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Abstract. The main problem in the development of acousto-electronic gas sensors is the 

search of materials which are sensitive to the presence of different gases. For this purpose in this 

paper we suggest the use of piezoelectric quartz resonators coated by the mycelium films of 

mushroom Lentinula edodes strain F-249 which were cultivated in a synthetic medium; the extract 

of mycelium was deposited on the surface of the resonator. Measurement of the frequency 

dependence of the complex electric impedance of the resonator allowed us to evaluate the density, 

elastic constants and viscosity of the films under test. The influence of different gases, such as 

ammonia, formaldehyde, ethylacetate and volatile liquids: acetone, acetic acid, chloroform on the 

physical properties of the extracts of mushroom Lentinula edodes mycelium has been investigated. 

Results have shown that this material, prepared according to different technological procedures, is 

suitable as a sensitive layer for the detection of ammonia, formaldehyde and ethylacetate.  

 

Keywords: mycelium films, Lentinula edodes, quartz resonator, electric impedance, 

equivalent circuit, acoustic gas sensor 

 

1. Introduction 

Currently, due to the increasing role of ecological and biological safety and the need to prevent or 

minimize the consequences of terrorist attacks and industrial accidents the further development and 

improvement of existing chemical sensors remain urgent. These sensors may be based on various 

different physical principles, including acousto-electronics. During the last decade a great number 

of different methods and approaches for the development of acoustical chemical sensors for 

monitoring gaseous and liquid environments have been proposed [1, 2]. Presently there exists a 
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large amount of papers suggesting the use, as chemical sensors, of piezoelectric resonators [3] and 

surface [4] or plate [5] acoustic wave delay lines. Most of the acoustic chemical sensors are based 

on use of specific films applied to the surface of the acoustic propagation medium, whose physical 

properties are affected by exposure to specific chemical analites. These, in turn, affect the 

characteristics of the acoustic wave specifically phase velocity and/or damping, whose changes give 

information about the presence of a chemical agent in the environment. Both organic and inorganic 

materials have been exploited as sensitive films, including ZnO, TeO2, SnO2, and TiO2 [6, 7], 

polymeric materials [8, 9], films of polypyrrole [10], carbon nanotubes [11], graphene –like 

materials [12, 13] and various nanoparticles [14]. Nevertheless the problem of searching for gas 

sensitive materials showing high performances as to sensitivity and selectivity to given gases, 

together with reversible and repeatable operation is still a target of prime importance.  

One of the opportunities yet poorly studied is the use of extracts from higher fungi. Earlier it 

was experimentally stated that several mushrooms extracts exhibited high sorption sensitivity to the 

phenol and water vapor. As a result of this study, on the basis of extracts from Pleurotus ostreatus 

(oyster mushroom), the modifier for electrodes of the resonator-type piezo-sensor was developed, 

which was characterized by a high sensitivity to phenol vapor in gaseous phase, rapid response, and 

applicable determination error [15]. However, a research on the sorption sensitivity of extracts 

obtained from mushrooms at different developmental steps was not performed as yet; furthermore, 

the sorption sensitivity of mushroom mycelia to other volatile liquids and gases was not explored so 

far. Unexplored in this respect are the mycelial extracts of other higher fungi. The present work 

deals with studying the feasibility of implementing films obtained by solvent volatilization from the 

mushroom mycelial extracts, as a sensitive coating for acoustoelectronic sensors.  

In order to evaluate the possibility of using the mycelium films of higher fungi as a gas 

sensitive membrane, at first the methods of their preparation and the evaluation of their mechanical 

properties were at first carried out. Then techniques for analyzing the changes produced on these 

properties by the interaction with the gas where developed, as well as the most suitable conditions 

for the production of films showing a fast and reversible behavior after exposure to the chemical 

agent. 

