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Spin-orbit-driven electron pairing in two dimensions
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We show that the spin-orbit interaction (SOI) arising due to the in-plane electric field of the Coulomb repulsion
between electrons in a two-dimensional quantum well produces an attractive component in the pair interaction
Hamiltonian that depends on the spins and momenta of electrons. If the Rashba SOI constant of the material is
high enough, the attractive component overcomes the Coulomb repulsion and the centrifugal barrier, which leads
to the formation of the two-electron bound states. There are two distinct types of two-electron bound states. The
relative bound states are formed by the electrons orbiting around their common barycenter. They have a triplet
spin structure and are independent of the center-of-mass momentum. In contrast, the convective bound states
are formed because of the center-of-mass motion, which couples the electrons with opposite spins. The binding
energy in the meV range is attainable for realistic conditions.

DOI: 10.1103/PhysRevB.98.115137

I. INTRODUCTION

The fact that the spin-orbit interaction (SOI) is produced
by Coulomb fields of interacting electrons was established by
Breit in the context of a two-particle problem in relativistic
quantum mechanics [1]. However, this effect is very small on
the scale of the electron energy in solids. The SOI created by
the electric fields in crystals is known to be much stronger than
in vacuum [2]. Therefore, the SOI produced by the Coulomb
field of interacting electrons can also be strong enough to give
rise to new nontrivial effects. The SOI effect of this origin was
first demonstrated by McLaughlan et al. [3]. They showed that
the interaction of electrons with the image charges leads to
the Rashba-like SOI splitting of the electronic states near the
surface of metals.

Recently, we have shown that in low-dimensional systems
the SOI produced by the Coulomb interaction of electrons
with the image charges induced on a nearby metallic gate
leads to nontrivial effects in materials with large Rashba
SOI constants [4–6]. The main effect is that because of this
interaction, the electron-electron (e-e) interaction Hamilto-
nian acquires a spin-dependent component that is attractive
for a particular spin orientation locked to momentum. As a
result of such attraction, one of the collective modes of a
many-electron system is softened, and a homogeneous ground
state becomes unstable as the Rashba SOI constant exceeds a
critical value [4].

A remarkable feature of this mechanism of the electron
attraction is that it is determined by a combined effect of the
motion of electrons and their Coulomb interaction so that the
pair interaction depends on the electron spins and momenta.
Under definite conditions this attraction can lead to the pairing
of electrons. Given the spin-selective nature of the attractive
SOI, a number of bound states with different spin structure
can be expected.

We have studied this pairing mechanism by solving a
two-body problem for a one-dimensional electron system to
show that there exist two distinct types of bound states of

electrons, depending on the type of their motion [7]. Due to
the relative motion, the bound states are formed by electrons
with opposite spins, whereas the motion of the electron pair
as a whole creates bound states with parallel spins.

In a two-dimensional (2D) system, the situation is more
complicated since in addition to a normal electric field there
exists an in-plane electric field that also produces the Rashba
SOI. The possibility of electron pair formation in a 2D gated
system was considered in Ref. [8], disregarding the in-plane
Coulomb field. In this case, only one type of bound state was
discussed. The effect of the in-plane electric field has not been
studied yet, but it is clear that it can also be essential, and the
relative role played by both components of the Coulomb field
depends on the parameters of the system.

In the present work, we consider the problem of two
interacting electrons in a 2D system with the SOI arising
solely from the in-plane Coulomb field. We show that the
spin-dependent attractive component emerges in the e-e inter-
action Hamiltonian due to the SOI without any intervention
of the image charges. The two-electron bound states can
appear if the SOI overcomes the Coulomb repulsion. This
happens for sufficiently thin 2D layers hosting the electrons
or for the large enough values of the Rashba parameter.
Under these conditions, there exist two distinct types of
two-electron bound states in which the electrons are moving
differently.

The relative bound states are triplet pairs formed by the
electrons orbiting around their common barycenter, with a
spin orientation locked to the orbital angular momentum. The
binding energy of these states does not depend on the motion
of the center of mass.

