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AC Response of the Edge States in a Two-Dimensional Topological Insulator Coupled

to a Conducting Puddle
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We calculate an AC response of the edge states of a two-dimensional topological insulator, which
can exchange electrons with a conducting puddle in the bulk of the insulator. This exchange leads
to finite corrections to the response of isolated edge states both at low and high frequencies. By
comparing these corrections, one may determine the parameters of the puddle.

I. INTRODUCTION

A signature of two-dimensional (2D) topological insu-
lators is the existence of helical edge electronic states
that propagate in clockwise and counterclockwise direc-
tions. As the projection of electron spin is locked to the
direction of its motion, the electron can only change both
of them simultaneously and cannot be backscattered by
non-magnetic impurities or phonons as in conventional
conductors. Therefore it was theoretically predicted that
in the absence of spin-flip scattering, a pair of helical
edge states should have a universal value of conductance
e2/h, no matter how long they are1. However experi-
ments revealed that actual values of conductance were
much smaller. In papers2,3 reporting measurements on
HgTe/CdTe quantum wells, the conductance of 1 µm-
long edge states was 10% smaller than expected. Some
other paper reported a decrease of conductance by two
orders of magnitude4,5. A similar suppression of conduc-
tance was found in InAs/GaSb/AlSb heterostructures6,7.
In all experiments, it had a very weak temperature de-
pendence.
So far, there was no satisfactory explanation of these

facts despite a large number of theoretical papers in
this field. First the conductance suppression was at-
tributed to spin-flip scattering of electrons by magnetic
impurities8, but it appeared shortly that axially sym-
metric impurities do not contribute to the dc resistance
because of conservation of total spin of the electrons and
impurities9. To avoid this conservation, the authors of
Ref.10 assumed that the magnetic impurities have a ran-
dom anisotropy in the plane of the insulator. They ob-
tained that such impurities would lead to the Anderson
localization of the edge states and an exponential de-
crease of the conductance with the length of the sample,
while its experimental values are inversely proportional
to its length like in diffusive conductors. This could take
place if along with anisotropic impurities there were suf-
ficiently strong dephasing processes. However the esti-
mates show that the dephasing length is much larger than
the distance between the probes4,5,11, which makes this
mechanism unlikely.
Another possibility is that conducting puddles are for-

med in the bulk of the insulator because of potential
fluctuations due to randomness of impurity doping and
electrons from the edge states are captured into these
puddles, as suggested by Vayrynen et al.12. The authors

FIG. 1. (color online). A pair of edge states tunnel-coupled
to a conducting puddle in the bulk of the 2D topological in-
sulator. The electron spin in the edge states is locked to the
direction of motion, but the electrons in the puddle can flip
it without restrictions.

found that together with Coulomb interaction, this re-
sulted in a suppression of the conductance, but its strong
temperature dependence did not agree with experiments.
Nevertheless scanning-gate experiments13 suggest that
the suppression arises from well-localized discrete objects
near the edges.
Recently, it was suggested that the suppression of con-

ductance may arise from the tunnel coupling between the
edge states and conducting puddles of relatively large size
that have a continuous energy spectrum and allow a two-
dimensional motion of electrons in them14,15. The impu-
rity scattering in the puddles combined with spin-orbit
coupling may result in a temperature-independent spin
relaxation of electrons via the Elliott–Yafet16 or Over-
hauser mechanism17, see Ref.18 for a review. The exis-
tence of these puddles will lead to an effective backscatt-
tering of electrons. In particular, it was shown in15 that
even one puddle could reduce the conductance by half if
the tunnel coupling and spin-flip scattering in the puddle
are sufficiently strong. However the conductance depends
on both of these quantities and therefore it is difficult to
extract them from measurements of dc current. In this
paper, we present calculations of a frequency-dependent
response of a pair of edge states coupled to a conduct-
ing puddle. By comparing the low- and high-frequency
conductances, one can determine the parameters of the
puddle and judge upon the applicability of this model.

II. MODEL AND GENERAL EQUATIONS

Consider a pair of helical edge states with linear disper-
sion εp = |p| v that connect the electron reservoirs, which
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are kept at externally controllable voltages. Each of the
two directions of the electron momentum is locked to a
definite spin projection, which is labeled by σ = ±1. The
edge states are tunnel-coupled with electron or hole pud-
dles that are formed in the bulk of the insulator because
of large-scale potential fluctuations. We also assume that
these puddles are sufficiently large to have a continuous
spectrum and that the electrons in the puddles are also
subject to a spin relaxation because of spin-orbit pro-
cesses.
For simplicity, the interaction between the electrons in

the edge states is neglected, as well as their interaction
with the electrons in the puddle.
Hence the distribution functions fσ(x, ε, t) in the edge

states obey the equation19

(

∂

∂t
+ σv

∂

∂x

)

fσ(x, ε, t)