 

2. Experimental 

2.1. Preparation of thin mycelial mats 

To study the characteristics of the film experimentally, samples of the basidiomycete 

Lentinula edodes (shiitake mushroom) mycelium were first got. We used a culture of Lentinula 

edodes (strain F-249) obtained from the collection of higher basidiomycetes of the Department of 
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Mycology and Algology, Moscow State University. The fungal culture was maintained on wort 

agar at 4°С. As an inoculum, a 14-day culture of Lentinula edodes grown at 26°С on beer-wort agar 

(4° Brix) was used. From the resulting mycelium, using a metal punch with a diameter of 5 mm 

under sterile conditions, we cut-out blocks, and inoculated liquid nutrient media at a rate of two 

blocks for 20 ml of medium. The submerged mycelium of the mushroom was grown in a liquid 

synthetic glucose-asparagine medium (9 g/l of D-glucose and 1.5 g/l of L-asparagine). The 

compounds of indolic nature (indolyl-3-acetic acid (IAA) or tryptophan) were added as solutions in 

ethanol-H2O (1:1, v/v) mixtures into the autoclaved nutrient media immediately before seeding 

under sterile conditions. The concentrations of indolic compounds in the culture medium were 0.2, 

0.5, 1.0, 5.0, 10, and 100 mg/l. Our work [16] related to the effects of IAA and tryptophan, along 

with other indolics, on the submerged mushroom culture argued in favor of choosing these indolic 

additives. The extraction of shiitake mycelium was performed according to three different 

procedures, using: 1) distilled water; 2) 96% (v/v) aqueous ethanol; 3) 50% (v/v) aqueous ethanol. 

As a result, the samples obtained were a kind of suspension consisting of the mycelial biomass and 

the extracting material. 

2.2. The composite resonator loaded by the film under study 

Experiments were carried out exploiting a standard thickness shear resonator (AT –cut quartz) 

with longitudinal electric field and a resonant frequency of ~3 MHz. The diameter of the electrodes 

was 6 mm and the thickness of the quartz plate 0.5 mm. The resonator was mounted on a 

commercial holder ensuring, at the same time, reliable electric contacts together with the required 

mechanical strength (see Fig.1 a and b). The solution of the mycelium extract with a volume of 4 µl 

with the help of a measuring pipette was deposited on one of the resonator electrodes. Such amount 

of solution allowed to cover the electrode completely without any spread out of the metallized area. 

The resonator was then kept in air for 24 h so to dry the solution and obtain the mycelium film. In 

this way thin, ≈ 10 µm thick, transparent films of mycelium extract were obtained.  

2.3. Test chamber  

The sorption sensitivity tests of mycelium films, under laboratory conditions, were performed 

into a special chamber, specifically designed to provide calibrated gas mixtures as shown in Fig. 

1,c. The chamber, including the retort for volatile liquid, consisted of a glass cylinder hermetically 

closed by a glass cover with a teflon sealing. The resonator under test was set inside the chamber 

with the contact rods hermetically sealed trough the chamber walls. Experiments were carried out 

by filling the retort with the volatile liquid to test and closing the cylinder by the glass cover; in a 

few minutes the liquid was completely evaporated, filling up the chamber. A special attention was 

paid to the electrical quality of the contacts between the resonator and the measuring set up. 
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2.4. Measurement of physical characteristics of the films 

At first the frequency dependency of the real (R) and imaginary (X) parts of the complex 

electric impedance for the bare quartz resonator was measured by means of a precision LCR meter 

(HP 4285A, Agilent Technologies, Santa Clara, CA). The Mason’s equivalent circuit of the 

unloaded resonator, that has been exploited to calculate the theoretical frequency dependence of the 

impedance is shown in Fig. 2a [17, 18]. The circuit includes the contribution of both the quartz plate 

and electrodes, whose thickness is comparable to that of the films to be analyzed. The mechanical 

impedances Z1, Z2 , Z1m and Z2m  in the equivalent circuit of Fig.2 may be expressed as: 
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Kirchhoff’s equations have been applied to the equivalent circuit of Fig. 2a to calculate the 

frequency dependency of the real and imaginary parts of the resonator impedance for the specific 

material constants considered [18]. These constants where allowed to vary within a limited range 

and the least-squares method exploited to find a set of material constants providing the closer 

agreement between the theoretical and experimental impedance.  