The convective bound states appear because of the motion
of the electron pair as a whole, which couples the electrons
with opposite spins. The effective attraction is growing with
the center-of-mass momentum so that the binding energy
and the effective mass of the pair essentially depend on its
momentum.
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II. THE MODEL

Consider two electrons in a 2D quantum well situated in
the x-y plane. The kinetic energy is

Hkin =
2∑

i=1

p2
i

2m
, (1)

with pi = −ih̄∇ri
being the momentum, ri = (xi, yi ) being

the position of the ith electron, and m is the effective electron
mass. The e-e interaction Hamiltonian consists of two com-
ponents. The first part is the Coulomb e-e repulsion described
by the interaction potential,

U (r1 − r2) = e2

ε|r1 − r2| , (2)

ε being the dielectric constant. The second part is the SOI,

HSOI = α

h̄

∑
i �=j

[Ey (ri − rj )pix − Ex (ri − rj )piy] σzi
, (3)

produced by the electric field

E(ri − rj ) = −e
ri − rj

ε|ri − rj |3 (4)

acting on the ith electron from the j th electron. Here σzi
is the

Pauli matrix and α is the SOI constant.
It is important that the SOI of Eq. (3) is a two-particle inter-

action. The sign of this interaction depends on the product of
electron momentum and spin projections, thus the interaction
is attractive for a particular spin orientation tied to momentum.

The two-electron wave function is a Pauli spinor of the
fourth rank, �(r1, r2) = (�↑↑,�↑↓,�↓↑,�↓↓)ᵀ. The full
Hamiltonian built as a Kronecker sum from Eqs. (1)–(4)
is diagonal in the corresponding basis, so the Schrödinger
equation for �(r1, r2) splits into four separate equations for
the spinor components.

Let us switch from the positions of the individual electrons
to the relative position r = r1 − r2 and the center-of-mass
position R = (R1 + R2)/2. Denote the corresponding mo-
mentum operators by p and P, respectively.

Then the equations for �↑↑ and �↑↓ are[
−h̄2

m
�r− h̄2

4m
�R+U (r)+ 2α

h̄
(r × p)z

e

εr3

]
�↑↑ =ε↑↑�↑↑

(5)

and[
−h̄2

m
�r− h̄2

4m
�R+U (r)+ α

h̄
(r × P)z

e

εr3

]
�↑↓ = ε↑↓ �↑↓.

(6)

The equations for �↓↓ and �↓↑ can be obtained from the
above equations by changing the sign of α. The solution of the
system should be antisymmetrized with respect to the particle
permutation.

It is clear that in Eq. (5) the relative motion of electrons is
separated from the motion of their center of mass. Therefore,
the solutions of this equation are the relative states. The SOI
term in Eq. (5) is similar to the SOI in atoms [9] except for the

difference in the magnitude of α and the dimensionality of the
system.

On the contrary, in Eq. (6) the relative motion is not
separated from the motion of the center of mass. Moreover, it
is the center-of-mass motion that determines the SOI term that
describes the attraction between the electrons for a particular
spin configuration and finally leads to the formation of bound
states. These are the convective bound states. Both kinds of
bound states are investigated in detail below.

III. RELATIVE BOUND STATES

The center-of-mass motion fully decouples from Eq. (5), so
that �↑↑(r, R) = ψ↑↑(r) exp(iK · R), with the wave function
of the relative motion satisfying[

− h̄2

m
�r + U (r) + 2αlz

e

εr3

]
ψ↑↑(r) = εψ↑↑(r). (7)

Since the orbital angular momentum along the z direction lz =
−i∂φ commutes with the Hamiltonian, the solution of Eq. (7)
can be chosen as the eigenfunction of lz,

ψ↑↑(r) = u(r )√
r

eilφ. (8)

The orbital angular quantum number l should be an odd
integer because of the antisymmetric properties of �↑↑, which
should change sign upon the electron permutation, i.e., as
φ → φ + π . The even values of l are not allowed, therefore,
e.g., the s states do not exist, in contrast to the 2D hydrogen
atom [10]. Most importantly, the SOI lifts the Coulomb de-
generacy in l.