= −Γ(x) [fσ(x, ε, t)− Fσ(ε, t)]− e
∂u

∂t

∂fσ
∂ε

, (1)

where Γ(x) is the rate of electron tunneling from point
x to the puddle, Fσ(ε, t) is the spin-dependent distribu-
tion function of electrons in the puddle, and u(x, t) is the
electric potential. As the conductance of the puddle is
much higher than that of the edge states, this distribu-
tion functions is spatially uniform inside it and obeys the
equation

∂Fσ

∂t
+

1

hνp

∫

dxΓ(x) [Fσ(ε, t)− fσ(x, ε, t)]

+
1

2τs
(Fσ − F−σ) = −e

dU

dt

∂Fσ

∂ε
, (2)

where νp is the number of states in the puddle per unit en-
ergy, τs is the spin-relaxation time, and U is the electrical
potential of the puddle. In its turn, the time derivatives
of u and U may be obtained through electric capacity of
the edge state per unit length c, the puddle capacity C
and the charge-balance equations

∂u

∂t
= −

e

c

∑

σ

∫

dε

hv

[

σv
∂fσ
∂x

+ Γ (fσ − Fσ)

]

, (3)

dU

dt
=

1

C

dQ

dt
=

e

C

∑

σ

∫

dε

∫ L

0

dx
Γ(x)

hv
(fσ − Fσ). (4)

As νp and Γ may be considered as energy-independent
near the Fermi level, it is convenient to introduce the
integrated quantities

nσ(x, t) =

∫

dε

hv
[fσ(x, ε, t)− f0(ε)], (5)

Nσ(t) =

∫

dε νp [Fσ(ε, t)− f0(ε)], (6)

where f0(ε) is the equilibrium Fermi distribution. Note
that these are not the total electron concentrations be-
cause they take into account only the changes of electron

number near the Fermi level and do not include the shifts
of the bottom of the conduction band that result from the
oscillating electric potential. One may exclude the quan-
tity u from Eq. 1 to obtain the equation for nσ in the
form

hv ∂nσ/∂t− (e2/c) ∂n−σ/∂t

hv + e2/c

+ σv
∂nσ

∂x
+ Γnσ =

Γ

hvνp
Nσ. (7)

Furthermore, it is convenient to separate Nσ into the
charge and spin parts NQ = N+ + N− and NS = N+ −
N−. By adding and subtracting Eqs. 6 for δN+ and δN−

and making use of Eq. 4, one obtains the equations for
these quantities in the form

[

∂

∂t
+

(

1 + 2
e2νp
C

)

ϕL

hνp

]

NQ

=

(

1 + 2
e2νp
C

)
∫ L

0

dxΓ(x) (n+ + n−) (8)

and

(

∂

∂t
+

1

τs
+

ϕL

hνp

)

NS =

∫ L

0

dxΓ(x) (n+ − n−), (9)

where the notation

ϕL =

∫ L

0

dxΓ(x)/v (10)

denotes the dimensionless tunnel-coupling strength. This
system of equations must be solved together with the bo-
undary conditions

n+(0) =
eu(0)

hv
, n−(L) =

eu(L)

hv
, (11)

and the current at point x can be calculated as

I(x, t) = ev [n+(x, t) − n−(x, t)]. (12)

III. AC RESPONSE

Calculate now the linear response of the system. We
assume that the voltage drop with frequency ω is sym-
metrically applied to the terminals, i. e. u(0) =
1
2
V exp(−iωt) and u(L) = − 1

2
V exp(−iωt). Estimates

show that for the edge states in HgTe quantum wells,
hv and e2/c are of the same order of magnitude. There-
fore the terms with time derivatives in Eqs. 7 are much
smaller than the ones with spatial derivatives and may
be omitted if we restrict ourselves to ω ≪ v/L. Using the
boundary conditions Eq. 11, one may write the solutions



3

FIG. 2. (color online). The real part (red curve) and imag-
inary part (blue curve) of the conductance vs. frequency for
ϕL = 20 and hνp/τs = 1.

of these equations in the form

n+(x) =
eV

2hv
K(x, 0)

+
NQ +NS

2hvνp

∫ x

0

dx′

v
Γ(x′)K(x, x′), (13)

n−(x) = −
eV

2hv
K(L, x)

+
NQ −NS

2hvνp

∫ L

x

dx′

v
Γ(x′)K(x′, x), (14)

where

K(x, x′) = exp

{

−

∫ x

x′

dx′′

v
Γ(x′′)

}

. (15)

A substitution of these solutions into Eqs. 8 and 9 gives
a system of equations

[

−iω +

(

1

hνp
+

e2

C

)