After mycelium film coating and drying, the equivalent circuit describing the resonating 

structure is that of Fig. 2b. The acoustic impedances Z1f and Z2f of the mycelium film are:  
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where 66

f  takes into account of the viscosity in the film. By applying once again the Kirchhoff’s 

equations on the equivalent circuit of Fig. 2b, and following the procedure previously outlined, the 

theoretical dependency of the complex impedance of the loaded resonator was calculated, using the 

set of material constants of both quartz and electrodes, as evaluated in the previous step. 

Comparison of the theoretical and experimental data of the frequency dependence of the complex 

electric impedance, with use of the least-squares method, allowed us to evaluate the thickness of the 

mycelium film together with the complete set of material constants providing a successful match 

between theoretical and experimental data. Curves 1 in Fig. 3, show the frequency dependency of 

the real (a) and imaginary (b) parts of the impedance, for the resonator loaded by the electrodes and 

sensitive film, which better describe the experimental points. 

The same procedure was used to evaluate the changes in thickness and material constants of 

the film, upon exposure to concentrations of different vapors and gases as well upon restoring in air. 

For each test run a first set of impedance data was taken; after that the volatile liquid was introduced 

into the chamber and a period of time of 10 min was waited for, so to allow all the liquid to be 

evaporated. At this point the second set of data was taken, repeated after 20 min before removing 

the resonator from the test chamber, and again in air after 10 and 30 min. At the end of each run the 

surface of the resonator was carefully cleaned and the complete restoring of the starting conditions 
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checked. All the measurements have been carried out at a constant temperature of 26ºC. The 

changes in the material constants and thickness of the mycelium film in the presence of the different 

gaseous environments allowed us to estimate the sorption properties of the film.  

Figure 3 shows, as an example, the frequency dependency of the complex electrical 

impedance of the resonator loaded by mycelium film before gas exposure (curve 1), after 10 and 20 

min exposure to ammonia gas (curves 2 and 3), and finally after 10 and 30 min recovery in air 

(curves 4 and 5). The film was tested upon exposure to the following gases and vapors of volatile 

liquids: h-hexane, formaldehyde, acetone, acetic acid, ethyl-acetate, chloroform, hydrochloric acid, 

and ammonia.  

3. Results and discussion 

The values of the shear elastic constant, viscosity, mass density, and thickness of the 

mycelium films at all the stages of the investigation have been evaluated; it has been shown how the 

presence of vapors of volatile liquids leads to a decrease in the resonant frequency as well as an 

increase in the maximum value of the real part and a drop of the imaginary part of electrical 

impedance. Moreover it was experimentally demonstrated how the exploitation of specific 

technological methods of production of the film can provide resonators for which the resonant 

frequency and Q-factor are completely restored after a complete cycle of gas/vapor 

adsorption/desorption. The results so obtained show how some of the mycelium films 

analyzed are suitable for the development of ammonia, formaldehyde, and ethyl 

acetate sensors. 

3.1. Sensitivity to ammonia 

The film prepared from the Lentinula edodes F-249 monoculture mycelium grown in the 

synthetic medium fortified with 0.2 mg/l IAA for 14 days, and then extracted with ethanol (96%,  

v/v) can be used for ammonia sensing, as shown in Fig. 4а. Upon exposure to ammonia, the mass of 

the mycelium film increases sharply in about 10 min. By replacing the ammonia vapor with air, the 

film mass starts to revert to its initial value in about 10 min, and in the next 20 min the initial mass 

value is almost completely reached, as seen in Fig. 4 а. The film exposed to ammonia exhibited not 

only changes in the mass, but in the shear elastic modulus 
( )