Let us normalize the distance to the Bohr radius aB =
εh̄2/me2, the energy to the Rydberg constant in the material
Ry = h̄2/2ma2

B , and let us introduce the dimensionless SOI
constant α̃ = α/ea2

B .
Then the equation for the radial part u(r ) takes the form

−∂2u

∂r2
+ V (r )u = ε

2
u, (9)

where the binding potential is

V (r ) = l2 − 1
4

r2
+ 1

r
+ 2α̃l

r3
. (10)

The first term of the binding potential is a repulsive centrifugal
potential, while the second comes from the repulsive Coulomb
interaction. The third term is produced by the SOI and can
be either repulsive or attractive depending on the sign of
l. Negative l supports the existence of the relative bound
state �↑↑, whereas positive l supports �↓↓. Thus the spin
orientation of this triplet state is locked to the orbital angular
momentum.

The attractive r−3 singularity in the potential of Eq. (10)
should be regularized to avoid the “fall to the center” [9].
At small distances between the electrons, Eqs. (2) and (4)
should be modified for two reasons. First, to account for the
finite layer thickness d, the Coulomb interaction potential is
approximated as

U (r) = e2

ε
√

r2 + d2
(11)
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FIG. 1. The effective binding potential for the relative bound
states with l = 1 and separate contributions from the centrifugal
potential, direct Coulomb e-e interaction, and SOI.

and the field as

E(r) = −1

e
∇U (r) = −e

r

ε(r2 + d2)
3
2

. (12)

A second mechanism of cutting off the potential and the SOI
magnitude at small distances is related to the Zitterbewegung
of electrons in crystalline solids [11], which we take into
account phenomenologically similar to Eqs. (11) and (12). In
what follows, we treat d as a combined short-distance cutoff.

Thus the regularized binding potential becomes (in normal-
ized units)

V (r ) = l2 − 1
4

r2
+ 1√

r2 + d2
+ 2α̃l

(r2 + d2)
3
2

. (13)

The potential well is deepest for |l| = 1 as this minimizes the
centrifugal barrier. Consequently, the tripletlike ground-state
wave functions for the relative states are given by

�(r, R) = (e−iφ, 0, 0, 0)
ᵀ u(r )√

r
eiK·R (14)

and

�(r, R) = (0, 0, 0, eiφ )
ᵀ u(r )√

r
eiK·R. (15)

The potential profile is shown in Fig. 1 for α̃ = 1 and
d = 0.25aB . The Coulomb repulsion is negligible compared
to the centrifugal potential and SOI as long as d � aB . In this
limit, the binding potential is defined by a single parameter,
α/daB . Then the condition for the existence of the bound state
is found to take a simple form: α̃ > 2.3 d

aB
.

Increasing the SOI parameter α or reducing the layer
thickness d increases the binding energy |ε|. For a layer
thickness of d = 0.25aB , the energy of the relative bound
state is |ε| = 4.5 Ry as calculated numerically from Eqs. (9)
and (13). The size of the electron pair, estimated from the
position of the peak in the radial wave function, is of the order
of d. The spatial profile of the radial wave function together
with the binding potential is shown in Fig. 2 for this case.

IV. CONVECTIVE BOUND STATES

The convective bound states appear as the solutions of
Eq. (6). The translational invariance implies that �↑↓(r, R) =
exp(iK · R)ψ↑↓(r, K), with K being a quantum number, but

FIG. 2. The radial part of the wave function of the relative bound
state (up to the normalization constant) together with the effective
binding potential for d = 0.25aB .

contrary to the previous case the center-of-mass motion es-
sentially affects the relative motion. The wave function of
the relative motion ψ↑↓(r, K) depends on the center-of-mass
wave vector K via the binding potential.

We begin the study of the wave functions by considering
the region of r > d, where the wave-function behavior is of
most interest. The analysis, the details of which are presented
below in Sec. IV B, shows that in the region r < d the wave
function is extremely small. Therefore, for r > d we can
use the uncut form of the potential. Using that form of the
potential allows us to treat the problem analytically. The
results of the numerical calculations with the smoothed form
of the Coulomb potential and the electric field are presented
in Sec. IV C.

