ϕε =
ε

ET
, ET =

~v
2L
. (B7)

The relations (B3, B4) together with (B5, B6) make the
problem of finding the four components of Ψε(0) alge-
braically close. The result for the first component reads

ψa,ε =
√

2λe−i
Φ+ϕε+φext

4

ei
ϕε
2

(
ei
φext+Φ

2 sin φext−ϕε
2 − λ sin Φ+ϕε

2

)
χl,ε +

(
sin φext−ϕε

2 + λei
φext+Φ

2 sin Φ+ϕε
2

)
χr,ε

(1 + λ2) cosϕε − cosφext − λ2 cos Φ + 2iλ sinϕε
.

(B8)

The Dirac field in the b-channel is obtained using the
geometrical symmetry of the setup and is given by

ψb,ε(Φ, χr, χl)=ψa,ε(−Φ, χl, χr). (B9)

The operator relations (B8) and (B9) are used to calcu-

late

j = ja − jb = −ev
∫ (
〈ψ+
a,εψa,ε〉 − 〈ψ+

b,εψb,ε〉
)
dε,

which results in the CΦR presented in (24).
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18 G. Strübi, W. Belzig, M. S. Choi, and C. Bruder, Phys.
Rev. Lett. 107, 136403 (2011).

19 L. Jiang, D. Pekker, J. Alicea, G. Refael, Y. Oreg, and F.
von Oppen, Phys. Rev. Lett. 107, 236401 (2011).

20 S.-P. Lee, K. Michaeli, J. Alicea, and A. Yacoby, Phys.
Rev. Lett. 113, 197001 (2014).

21 G. Tkachov, P. Burset, B. Trauzettel, and E.M. Han-
kiewicz, Phys. Rev. B 92, 045408 (2015).

22 D.L. Maslov, M. Stone, P.M. Goldbart, D. Loss, Phys. Rev.
B 53, 1548 (1996).

23 I. O. Kulik, Zh. Eksp. Theor. Phys. 57, 1745 (1969).
24 R. Fazio, F. W. J. Hekking, and A. A. Odintsov, Phys.

Rev. B 53, 6653 (1996).
25 C. de C. Chamon, D. E. Freed, and X. G. Wen, Phys. Rev.

B 53, 4033 (1996).
26 R. Egger and H. Grabert, Phys. Rev. B 58, 10761 (1998).
27 L. Fidkowski, J. Alicea, N. H. Lindner, R. M. Lutchyn,

and M. P. A. Fisher, Phys. Rev. B 85, 245121 (2012).
28 I. O. Kulik and A. N. Omel’yanchuk, Zh. Eksp. Teor. Fiz.

68, 2139-2148 (1975).

mailto:shapiro@cplire.ru

	 Current-phase relation and h/e-periodic critical current of a chiral Josephson contact between 1D Majorana modes
	Abstract
	I Introduction
	II Majorana modes in 3D TI hybrid structure
	III Transparent regime
	A S-matrix of a transparent contact
	B Current-phase relation of transparent junction

	IV Tunneling regime
	A Scattering matrix of a tunnel contact
	B Current-phase relation in the tunneling regime
	C Formal continuation of the tunneling solution to the regime of finite transparency
	1 Critical current and CRs
	2 Density of states


	V Scattering in terms of Majorana modes
	VI Summary
	VII Acknowledgments
	A Derivation of the scattering matrix of a tunnel contact
	B Derivation of CR in the tunneling regime
	 References