(1− e−ϕL)
]

NQ = 0, (16)

[

−iω +
1

τs
+

1− e−ϕL

hνp

]

NS =
eV

h
(1 − e−ϕL). (17)

which suggests that NQ = 0. By substituting the value
of NS from Eq. 17 into Eqs. 14 and 12, one obtains the
expression for the current at the left and right terminals.
Using the dimensionless spin-flip time

η = τs
1− e−ϕL

hνp
, (18)

it may be presented in the form

Iω =
e2V

2h

[

1 + e−ϕL +
(1− e−ϕL) η

1 + η − iωτs

]

. (19)

FIG. 3. (color online). Contour plot of the dc conductance
Eq. 20 as a function of ϕL and hνp/τs. Brighter colors corre-
spond to smaller values of conductance

The real and imaginary parts of the frequency-dependent
conductance are shown in Fig. 2. In the low-frequency
limit ω ≪ τ−1

s , Eq. 19 gives

Idc =
e2V

2h

1 + 2η + e−ϕL

1 + η
, (20)

which suggests that the dc conductance varies from e2/h
to e2/2h and increase either with decreasing tunnel cou-
pling ϕL or increasing spin-flip rate τ−1

s . The contour
plot of this quantity is shown in Fig. 3 as a function of
ϕL and the dimensionless spin-flip rate hνp/τs. In the
high-frequency limit, it follows from Eq. 19 that

Ihf =
e2V

2h
(1 + e−ϕL). (21)

The high-frequency conductance also varies from e2/h
to e2/2h, but is independent of the spin-flip rate and
is always smaller than the dc conductance. The high-
frequency current is in phase with the ac voltage, and
the phase shift between them appears only at ω ∼ τ−1

s .

IV. DISCUSSION

Though the response is calculated at frequencies much
lower than the inverse time of flight of an electron be-
tween the terminals and the pileup of the charge is for-
bidden in the system, it still exhibits a dispersion related
with spin imbalance in the puddle. At low frequencies,
the conductance monotonically decreases as the coupling
to the puddle and the spin-flip rate in it increase. Even-
tually it becomes equal to one half of the conductance in
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the absence of the puddle. This means that the puddle
breaks the system into two independent quantum resis-
tors, each with a conductance e2/h. When connected in
series, these resistors exhibit the conductance two times
lower, i. e. e2/2h. Should there be m puddles strongly
coupled to the edge states, the dc conductance would be
m + 1 times smaller than e2/h. In some sense, increas-
ing the frequency is equivalent to increasing the spin-flip
rate, and it leads to a similar decrease of conductance.
The single-puddle model involves three unknown param-
eters, i. e. ϕL, νp, and τs. All of them can be determined
by comparing the experimental dispersion curve with Eq.
19. If it is not possible to measure the ac response in the
whole frequency range, it may be possible to measure it
in the dc regime and at a frequency well above τ−1

s , so
one still can extract ϕL and the product hνp/τs by means
of Eqs. 20 and 21.

The estimates20 show that the Fermi velocity in the
edge states of HgTe quantum wells is about 5× 105 m/s.
If the length of the edge state is one micron, the condition
ω < v/L will be fulfilled up to the terahertz frequencies.
It is more difficult to give reliable estimates of the spin-
flip rate in the puddle. In low-temperature experiments
on Au and Cu, the spin-flip time was ≈ 0.1 ns21. To the
best of our knowledge, so far the ac response in 2D topo-
logical insulators was measured at a constant frequency
of 2.5 THz and for several-micron long samples22, which
is marginal for testing the obtained results. One could

extend the frequency limits for observing the predicted
effects by choosing a shorter distance between the mea-
suring probes and making an artificial puddle between
them by approaching a charged STM tip or by selective
doping. This would provide a test for the proposed model
of the conductance suppression in the edge states of 2D
topological insulators.

V. CONCLUSION

We have calculated a current response to an ac volt-
age of a pair of edge states in a 2D topological insulators
coupled by tunneling to a conducting puddle in its bulk,
where the electrons can flip their spin. Our goal was to
provide a means of experimental detection of such pud-
dles. In a presence of such a puddle, the response exhibits
a dispersion at the inverse spin-flip time in the puddle.
Its real part decreases from the zero-frequency value to a
smaller value, while its imaginary part exhibits a maxi-
mum at this frequency. By comparing the low-frequency
and high-frequency response, one can determine the pa-
rameters of the puddle.
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3 A. Roth, C. Brüne, H. Buhmann, L.W. Molenkamp, J.
Maciejko, X.-L. Qi, and S.-C. Zhang, Science 325, 294
(2009).

4 G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov,
S. A. Dvoretsky, and J. C. Portal, Phys. Rev. B 84,
121302(R) (2011).
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