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A two-body problem for electrons in a one-dimensional system is solved here
to show that two-electron bound states can arise as a result of the image-
potential-induced spin–orbit interaction (iSOI). The iSOI contributes an
attractive component to the electron–electron interaction Hamiltonian that
competes with the Coulomb repulsion and overcomes it under certain
conditions. It is found that there exist two distinct types of two-electron
bound states, depending on the type of the motion that forms the iSOI: the
relative motion or the motion of the electron pair as a whole. The binding
energy lies in the meV range for realistic material parameters and is tunable
by the gate potential.
Electron pairing is commonly related to the attractive forces
mediated by the crystal lattice[1] or many-particle excitations.[2] In
the present paper we propose a new electron pairing mechanism
that stems from the electron motion and depends on their
momentum.

Recently we have found that in the materials with the strong
Rashba spin-orbit interaction a spin-dependent component
appears in the pair electron-electron (e–e) interaction, which
radically affects the electron system.[3]

In refs. [3–5] these effects have been studied for the spin–orbit
interaction caused by the potential of image charges (iSOI) that
electrons induce on a metallic gate placed nearby. The main
result is the fact that the spin-dependent component of the e–e
interaction Hamiltonian produced by the iSOI is attractive for a
particular spin orientation locked to momentum. This yields the
dramatic consequences for the ground state and collective
excitations of the many-electron system.

Thus, a one-dimensional (1D) electron system with suffi-
ciently strong iSOI becomes unstable with respect to the
electron-density-fluctuations, giving rise to the avalanche-like
electrons inflow to the fluctuation region.When approaching the
instability threshold, the charge stiffness of the electron system
turns to zero, which reflects the mitigation of the Coulomb
repulsion by the electron attraction owing to the iSOI.[3]

In this paper a two-body problem for electrons with iSOI is
addressed. In contrast to the many-electron system, the two-
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electron problem allows for an exact
solution and can answer the question of
what effects the attracting interaction due
to the iSOI leads to at any amplitude of the
iSOI strength. We demonstrate that the
iSOI component of the e–e interaction
results in the electron pairing. We find that
there exist two distinct types of two-
electron bound states classified by the
nature of the electron motion, owing to
which the iSOI arises.

The relative bound states arise because
of the reciprocal electron motion that
creates an attractive potential for the
relative motion of electrons with opposite
spins. The magnitude of the attraction is set not only by the
Coulomb forces between the electrons, but also by the electric
field of the charged gate. This opens the possibility to tune the
binding energy of the electron pair by changing the gate
potential.

The convective bound states appear as the center-of-mass
motion creates an attractive potential for the pair of electrons
with parallel spins. It is interesting that the attraction arises for
electrons with a definite spin orientation that is locked to the
direction of the center-of-mass momentum. The effective
attraction grows with the center-of-mass momentum and the
spin state of the pair depends on the momentum direction.

The Model: Consider two electrons in a 1D quantum wire of a
diameter d parallel to the metallic gate situated in the y ¼ �a=2
plane. The x axis is directed along the wire as in Figure 1.

A single-particle Hamiltonian is the sum of the kinetic energy
and the Rashba SOI,

H ¼
X2
i¼1

p2xi
2m

þ α

�h
Fpxiσzi ð1Þ

with pxi being the i-th electronmomentum, σzi the Pauli matrix, α

the SOI constant, and ℱ ¼ e=ϵa2 þ 2πqg=ϵ the y-component of

the electric field that comes from the electron’s own image and
the background charge density qg in the gate controlled by an

external voltage.
The e–e interactionHamiltonian has two parts. First, there is a

Coulomb repulsion screened by the image charges. This one is
described by the e–e interaction potential,

U x1 � x2ð Þ ¼ e2

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2 þ d2

q � e2

ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2 þ a2

q ð2Þ
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Figure 1. Two electrons in a quantum wire with image charges induced
on a gate. The arrows show the electric fields acting on each electron from
its own image as well as from the image of a neighboring electron.
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The second part of the e–e interaction Hamiltonian is the SOI
caused by the electric field Eij acting on the i-th electron from the
image of the other, j-th, electron,

HiSOI ¼ α

�h

X
i6¼j

1
2

Ey
ijpxi þ pxiE

y
ij

h i
σzi ð3Þ

The y-component of the field Eij equals

Ey
ij � E xi � xj

� � ¼ ea

ϵ xi � xj
� �

2 þ a2
� �3

2

ð4Þ

We stress that the iSOI is essentially a two-particle interaction,
in contrast to the commonly used one-particle Rashba
Hamiltonian. The presence of the iSOI is a rather general
property of low-dimensional structures since the image charges
are induced not only in nearby conductors, but in a dielectric
environment as well.

