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A B S T R A C T

The measurement of humidity is very important for air control in ambient, industry, cars, houses, closed
apartments, museums, atomic power stations, etc. In the present work the theoretical analysis of the surface
acoustic wave propagation in “graphen oxide (GO) film/ZnO film/Si substrate” layered structure has been
performed. The change of GO film conductivity due to humidity has been taken into account during the cal-
culations. Based on the obtained results an improved microwave acoustic humidity sensor has been developed.
The sensor has enhanced sensitivity of about 91 kHz/% and linear response vs relative humidity in the range
20–98%RH. It is based on the mode belonging to Sezawa wave family that is shown to be more sensitive towards
electric conductivity variations in GO film produced by adsorbed water molecules than the Rayleigh counterpart.

1. Introduction

In recent years the microwave acoustic humidity sensors have been
developed very extensively [1–26]. These sensors are successfully used
for air control in ambient, industry, cars, houses, closed apartments,
museums, atomic power stations, etc. [27,28]. For development of the
humidity sensors various types of acoustic waves (surface (SAW)
[1–11], Love [12–17], bulk [18–24], and Lamb [25,26]) have been
used. These waves propagated either in homogeneous crystal substrates
or in multi-layered structures containing different sorbent films sensi-
tive towards water vapor adsorption. Usually, the sensitive films are
made of ceramic, semiconducting and polymer materials [28,29]. In
recent years they are fabricated from graphen-based layers
[5–7,17,20–23,25,26,30–32] or special materials doped by nano-par-
ticles, fullerens, and carbon nano-tubes [8–11,14,17,24]. For any sor-
bent material adsorption of water molecules produces, in general, the
changes in film density, elasticity, electric conductivity, dielectric per-
mittivity, and temperature, which are detected at the output of the
sensor as the changes in acoustic wave velocity, frequency, phase and/
or amplitude. However, usually, designers use the film with one
dominant sensing mechanism. For example, the GO layer with domi-
nant electric conductivity variations, allowed to develop recently the

super-high-sensitive humidity sensor based on high-order (symmetric)
Lamb mode in 128Y,X+900 − LiNbO3 plate [26].

In spite of large amount of paper devoted to humidity sensors,
further improvements in the sensors performance are still strongly re-
quired making new researches and developments in the field actual.

The goal of the present paper is to develop improved humidity
sensor basing on theoretical analysis and experimental verification of
the acoustic waves propagation in “GO film− ZnO film− Si substrate”
layered structure.

2. Theoretical analysis

Propagation of the acoustic waves is studied in two dimensional
structures with x1- axis parallel to the propagation direction and x3- axis
perpendicular to the structure surface (Fig. 1). On Fig. 1,a the regions
x3 < −h1, −h1 < x3 < 0 and x3 > 0 are occupied, respectively, by
air, ZnO film and Si half-space. On Fig. 1,b air is for x3 < − h2, while
−h2 < x3 < −h1 is for the GO film. Mechanical and electrical vari-
ables are assumed to be constant in the x2-axis direction.

To solve the problem we write motion Eq. (1), Laplace (2) or
Puasson (3) equations, continuity equation for electric charge (4), and
material Eqs. (5)–(8) for GO, ZnO and Si medium using the quasi-
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Here, Ei, Ui, Ji, t, Tij, xj, Dj, Φ, ρ, Cijkl, eikl, εjk, δV, σV and d are the
components of the electric field, mechanical particle displacement,
electrical current, time, the components of mechanical stress tensor,
coordinates, the components of electric displacements, electrical po-
tential, and density, as well elastic, piezoelectric and dielectric con-
stants, bulk charge, bulk conductivity, and diffusion coefficient of a
materal, respectively. Indexes ZnO, Si, and GO are attributed to dif-
ferent materials.

Outside the plate (x3 < −h1, Fig. 1,a; x3 < −h2, Fig. 1,b) electric
displacement of the waves satisfies the Laplace equation:

∂ ∂ =D x 0,j
ar

j (9)

where = − ∂ ∂D ε Φ xj
ar ar ar

j, index ar denotes air, εar is the air dielectric
constant.