Let us direct the y axis along K and denote the polar angle
measured from the positive x-axis by φ. The wave function is
defined from the Schrödinger equation [12],

[
−1

r

∂

∂r

(
r

∂

∂r

)
− 1

r2

∂2

∂φ2
+ 1

r
+ A cos φ

r2

]
ψ↑↓(r, K)

= −κ2ψ↑↓(r, K), (16)

where κ2 = |ε|/2 and the convenient dimensionless SOI con-
stant is introduced,

A = αK

eaB

. (17)

The first two terms on the left-hand side of Eq. (16) are
the kinetic energy with the centrifugal potential, and the third
term is the Coulomb e-e repulsion. We are mostly interested
in the fourth term, which is exactly the SOI produced by the
motion of the electron pair as a whole.

The SOI gives a strongly anisotropic contribution to the
Hamiltonian, which does not commute with the orbital an-
gular momentum. Hence l is no longer a quantum number.
This happens because the rotational symmetry is broken by
the presence of the preferred direction along K. As a result,
the convective bound states acquire a nontrivial angular de-
pendence different from Eq. (8).

Equation (16) can be solved by the separation of variables,

ψ↑↓(r, K) = f↑↓(φ)g(r ), (18)
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FIG. 3. The dependence of λm(A) on A for several values of m.

with the angular part given by

∂2f↑↓
∂φ2

+ (−λ − A cos φ)f↑↓ = 0 (19)

and the radial part, same for ψ↑↓(r, K) and ψ↓↑(r, K), by[
−1

r

∂

∂r

(
r

∂

∂r

)
− λ

r2
+ 1

r

]
g = −κ2g. (20)

The separation parameter λ sets the binding potential magni-
tude. The sign and magnitude of λ reflect the net effect of
the attractive SOI competing with the repulsive centrifugal
potential. Positive values of λ correspond to the attractive
binding potential for the radial motion.

A. Angular dependence

The 2π -periodic solutions of Eq. (19) arise for an infinite
discrete set of values of λ ∈ { λm(A) | m ∈ Z } that are related
to the eigenvalues a2m(q ) and b2m(q ) corresponding to the
Mathieu functions ce2m(z, q ) and se2m(z, q ) [13] via

λm(A) =
{

− 1
4a2m(2A), m = 0, 1, 2 . . . ,

− 1
4b2|m|(2A), m = −1,−2, . . . .

(21)

The integer m is an angular quantum number that supersedes
the orbital quantum number l for the convective states. The
angular wave functions of the convective states are given by

f
(m)
↑↓ (φ) =

{
ce2m

(
φ

2 , 2A
)
, m = 0, 1, 2 . . . ,

se2|m|
(

φ

2 , 2A
)
, m = −1,−2, . . . .

(22)

Figure 3 shows the binding potential magnitude as a func-
tion of A for different quantum states. For a given m, λm(A)
is positive for sufficiently large A, which means that the
SOI of the large enough magnitude overcomes the repulsive
centrifugal barrier to create an attractive potential for the
radial motion.

Note that λ0 > 0 for any positive A. However, because of
the competing Coulomb repulsion, the bound states appear
only for A exceeding some critical value, as determined in the
next subsection. Still for a given A the potential well for the
quantum state with m = 0 is deeper than for m �= 0. Thus the
angular part of the ground-state wave function ψ↑↓ is

f
(0)
↑↓ (φ) = ce0

(
φ

2
, 2A

)
, (23)

FIG. 4. The polar diagram (f (0)
↑↓ (φ), φ) for several values of A.

with the corresponding binding potential magnitude being

λ0(A) = − 1
4a0(2A) . (24)

Figure 4 shows that as the SOI grows, f (0)
↑↓ (φ) evolves from

a constant [14] to a peak near φ = π . The angular part of the
ψ↓↑ is

f
(0)
↓↑ (φ) = ce0

(
φ + π

2
, 2A

)
(25)

with a peak near φ = 0.
Note that f↑↓(φ + π ) = f↓↑(φ) and f↓↑(φ + π ) =

f↑↓(φ). Consequently, the total antisymmetric wave function
of the convective state is given by

�(r, R) = (0, f↑↓(φ),−f↓↑(φ), 0)ᵀg(r )eiK·R. (26)

B. Radial dependence

The attractive −λ/r2 potential in Eq. (20) leads to the fall
to the center [9], unless properly regularized. A number of
regularization techniques was developed [15–17], which are
essentially based on introducing a short-distance cutoff [18].