66

fc  as well (Fig.4b) A decrease in 

( )

66

fc was observed from 0.197
.
10

8
 to 0.106

.
10

8
 Pa after 10 m exposure to ammonia, being 

practically constant during the next 20 min.  Upon exposure to pure air, the value of 0.211
.
10

8
 Pa 

was recovered during the first 10 min, then reaching the value of 0.204
.
10

8
 Pa after the next 20 min 

of exposure to air. On the basis of this result, one could conclude that the creation of a sensor 

coating sensitive to ammonia should implement the shiitake mycelium cultivation for 14 days in the 
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liquid nutrient medium fortified with 0.2 mg/l of indolyl-3-acetic acid, and the ethanolic (96%,  v/v) 

extraction of the mycelium so obtained. Further tests performed on the film have shown how it is 

not suitable to detect other vapors, such as: n-hexane, acetone, acetic acid, ethylacetate, chloroform, 

hydrochloric acid and formaldehyde. 

3.2. Sensitivity to formaldehyde 

Formaldehyde concentrations could be detected with the film obtained on the basis of the 

Lentinula edodes F-249 monoculture mycelium grown in the synthetic nutrient medium fortified 

with tryptamine at the concentration of 0.1 g/l for 14 days, and then extracted by the ethanol-H2O 

(1:1, v/v) mixture. Exposure to gaseous formaldehyde gave rise to sharp changes in the values of 

both viscosity 
( )

66

f  and elastic modulus 
( )

66

fc  of the film, as shown in Fig. 5 a and b, respectively. 

The interaction was shown to be reversible and after replacing formaldehyde with air, the initial 

values were restored. Analysis showed that, when placed in gaseous formaldehyde, the film exhibit 

an increase in the viscosity coefficient as high as more than 20 times, and a recovery time of about 

30 min after the end of the exposure (Fig. 5 a). As to the elastic modulus (Fig. 5b), a decrease of 4 

times was observed after 30 min exposure to gaseous formaldehyde and a complete recovery after 

10 min exposure to pure air. 

The reversibility of the film's properties, in the case of formaldehyde, was likely related to 

the film swelling in the presence of this gas, capable of escaping from the film after the end of the 

exposure. Biochemical reasons for such film behavior encourage further chemical studies.  

Formaldehyde could also be detected using the films obtained on the basis of Lentinula 

edodes F-249 mycelium cultured in the synthetic nutrient medium fortified with indolyl-3-

acetamide (0.1 g/l) for 14 days, and then extracted by the aqueous ethanol (50%, v/v). The viscosity 

coefficient and elastic module values of these films behave analogously to the parameters of 

mycelium grown in the presence of tryptamine additive (Fig. 5 c, d). 

The analysis performed revealed again that the films described in this section were not 

adequate to detect the other vapors under test: n-hexane, acetone, ethylacetate, acetic acid, 

chloroform, hydrochloric acid and ammonia. 

3.3. Sensitivity to ethylacetate 

To detect the presence of ethylacetate, films obtained on the basis of the Lentinula edodes F-

249 monoculture mycelium grown in the synthetic nutrient medium fortified with indolyl-3-

acetamide at the concentration of 0.1 g/l for 14 days, and then extracted by the ethanol-H2O (1:1, 

v/v) mixture, could be implemented. In this case the reversible change in the film's mass f  (Fig. 

6a) and viscosity coefficient 
( )

66

f  (Fig. 6b) values was observed. It is noteworthy that the value of 

the viscosity coefficient appeared to be 7 times greater after exposure of the film to ethylacetate 
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vaporous for 30 min (Fig. 6 b). After removing ethylacetate, the viscosity  reached its initial value 

in 30 min. Regarding the changes in the film's mass, it was found that this value increased in 10 min 

after ethylacetate exposure, and decreased to the initial value in 30 min after exposure end. 

Therefore the behavior of these films was analogous to that of the mycelium film grown in the 

presence of tryptamine additive (Fig. 5 c, d). 