Additionally, the waves satisfy mechanical and electrical boundary
conditions:

− for structure on Fig. 1a they are
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− for structure on Fig. 1b they are
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Using relevant equations and boundary conditions, the problem of
acoustic wave propagation is solved as follows. The solution is pre-
sented in the form of a set of plane inhomogeneous waves [34,35]:

= −Y x x t Y x jω t x V( , , ) ( )exp[ ( )],i i ph1 3 3 1 (14)

where i=1–8 for the ZnO, i=1–6 for the mechanical part of task for Si
and GO, and i=1, 2 for air and electrical part of task for Si and GO, Vph

is phase velocity, and ω− is the angular frequency of an acoustic wave.
Then, the normalization is introduced as follows:
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where i=1,2,3, C ε*, *11 11 are the normalized material constants of ZnO,
Si and GO in crystallographic coordinate system; e*= 1 and it has the
dimensional representation of piezoelectric constant.

Substituting (14) in (1)–(8) yields a system of 8, 6, 6, 4 and 2
conventional differential linear equations for ZnO, Si (mechanical part),
GO (mechanical part), Si (electrical part), GO (electrical part) and air,
respectively, where each system can be written in the matrix form:

[A][dY/dx3]= [B][Y]. (16)

Here [dY/dx3] and [Y] are 8, 6, 6, 4 and 2 dimensional vectors for ZnO,
Si (mechanical part), GO (mechanical part), Si (electrical part), GO
(electrical part) and air, respectively, whose components are defined
according the formulae (15). Matrixes [А] and [В] appeared to be
squared and have dimensions of 8 х 8 for ZnO, 6× 6 for Si and GO
(mechanical part), 4× 4 GO (electrical part), and 2×2 for Si and air.

Since matrix [А] is not particular (det[А] ≠ 0) we can write the
following equations for every contacting medium:

[dY/dx3]= [А−1][В][Y]= [C][Y] (17)

After that, to solve the system of Eq. (17) we need to find the ei-
genvalues β(i) of matrices [С] and corresponding eigenvectors [Y(i)],
responsible for the parameters of partial waves, for each of contacting
media. General solution would be a linear combination of all partial
waves for each medium:

∑= −
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where the number of eigenvalues N is 8 for ZnO, N=6 for Si and GO
(mechanical part), N=4 for GO (electrical part), N=2 for Si and air.
Unknowns Аi and phase velocity Vph can be found using mechanical and
electrical boundary conditions (10)–(13) that have also been written in
the normalized form (15).

Moreover, as all variables should decay into Si substrate the ei-
genvalues with positive real parts are eliminated from consideration for
nonpiezoelectric half-space. Furthermore, only four eigenvalues with
negative real parts are taken into account for the nonpiezoelectric
medium, as well as all eigenvalues of corresponding matrix [C] for ZnO
film (0 > x3 > −h1, Fig. 1a,b) and GO film (−h1 > x3 > −h2,
Fig. 1b).

Finally, since all variables must have decaying amplitudes in air we
exclude the eigenvalues with the negative real parts for air (x3 < −h1,
Fig. 1,a; x3 < −h2, Fig. 1,b). As a result, the described procedure al-
lowed us to calculate the wave phase velocity in structures under the
study.

The calculation of the electromechanical coupling coefficient is
accomplished using well known formulae [33]:

=
−

×k
V V

V
2 100%,ph ph

ph

2 m
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where Vphmis phase velocity of acoustic waves when the plane x3= -h1
is electrically shorted.

3. Experimental

Silicon is well-known as one of the most popular and cheap material
in modern electronics. Therefore, design of any, in particular, humidity
sensors based on this material is very attractive. On the other hand, Si is
not piezoelectric, while acoustic waves are usually generated by ex-
ploiting the piezoelectric effect. That is why the silicon substrate should
be covered with a piezoelectric layer, say, ZnO film. However, this film
itself is not very sensitive towards humidity [14,16]. Therefore, in de-
signing acoustic wave humidity sensor, the other sorbent film above
ZnO layer (e.g. GO film) should be additionally applied.