We follow this approach by noting that in the region of
r < d the electric field of Eq. (12) linearly goes to zero with r ,
suppressing the attraction due to the SOI. In the same region,
the Coulomb e-e interaction potential of Eq. (11) saturates at
a finite positive value of e2/εd, which gets large for small
d. Consequently, a repulsive core is formed at 0 < r < d by a
combined action of the Coulomb repulsion and the centrifugal
potential that reappears in the absence of SOI. On these
grounds we regularize the potential −λ/r2 by imposing a zero
boundary condition for the radial wave function,

g|r=d = 0, (27)

which defines the discrete spectrum of the convective states.
The solution of Eq. (20) is given by the Whittaker func-

tion [13]. Up to the normalization constant, we have

g(r ) = r− 1
2 W− 1

2κ
,i

√
λ(2κr ). (28)

According to the Sturm oscillation theorem [19], the num-
ber of negative energy bound states is equal to the number
of nodes of the zero-energy solution g(r; κ = 0) in (d,∞). It
is interesting that g(r; κ = 0) belongs to the discrete part of
the spectrum. The zero-energy bound state is protected by the
cusp formed by the long-ranged Coulomb tail of the potential
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that approaches zero from the top as r → ∞ [20]. Note that
g(r; κ = 0) can be expressed via the Macdonald function [13]

g(r; κ = 0) = K 2i
√

λ(2
√

r ). (29)

The wave function is normalizable since it behaves like
g(r; κ = 0) ∼ r− 1

4 exp(−2
√

r ) as r → ∞.
Use the boundary condition of Eq. (27) for g(r; κ = 0) to

define the critical magnitudes �n of the binding potential via

xn(2
√

�n) = 2
√

d, (30)

where xn(μ) is the nth zero of the K iμ(x), n = 1, 2, . . . . Then
for a given angular quantum number m, the radial Eq. (20) has
exactly n bound states iff

�n � λm(A) < �n+1. (31)

The states are indexed by a radial quantum number k that takes
a finite set of values, k = 1, . . . , n.

We obtain an analytical expression for the binding energy
εk,m by making a reasonable assumption that d � aB , that is,
d � 1 in normalized units. Then for λ � 1 the 1/r Coulomb
repulsion is negligible compared to the attractive −λ/r2

potential in Eq. (20) in the region of d < r � 1. The wave
function in this region is thus

g(r ) = K i
√

λ(κr ). (32)

The spectrum of the convective states is defined from Eq. (27)
to be

|εk,m| = 2Ry

d2
x2

k (
√

λm(A)). (33)

The ground state corresponds to m = 0, k = 1. An analytic
approximation for xn(μ) is given by Eq. (A7).

C. Numerical results

Here we present the results of the direct numerical solution
of the 2D Schrödinger equation (16) with the smoothed form
of the Coulomb e-e interaction potential and electric field
given by Eqs. (11) and (12).

Figure 5 shows the energies of the three convective states
with different quantum numbers including the kinetic energy
of the center of mass as a function of the parameter A, which

FIG. 5. The system energy levels (solid lines) and the kinetic
energy of the center of mass (dashed line) vs A for d = 0.25aB .

FIG. 6. The ground-state energy (solid line) and the kinetic en-
ergy of the center of mass (dashed line) vs A for d = 0.2aB .

is proportional to both the Rashba SOI parameter and the
center-of-mass momentum. Therefore, the lines in Fig. 5 also
present the energy dispersion of the convective electron pair.
The bound states appear in the spectrum at their respective
critical values of A. Their binding energy grows with A.

Equation (30) leads to slightly larger critical values of A,
with qualitatively the same dependence of E(A) given by
Eq. (33).

The effective mass of the electron pair is severely renor-
malized by the SOI and can even become negative as one
lowers d, as can be seen from Fig. 6.

Figure 7 shows the wave function of the ground state,
calculated numerically. Two surfaces combined in a single fig-
ure are the two spinor components ψ↑↓(r, K) and ψ↓↑(r, K).

FIG. 7. The spinor components of the convective state wave
function for d = 0.25aB and A = 5 as functions of relative coor-
dinates. Two surfaces are moved apart vertically by δ = ±0.02 for
better visual perception. The arrow shows the direction of vector K
(along the y axis).