The two-electron wave function is a rank 4 spinor,

Ψ x1; x2ð Þ ¼ ψ""; ψ"#; ψ#"; ψ##
� �⊺

. The full Hamiltonian (1)–(3)

is diagonal in the corresponding basis, so the Schrödinger
equation for Ψ x1; x2ð Þ splits into four separate equations for the
spinor components. Prior to writing the equations let us switch
from the coordinates of the individual electrons to the coordinate
of relative motion ξ ¼ x1 � x2 and the center-of-mass coordinate
ζ ¼ x1 þ x2ð Þ=2.

The equations for ψ"# and ψ"" are

� �h2

m
@2
ξ �

�h2

4m
@2
ζ � 2iα ℱþℰ ξð Þð Þ@ξ � iαE0 ξð Þ þU ξð Þ

" #
ψ"# ¼ e"#ψ"#

ð5Þ

and

� �h2

m
@2
ξ �

�h2

4m
@2
ζ � iα ℱþ ℰ ξð Þð Þ@ζ þU ξð Þ

" #
ψ"" ¼ e""ψ"" ð6Þ

The equations for ψ#" and ψ## are obtained from the above
equations by changing the sign of α. The solutions of the system
are to be antisymmetrized with respect to the particle
permutation.

Relative Bound States: In Equation (5) the reciprocal motion
of electrons is separated from the center-of-mass motion. The
wave function can be written as ψ"# ¼ g ζð Þf ξð Þ, where g ζð Þ
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describes the free motion of the center-of-mass,
� �h2

4m @2
ζ g ζð Þ ¼ e"# � e

� �
g ζð Þ, whereas the wave function of the

reciprocal motion f ξð Þ satisfies the equation

� �h2

m
@2
ξ � 2iα ℱþℰ ξð Þð Þ@ξ � iαℰ0 ξð Þ þU ξð Þ

" #
f ξð Þ ¼ ef ξð Þ

ð7Þ
The gauge transformation f ξð Þ ¼ u ξð Þe�iϕ ξð Þ with

ϕ ξð Þ ¼ mα

�h2

Z ξ

0
Fþ E ηð Þð Þdη ð8Þ

kills the first derivative to yield

� �h2

m
u00 þ U ξð Þ �mα2

�h2
ℱþ E ξð Þð Þ2

	 

u ¼ eu ð9Þ

Formally, this is a single-particle Schrödinger equation
describing the motion in the potential profile of

V ξð Þ ¼ U ξð Þ � mα2

�h2
E2 ξð Þ þ 2FE ξð Þ� �

. The spatial profile of the

potential is illustrated in Figure 2, with contributions from the
Coulomb interaction and iSOI shown separately. This is clear
that the Coulomb repulsion is suppressed by the iSOI. Moreover,
the iSOI of a sufficient magnitude leads to the globally attractive
potential V ξð Þ, that is R V ξð Þ dξ < 0. In 1D this suffices for a
bound state to appear in the spectrum.[6] The sufficient condition
for the existence of a bound state is thus

~α2 >
2log a

d

3π
8
a3B
a3 þ

4ϵa3B
ea F

ð10Þ

with Bohr’s radius aB ¼ ϵ�h2=me2 and dimensionless SOI
constant ~α ¼ α=ea2B. The fulfillment of this condition can be
always achieved by increasing the fieldF, that is by applying the
potential to the gate.

In the case of zero gate potential one has F ¼ e=ϵa2, so the
condition (10) becomes

~α2 >
2

4þ 3π
8

a
aB

� �3

log
a
d

ð11Þ

A numerical estimate of this condition for the system based

on a Bi2Se3, for which α � 1300 e Å2,[7] aB � 52 Å and hence

~α � 0:47, gives the requirement of a � 40 Å, which can be
attained in modern nanostructures.

The binding energy is given by[8]

ej j ¼ m

4�h2

Z 1

�1
V ξð Þdξ

� �2

¼ 1
2
Ry � ~α2

3π
8
a3B
a3

þ4F
a3B
ea

� �
� 2 log

a
d

	 
2
ð12Þ

where Ry ¼ �h2=2ma2B is the Rydberg constant in the material.
Let us estimate the binding energy for the system based on
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Figure 2. The effective potential profile V ξð Þ in the Equation (9) of the
relative motion and the contributions from the Coulomb e–e interaction
and iSOI. The distance is normalized to Bohr’s radius, the potential to the
Rydberg constant in the material.
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Bi2Se3, this time assuming that the gate is biased. For
reasonable values of the electric field F � 3 � 105 V/cm, the

distance to the gate a � 50 Å and the wire diameter d � 10 Å, we
get ej j of the order of 10meV.