Fig. 1. Geometry of the problems. (a) ZnO/Si structure, (b) GO/ZnO/Si struc-
ture.
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3.1. Preparation of graphene oxide suspension

As in our previous papers [26,36] the graphene oxide (GO) film was
fabricated starting from China natural graphite (99.9% С). The material
was grinded in a ball crusher 200–300 μm in diameter, oxidized [37],
and dried for 6 h at 50–60 °C. After that 0.4–0.5 g of graphite oxide was
placed in a cylinder chamber (250ml) together with distilled water
(150ml) and sonicated (20.4 kHz, 0.1–1W/sm3) during 15min. The as-
obtained water dispersion with GO particles was centrifuged during
10min at 8000 rev/min and dried at 70 °C for 6 h [38].

3.2. Design of the humidity sensor

Experimental sample represents common delay line implemented on
(001),〈110〉-Si substrate (4.5Ω/cm, 500 μm thick) and C6-ZnO film
(h1= 3 μm). Input and output interdigital transducers (IDT) (20 finger
pairs) are made on the film by lift-off technique using V- Al film (0.03/
0.3 μm, 1.15Ω/cm). Period of the transducers is λ=32.1 μm, the dis-
tance between them is LIDT= 5mm, aperture is equal 2mm and the
total phase acquiring an acoustic wave between input and output
transducers is φ0= 3600(LIDT/l)= 56 0750.

The fabrication of the c-oriented textured ZnO films with grains of
about 0.3 μm is performed in triode sputtering system with dc current,
ZnO target, 80% Ar+ 20% O2 gas mixture, and 0.07 Pa pressure. The
substrate temperature is 250 °C. The rate of the sputtering is 1.2–3 μm
per hour.

The GO-based dispersion was deposited onto ZnO film between IDTs
by airgraph and dried at the room temperature for 24 h. The film was
2× 2mm2 in square and 0.45 μm in thickness.

The scheme (a) and photo of the designed humidity sensor in a
holder (b) are shown on Fig. 2.

The as-fabricated sample is tested by network analyser (Keysight
E5061B). The type of the wave (Rayleigh/Sezawa) is identified from
comparison of the calculated phase velocity Vph with the experimental
value determined as Vph= f× λ, where f is the wave central frequency
and λ is the transducer period equal to the acoustic wavelength.

3.3. Measurement of humidity effect

The changes in characteristics of the Rayleigh and Sezawa waves
produced by humidity are measured using experimental setup pre-
sented in Fig. 3 [26]. The delay line (DL) is fixed into the chamber
(750ml) and forced by laminar air flux (100ml/min). Humidity in the
flux is varied in the range RH=3.6–98% by ratio between dry and
humid air injected together. The value of the humidity is also controlled
by commercial thermo-hygrometer IVTM-7 (threshold 0.1%) located
near the tested sensor. The measurements are carried out at room
temperature (22 °C).

The steps of the measurements are as follows. First, to avoid inter-
action of humid air with uncontrollable gaseous species preadsorbed on
the surface and in the volume, the graphene oxide film was preliminary
cleaned by dry nitrogen for about 5min. Then, the nitrogen was

switched off and dry air was introduced into the chamber as reference
gas for about 2min. Finally, the dry air was switched off, the humid air
was switched on, and the acoustic response was measured towards dry
air for as-cleaned film.

The sensitivity of Rayleigh and Sezawa waves towards humidity is
evaluated from the change in the phases Δφ measured at central fre-
quency. In order to avoid dependence of the measurements on the
length of the GO film (LGO) the values of Δφ are normalized to the total
phase φ0= 3600(LIDT/l)= 56 0750 acquiring the wave between input
and output transducers and multiplied to enhance factor (LIDT/ LGO). As
a result, the normalized responses R= (Δφ/φ0)(LIDT/LGO) of the dif-
ferent waves could be compared with each other at identical experi-
mental conditions.