115137-5



YASHA GINDIKIN AND VLADIMIR A. SABLIKOV PHYSICAL REVIEW B 98, 115137 (2018)

Note the strong dependence of the solution on the angle mea-
sured from the K direction, with peaks in the wave function
shifted to the side off the line of motion. The analytic result of
Eqs. (23)–(28) leads to a similar picture.

V. CONCLUSION

We have proposed a mechanism of electron pairing that
stems from the spin-orbit component of the pair e-e inter-
action. The effective attraction between electrons arises as
a combined effect of the Coulomb field and the motion of
electrons for certain configurations of their spins. This is prin-
cipally different from the common mechanisms of electron
pairing based on the renormalization of the e-e interaction
by many-particle excitations [21] or on the formation of a
negative reduced effective mass of two electrons arising due
to the peculiarities of the band spectrum [22]. The attraction
of electrons stems from the well-known fact that the larger
the electric field creating the SOI, the more strongly the
SOI lowers the energy of electrons. As the distance between
electrons shrinks, the electric field increases and therefore
their energy lowers, which means that the electrons attract
each other.

The fact that the bound-state formation is determined by
the electron momenta and spins leads to the highly unusual
properties of the bound states. There exist two distinct types
of bound states.

The relative bound states depend only on the reciprocal
electron motion. Their binding energy and electronic structure
are unaffected by the motion of the electron pair as a whole.
In 2D systems with in-plane Coulomb fields, the relative states
are formed by electrons with parallel spins.

The bound states of the other type are the convective states.
In contrast to the relative states, they appear exactly because
of the center-of-mass motion, which affects the relative mo-
tion of the electrons, the energy spectrum and the spatial
distribution of electron density. An astonishing property of
these states is the nontrivial dependence of their energy on the
momentum of the pair. As the momentum K of the electron
pair increases, the binding energy of the pair increases too,
and it can become so large that the total energy of the pair
starts to decrease with K . Thus, in some interval of K the
effective mass of the pair can become negative, which leads to
a dramatic consequence for the collective behavior of a many-
electron system. This agrees qualitatively with a possible
instability in a gated one-dimensional system [4].

The existence conditions for the bound states impose rather
serious requirements on the Rashba SOI constant α of the ma-
terial and on the value of d that defines the short-range cutoff
of the binding potential, which are nonetheless attainable in
currently available materials and conditions. Thus, taking α̃ ≈
1 and aB ≈ 100 Å, which is close to the parameters of, e.g.,
Bi2Se3 [23], we obtain the binding energy of the relative state
of the order of several meV for d ≈ 30 Å. The localization
scale and the binding energy depend to a substantial degree
on d. A higher binding energy may be attainable for the states
localized on a smaller spatial scale. However, to investigate
this attractive possibility, a different approach is required,
which we are going to present in a follow-up work.
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APPENDIX

The asymptotic formulas for the zeros xn of the Macdonald
function K iμ(x) (also known as the modified Bessel function
of the second kind) of pure imaginary order are known in the
literature [24] for two limiting cases: μ  1,

xn = 2μ exp

(
−1 − π

(
n − 1

4

)
μ

)
, (A1)

and μ � 1,

xn = 2 exp

(
−πn

μ
− γ

)
, (A2)

with γ the Euler-Mascheroni constant and n = 1, 2, . . . .
Equation (A2) is widely used in the literature devoted to the

1/x2 potential [15,16,18]. However, it is not relevant to our
problem because vanishingly small SOI does not support the
existence of the bound states. We are looking for the approx-
imation that is valid from the intermediate μ ≈ 0.5, . . . , 1 to
large values of μ. Taking into account that in the intermediate
case all xn � 1, we expand the Macdonald function in the
power series near x = 0 [13],

K iμ(x) = π

2 sin(iπμ)

[
(x/2)−iμ

�(1 − iμ)

∞∑
k=0

(x2/4)k

k!(1 − iμ)k

− (x/2)iμ

�(1 + iμ)

∞∑
k=0

(x2/4)k

k!(1 + iμ)k

]
. (A3)

Consequently, the zeros of K iμ(x) are determined from

(x

2

)2iμ

= �(1 + iμ)

�(1 − iμ)