Since the potential profile V ξð Þ is symmetric with respect
to ξ ¼ 0, the ground state is described by an even solution
u ξð Þ ¼ u �ξð Þ of Equation (9). In other words, u ξð Þ is invariant
under the permutation of electrons ξ ! �ξð Þ. Equation (8)
shows that ϕ ξð Þ is an odd function of ξ. Whence the
antisymmetric two-electron wave function equals

Ψ x1; x2ð Þ ¼ 0; e�iϕ ξð Þ; � eiϕ ξð Þ; 0
� �⊺

u ξð Þg ζð Þ ð13Þ

The wave function of the relative bound state is seen to be of a
mixed singlet-triplet type.

Convective Bound States: The second type of the bound
states, which we call convective, appears as the solution
of Equation (6). Due to the translational invariance
ψ"" ¼ exp iKζð Þf K ξð Þ, with the wave function of the relative

motion f K ξð Þ defined by

� �h2

m
@2
ξ þ U ξð Þ þ αKE ξð Þð Þ

" #
f K ξð Þ ¼ e"" � �h2K2

4m
� αKF

 !
f K ξð Þ

ð14Þ

The most important feature of the convective bound states is
that the binding potential V ξð Þ ¼ U ξð Þ þ αKE ξð Þ depends on the
center-of-mass momentum K, the sign and magnitude of which
controls the existence or absence of the bound states as well as
the binding energy. Large negative K supports the existence of
the convective bound states ψ"", while large positive K supports

ψ##. Thus the spin orientation of this purely triplet state is

locked to the direction of K. In contrast to the relative bound
states, the field F does not affect the potential profile and the
binding energy, but only shifts the bottom of the conduction
band.
Phys. Status Solidi RRL 2018, 12, 1800209 1800209 (
Let us find the critical value of K that allows for the
appearance of a bound state. Note that the antisymmetric
property of ψ"" requires that f ξð Þ be an odd function of ξ.
Consequently, the Schrödinger equation for the zero-energy
state can be solved on the half-axis,

�@2
ξ f þ V ξð Þf ¼ 0; ξ 2 0;1ð Þ

f ξ¼0 ¼ f ξ¼1 ¼ 0






(
ð15Þ

The transformation r ¼ log ξ, u rð Þ ¼ f erð Þe�r
2 and W rð Þ ¼ e2rV erð Þ

maps Equation (15) onto

�@2
r uþW rð Þu ¼ � 1

4
u; r 2 �1;1ð Þ

u r¼�1 ¼ 0j

8<
: ð16Þ

Estimating the binding energy as ej j ¼ 1
4

R
W rð Þdr� �2

, we
arrive at the critical condition

Z 1

�1
W rð Þdr ¼ � 1 ð17Þ

In terms of the original potential the criterion for the existence
of the bound state takes the form

Z 1

0
ξV ξð Þdξ � �1 ð18Þ

which is similar to the Bargmann limit on the number of
bound states possessed by a central potential in three
dimensions.[9] Finally, we obtain the desired condition for K,

~αK � 1þ a� dð Þa ð19Þ

with all variables normalized to Bohr’s radius. Making an
estimate for a system based on Bi2Se3 with a ¼ 30 Å and
d ¼ 10 Å, we find that the convective bound state appears for
K � 107 cm�1.

Conclusion and Outlook: We show that the image-potential-
induced SOI gives an attractive contribution to the e–e
interaction Hamiltonian that can overcome the Coulomb e–e
repulsion under certain conditions. As a result, two electrons
form bound states despite the Coulomb repulsion between
them. The bound states can be of two types, depending on the
nature of the motion due to which the spin-orbit interaction
arises: the relative motion or the motion of the electron pair as
a whole. In both cases the distance between the wire and the
gate should be sufficiently small for the bound state to appear.
The formation of the relative bound states is strongly
facilitated by applying a gate voltage which allows one to
tune their binding energy. In contrast, for the convective states
it is important that the center-of-mass momentum is large
enough, therefore they can be controlled by the current. The
convective states have a purely triplet spin structure, whereas
the relative states are formed by electrons with opposite spins.
For realistic material parameters the binding energy can be in
the meV range.
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In the present paper we report the new mechanism of the
electron pairing focusing on a two-body problem. Of course,
there appears a more sophisticated and intriguing question
of how the pairing manifests itself in a many-electron
system. The problem is complicated since besides the electron
pairing in a many-electron system there appears another
strong effect due to the iSOI, namely, an instability of a
homogeneous electron system with respect to the density
fluctuations.[3] The relative role of both effects and their
interplay are a challenging problem of further studies.
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