3.4. Measurement of GO film conductivity

The measurement of the electric conductivity of the graphene oxide
film was carried out using two-contact method and RF electric bridge
(1 kHz) in hermetic box at room temperature and humidity ranged from
5 to 98%. The test sample (10×3×0.1mm3) was placed onto the
glass substrate with its surface resistance Ω > > 1014 Ohm. At the
ends of the sample two silver paste contacts (Ω < < 10−1Ohm) were
fabricated. The results of the measurements were recalculated to spe-
cific resistance.

It was found that the conductivity of the GO film is increased from
10−4 S/m up to 5 S/m. Like in [39] this property may be attributed to
the presence of hydroxyl and epoxy groups on the surface of graphene
sheets and to absorption of the water molecules by carbonyl and car-
boxyl groups existing at the edges of sheets or defects.

4. Results and discussion

4.1. Theoretical results

At first step the SAW properties in ZnO/Si structure supporting

Fig. 2. (a) The scheme and (b) photo of the designed humidity sensor in a holder.

Fig. 3. Experimental setup for testing humidity sensor based on acoustic waves
in GO/ZnO/Si structure.
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Rayleigh and Sezawa waves [40–42] are analyzed using material con-
stants from [43] (Si) and [40,41] (ZnO) (Fig. 3). The crystal orienta-
tions are (001),〈110〉 for Si (Eugler angles 00, 00, 450) and (001),〈100〉
for ZnO (00, 00, 00).

Fig. 4 shows that for h1/λ > 0.1 the k2 of the 1st Sezawa mode is
larger than that is for the Rayleigh wave. It is just this property that is
exploited in present paper to improve sensitivity of the SAW humidity
sensor based on GO sorbent film whose dominant sensing mechanism is
related to the change in film conductivity as approved in [26] by 2
independent experiments. The first one showed that the response cal-
culated from preliminary measured density, elastic modulii, and their
changes is much lower than the value measured for the same GO film
and substrate material − so that the contribution of the mechanical
properties of the film is not the main. Second, the SAW humidity re-
sponse was measured for one and the same GO film deposited on strong
(LiNbO3) and weak (quartz) piezoelectric substrates. It turned to be out
that the former substrate ensured much higher response than the latter
one − so that the dominant contribution is originated from electric
properties of the film and electric fields of the SAW.

At second step the properties of the Rayleigh and Sezawa waves are
examined for the same structure with additional GO film. The film is
supposed to be isotropic. The material constants of the film at different
relative humidities RH are taken from [26].

The calculations show that before humid air exposure (“clean” GO
film) the velocities and k2of the waves at h1(ZnO)= 3 μm,
h2(GO)= 0.45 μm, and h2/h1=0.15 are Vph

RW =3521.5 m/s,
k2= 0.27%, and Vph

SzW1 =5644.6 m/s, k2= 0.52%. After exposure (the
film with water molecules), when the thickness of the GO film is dou-
bled [26] (h2(GO)= 0.9 μm, h2/h1=0.3), the same velocities become
larger: Vph

RW =3546.4 m/s and Vph
SzW1 =5657.4m/s.

The increase of the velocities in this case is attributed to the large
increase in the GO film thickness. On the other hand, for analyses ac-
counting the increase in the GO film conductivity the effect of water
vapor results to the decrease in the wave velocities: Vph

RW =3511.4m/s

and Vph
SzW1 =5614.7m/s at h2/h1= 0.15. Therefore, the responses of

the waves towards humidity predicted by our calculations may be es-
timated as 0.3% and 0.53% at RH=67%, respectively. The corre-
sponding theoretical data are presented in Table 1.

The same calculation for the Lamb wave sensor and GO film/128Y-
X+900 structure [26] gives lower humidity response (0.05%) though
the coupling coefficient k2 of the wave is higher (10.3%). Such sort of
contradiction may be explained by stronger energy concentration of the
Rayleigh and Sezawa SAWs into GO film than that is for the Lamb wave
distributed over the whole film/plate structure.