∑∞
k=0

(x2/4)
k

k!(1−iμ)k∑∞
k=0

(x2/4)k

k!(1+iμ)k

= −e2i arg �(iμ) + O(x2). (A4)

FIG. 8. The first zero x1 of K iμ(x ) as a function of μ.
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Taking the logarithm yields

log xn = −πn

μ
+ log 2 + π

2μ
+ 1

μ
arg �(iμ). (A5)

We use the Gosper approximation [25] for the � function to
get

arg �(iμ) ∼ −π

2
− μ + μ log μ + 1

2
arctan(6μ) . (A6)

Finally, we obtain

xn(μ) = 2μ exp

(
−1 − πn

μ
+ 1

2μ
arctan(6μ)

)
. (A7)

For large μ this formula coincides with Eq. (A1). The ac-
curacy of this formula for intermediate values of μ can be
checked by comparison with the exact result and approxima-
tions of Eqs. (A1) and (A2) in Fig. 8.

[1] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-electron Atoms (Springer, Berlin, 1957).

[2] R. Winkler, in Spin-orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems, edited by J. Kühn, T. Müller,
A. Ruckenstein, F. Steiner, J. Trümper, and P. Wölfle,
Springer Tracts in Modern Physics Vol. 191 (Springer,
Berlin/Heidelberg, 2003).

[3] J. R. McLaughlan, E. M. Llewellyn-Samuel, and S. Crampin,
J. Phys.: Condens. Matter 16, 6841 (2004).

[4] Y. Gindikin and V. A. Sablikov, Phys. Rev. B 95, 045138 (2017).
[5] Y. Gindikin, Phys. Status Solidi RRL 11, 1700256 (2017).
[6] Y. Gindikin and V. A. Sablikov, Phys. Status Solidi RRL 12,

1700313 (2018).
[7] Y. Gindikin and V. A. Sablikov, Phys. Status Solidi RRL 12,

1800209 (2018).
[8] M. M. Mahmoodian and A. V. Chaplik, JETP Lett. 107, 564

(2018).
[9] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics,

Vol. 3, Quantum Mechanics (Pergamon, New York, 1958).
[10] X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y.

Ching, Phys. Rev. A 43, 1186 (1991).
[11] W. Zawadzki and T. M. Rusin, J. Phys.: Condens. Matter 23,

143201 (2011).
[12] Note a similarity to the Schrödinger equation with the point-

charge and dipole potentials. The pure dipole potential has quite
a history; see K. Connolly and D. J. Griffiths, Am. J. Phys. 75,
524 (2007), and references therein. The combined potential of

the dipole and the point charge was recently considered in M.
Moumni and M. Falek, J. Math. Phys. 57, 072104 (2016), in the
exact opposite case of attractive Coulomb interaction and weak
dipole moment.

[13] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark,
NIST Handbook of Mathematical Functions (Cambridge Uni-
versity Press, Cambridge, 2010).

[14] Which formally corresponds to l = 0, hence no centrifugal
barrier l2/r2 to overcome.

[15] H. E. Camblong, L. N. Epele, H. Fanchiotti, and C. A. García
Canal, Phys. Rev. Lett. 85, 1590 (2000).

[16] S. R. Beane, P. F. Bedaque, L. Childress, A. Kryjevski, J.
McGuire, and U. van Kolck, Phys. Rev. A 64, 042103 (2001).

[17] D. Bouaziz and M. Bawin, Phys. Rev. A 76, 032112 (2007).
[18] K. S. Gupta and S. G. Rajeev, Phys. Rev. D 48, 5940 (1993).
[19] B. Simon, in Sturm-Liouville Theory (Birkhäuser, Basel, 2005),

pp. 29–43.
[20] J. Daboul and M. M. Nieto, Phys. Lett. A 190, 357 (1994).
[21] M. Y. Kagan, Modern Trends in Superconductivity and Super-

fluidity, Lecture Notes in Physics Vol. 874 (Springer, Berlin,
2013).

[22] V. A. Sablikov, Phys. Rev. B 95, 085417 (2017).
[23] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine,

Nat. Mater. 14, 871 (2015).
[24] E. M. Ferreira and J. Sesma, J. Comput. Appl. Math. 211, 223

(2008).
[25] R. W. Gosper, Proc. Natl. Acad. Sci. (USA) 75, 40 (1978).

115137-7

https://doi.org/10.1088/0953-8984/16/39/017
https://doi.org/10.1088/0953-8984/16/39/017
https://doi.org/10.1088/0953-8984/16/39/017
https://doi.org/10.1088/0953-8984/16/39/017
https://doi.org/10.1103/PhysRevB.95.045138
https://doi.org/10.1103/PhysRevB.95.045138
https://doi.org/10.1103/PhysRevB.95.045138
https://doi.org/10.1103/PhysRevB.95.045138
https://doi.org/10.1002/pssr.201700256
https://doi.org/10.1002/pssr.201700256
https://doi.org/10.1002/pssr.201700256
https://doi.org/10.1002/pssr.201700256
https://doi.org/10.1002/pssr.201700313
https://doi.org/10.1002/pssr.201700313
https://doi.org/10.1002/pssr.201700313
https://doi.org/10.1002/pssr.201700313
https://doi.org/10.1002/pssr.201800209
https://doi.org/10.1002/pssr.201800209
https://doi.org/10.1002/pssr.201800209
https://doi.org/10.1002/pssr.201800209
https://doi.org/10.1134/S0021364018090084
https://doi.org/10.1134/S0021364018090084
https://doi.org/10.1134/S0021364018090084
https://doi.org/10.1134/S0021364018090084
https://doi.org/10.1103/PhysRevA.43.1186
https://doi.org/10.1103/PhysRevA.43.1186
https://doi.org/10.1103/PhysRevA.43.1186
https://doi.org/10.1103/PhysRevA.43.1186
https://doi.org/10.1088/0953-8984/23/14/143201
https://doi.org/10.1088/0953-8984/23/14/143201
https://doi.org/10.1088/0953-8984/23/14/143201
https://doi.org/10.1088/0953-8984/23/14/143201
https://doi.org/10.1119/1.2710485
https://doi.org/10.1119/1.2710485
https://doi.org/10.1119/1.2710485
https://doi.org/10.1119/1.2710485
https://doi.org/10.1063/1.4958864
https://doi.org/10.1063/1.4958864
https://doi.org/10.1063/1.4958864
https://doi.org/10.1063/1.4958864
https://doi.org/10.1103/PhysRevLett.85.1590
https://doi.org/10.1103/PhysRevLett.85.1590
https://doi.org/10.1103/PhysRevLett.85.1590
https://doi.org/10.1103/PhysRevLett.85.1590
https://doi.org/10.1103/PhysRevA.64.042103
https://doi.org/10.1103/PhysRevA.64.042103
https://doi.org/10.1103/PhysRevA.64.042103
https://doi.org/10.1103/PhysRevA.64.042103
https://doi.org/10.1103/PhysRevA.76.032112
https://doi.org/10.1103/PhysRevA.76.032112
https://doi.org/10.1103/PhysRevA.76.032112
https://doi.org/10.1103/PhysRevA.76.032112
https://doi.org/10.1103/PhysRevD.48.5940
https://doi.org/10.1103/PhysRevD.48.5940
https://doi.org/10.1103/PhysRevD.48.5940
https://doi.org/10.1103/PhysRevD.48.5940
https://doi.org/10.1016/0375-9601(94)90714-5
https://doi.org/10.1016/0375-9601(94)90714-5
https://doi.org/10.1016/0375-9601(94)90714-5
https://doi.org/10.1016/0375-9601(94)90714-5
https://doi.org/10.1103/PhysRevB.95.085417
https://doi.org/10.1103/PhysRevB.95.085417
https://doi.org/10.1103/PhysRevB.95.085417
https://doi.org/10.1103/PhysRevB.95.085417
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1016/j.cam.2006.11.014
https://doi.org/10.1016/j.cam.2006.11.014
https://doi.org/10.1016/j.cam.2006.11.014
https://doi.org/10.1016/j.cam.2006.11.014
https://doi.org/10.1073/pnas.75.1.40
https://doi.org/10.1073/pnas.75.1.40
https://doi.org/10.1073/pnas.75.1.40
https://doi.org/10.1073/pnas.75.1.40