As a result, theoretical analysis accomplished in this chapter pre-
dicts that humidity sensor based on Sezawa wave and GO/ZnO/Si
structure should provide better sensitivity than it was achieved before.

4.2. Experimental results

The measured transfer function |S21| of Rayleigh wave (1) and
Sezawa family waves (2) in GO film/ZnO film/Si substrate layered
structure is shown in Fig. 5. The central frequencies of the waves
measured in experiment are, respectively, 134.75MHz for Rayleigh
wave and between 95 and 270MHz for Sezawa waves. The measured
velocities of the waves determined as described in Section 3.2 are
4300 ± 430m/s (Rayleigh wave 1) and 6600 ± 660m/s (Sezawa
wave 2), where the experimental errors are estimated from precision of
the frequency measurements suffered of |S21| ripples and of the aver-
aged period of IDT perturbed by etching process. The family of Sezawa
waves consists of a number of modes with various characteristics each.

As an example Fig. 6 demonstrates humidity responses of the Ray-
leigh (a, c) and Sezawa (b, d) waves measured in ZnO/Si (a,b) and GO/
ZnO/Si (c,d) structures at RH ≈ 26%. Selected Sezawa wave has lowest
insertion loss among other modes of the family. It is seen that i) re-
sponses of both waves much higher with GO film (c,d) than without it
(a,b), ii) responses of Sezawa wave (ΔφSezawa=−4.46°, −161.42°) are
larger than those are for Rayleigh wave (ΔφRayleigh=−2.28°,−16.48°)

Fig. 4. (a) The phase velocity and (b) electromechanical coupling coefficient
versus the thickness of ZnO film h1/λ (λ is wavelength) in ZnO/Si structure.
RW − Rayleigh wave; SzW1, SzW2–1st and 2nd Sezawa modes.

Table 1
Results of the theoretical analysis.

h GO
2 , μm h2/h1 RH,% Taking into account only

GO film thickness
changes

Taking into account only
GO conductivity changes
(σV=5 S/m)

Vph
RW , m/s Vph

SzW1, m/s Vph
RW , m/s Vph

SzW1, m/s

0.45 0.15 0.47 3521.5 5644.6 3511.4 5614.7
0.6 0.2 26 3566.1 5651.5 3556.2 5629.2
0.84 0.28 56 3546.0 5650.1 3538.6 5628.1
0.9 0.3 67 3459.3 5641.5 3453.4 5611.5

Fig. 5. Transfer function |S21| of Rayleigh wave (1) and one of Sezawa wave (2)
in GO film/ZnO film/Si substrate layered structure.
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for both test structures, iii) response times (≈ 600 s) are much longer
than those are for recovery (≈ 6 s) for both structures and both waves.
Analysis of the same values for the other humidity has shown that the
values of the response/recovery times are increased from 500s/5 s at
RH=5% to 700s/18 s at RH=98%. Like for hydrogen detection with
polycrystalline Pd film [4] the large times may be attributed to the
porous nature of the sensitive GO film making penetration of the ad-
sorbed water species into the film volume quite difficult, iv) after
switching humidity off the output signal restores completely, v) Ray-
leigh wave response is positive at the beginning and negative at its
saturation indicating that the response of the wave is a combination of
various sensing mechanisms.

Possible explanation for the initial increase in the Rayleigh wave
velocity produced by water vapor adsorption (Fig. 6a,c) is the presence
of two opposite sensing mechanisms [44]. On the one hand, the water
molecules change mechanical properties of the GO film [26] and ZnO
layer [44], i.e. the first mechanism is the elastic loading effect resulting
to increase in the Rayleigh wave velocity. On the other hand, the water
vapor adsorption increases the GO film conductivity and the mass
loading [44] resulting to decrease in the wave velocity. As a result, at
initial stage the first sensing mechanism is larger than the second one,
while after some time the second mechanism becomes dominant.

As for Sezawa wave, the increase in the GO film thickness produced
by water vapor adsorption leads to insignificant increase in the wave
velocity (Table 1). This fact is attributed to less localization of the wave
near the surface as compared with the Rayleigh wave [45]. As a result,
for Sezawa wave in ZnO/Si structure the main sensing mechanism is

every time the mass loading producing decrease in the wave velocity
(Fig. 6b) [46], while in GO/ZnO/Si structure the main sensing me-
chanisms are the mass loading and the electric conductivity decreasing
the wave velocity as well (Fig. 6d).

Calibration curves of the humidity sensors based on Rayleigh and
Sezawa waves are linear in the range from RH=20 to 98% (Fig. 7).
The slope of the curve for Sezawa wave demonstrates record sensitivity
of the sensor as compared both with Rayleigh wave in the same
structure (Fig. 7) and with other prototypes known so far (Table 2). On

Fig. 6. Humidity responses vs time for (a, c) Rayleigh and (b, d) Sezawa waves measured in (a, b) ZnO/Si and (c, d) GO/ZnO/Si structures at RH ≈ 26%. fc is the
wave central frequency. 1 − dry air off, humid air on, 2–humid air off, dry air on.

Fig. 7. Calibration curves of the humidity sensors based on Rayleigh(open
circles) and Sezawa (black squares) waves in GO/ZnO/Si structure. Solid lines
represent the fitting curves obtained by Origin 8,0 Programme.
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the other hand, the temperature instability of the Rayleigh wave sensor
estimated from data [47] is lower (4100 Hz/°C) than that is for Sezawa
wave device (9050 Hz/°C), while both values are much less than the
sensitivity of the same waves towards humidity (55250 Hz/% and
91020 Hz/%, respectively). Therefore, the measurement accuracy for
the temperature variations± 1 °C is about ΔRH= ±0.1%.

The key performance parameters of the humidity sensor developed
in the paper are presented on Table 3.

5. Conclusion

Theoretical predictions and experimental verifications accom-
plished in the paper showed that Sezawa wave and GO/ZnO/Si struc-
ture provide an improved humidity sensor with better performance as
compared with other prototypes based on the same film. The sensor has
enhanced sensitivity (91 kHz/%) and linear response in the range
20–98%RH. For further improvements of the sensor performance an
acoustic wave with stronger piezoelectric properties propagating in GO-
based structure should be found.
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Table 2
Comparison of the known humidity sensors based on the GO sorbent films.

Wave type Materials Humidity range, %RH Resp./rec. time, s Sens., kHz/%, RH Ref.

SAW Quartz+GO 5–100 n/a 1.54 [5]
SAW ZnO/glass+GO 0.5–85 19/ < 1 53 [6]
Love wave Si/SiO2+GO 10–76 n/a 2.4 [17]
QSM Quartz+GO 6.4–93.5 18/12 2.6 [20]
QSM Quartz+GO/PEI 11.3–97.3 53/18 27.25 [22]
FBAR Si/SiO2/ZnO+GO 5–83 n/a 25.5 [23]
A0 Lamb wave Flexible ZnO/PI+GO 10–85 22/5 22 [25]
S0 Lamb wave Flexible ZnO/PI+GO 10–85 16/5 35 [25]
Lamb wave 128Y-X+ 90 0.03–75 87/50 80 [26]
Sezawa wave ZnO/Si+GO 3.6–98 600/6 91 Present paper
Rayleigh wave ZnO/Si+GO 3.6–98 600/6 6 Present paper

Table 3
Key performance parameters of the humidity sensor based on Sezawa
wave propagating in GO/ZnO.Si structure developed in the paper.

Parameter Values

Central frequency 222MHz
Insersion loss 19.4 dB
Sensitivity tow. humidity 91020 Hz/%
Sensitivity tow/temperature 9050 Hz/%
Humidity range, RH 3.6–98%
Experimental accuracy ΔRH= ±0.1%
Resp./rec. times 600 s/6 s
Operation temperature 20 ± 5 °C
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