On considering the behavior of both the viscosity and elastic modulus under the effect of 

ethylacetate, it could be noted that it was analogous to that observed in the case of formaldehyde 

exposure. Obviously, ethylacetate vaporous also was capable of causing the film swelling. Thus, the 

different carbonylic compounds in respect to mycelial-extract-based film prepared with Lentinula 

edodes F-249 culture, essentially resembled each other in their effects. 

Alike the previous cases, analysis revealed that this film was also inappropriate to detect 

other gases and/or vapors like n-hexane, formaldehyde, acetone, acetic acid, chloroform, 

hydrochloric acid, and ammonia. 

4. Conclusion 

The analysis carried out in the present work has shown how mycelium films may be 

successfully used as a sensitive layer for electro-acoustic chemical sensor applications, suitable to 

detect the presence of gases and vapors in environment, detrimental to the human health. This is 

connected with the fact that mycelium films are very prospective novel gas sensitive material, 

whose properties are recovered after end of the gas or vapor action. It has been found that for 

ammonia sensor, the film prepared from the Lentinula edodes F-249 monoculture mycelium grown 

in the synthetic medium fortified with 0.2 mg/l IAA for 14 days, and then extracted with ethanol 

may be used. As for formaldehyde, its presence can be detected with the aid of the film obtained on 

the basis of the Lentinula edodes F-249 monoculture mycelium grown in the synthetic nutrient 

medium fortified with tryptamine at the concentration of 10
1

 g/l for 14 days, and then extracted by 

the ethanol-H2O (1:1, v/v) mixture or with the aid of the films obtained on the basis of Lentinula 

edodes F-249 mycelium cultured in the synthetic nutrient medium fortified with indolyl-3-

acetamide (0.1 g/l) for 14 days, and then extracted by the aqueous ethanol (50%, v/v). To discover 

the presence of ethylacetate, the films obtained on the basis of the Lentinula edodes F-249 

monoculture mycelium grown in the synthetic nutrient medium fortified with indolyl-3-acetamide 

at the concentration of 0.1 g/l for 14 days, and then extracted by the ethanol-H2O (1:1, v/v) mixture, 

may be implemented. The results so obtained show the possibility to develop multisensory 

analyzers of gases or vapors mixtures on the mycelium films basis [20], where the composition of 

the mixture can be evaluated by the analyzing the set of changes in the material data density, elastic 

constant and viscosity coefficient. 
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Figure captions 

Fig.1 – Experimental setup. Front (a) and top (b) view of the resonator coated with the mycelium 

film. Test chamber (c). 

Fig.2 – Mason’s equivalent circuits for the unloaded resonator (a) and for the resonator loaded with 

the mycelium film (b). 

Fig.3 - Frequency dependency of the real and imaginary parts of the electrical impedance for the 

resonator loaded by mycelium film. Before gas exposure (curve 1), after 10 and 30 m after gas 

exposure (curves 2 and 3), after 10 and 30 m recovery in air (curves 4 and 5). The data are referred 

to ammonia gas. 

Fig.4. Time dependency of the relative change in mass (a) and absolute change in the elastic 

modulus ( )

66

fc  (b) of the mycelial film produced by ammonia. Lentinula edodes F-249 mycelium, 

14-days-aged, synthetic nutrient medium fortified with indolyl-3-acetic acid, 0.2 mg/l, extracting 

agent ethanol (96%, v/v). 

Fig.5. Time dependency of the absolute changes in the viscosity coefficient (a, c) and the elastic 

module (b, d) of mycelial film under study caused by formaldehyde. Lentinula edodes F-249 

mycelium, 14-days-aged. Extracting agent is aqueous ethanol (50%, v/v). Synthetic nutrient 

medium fortified with: tryptamine, 0.1 g/l (a, b), indolyl-3-acetamide, 0.1 g/l (c, d) 

Fig.6. Time dependencies of the relative change in mass (a) and the absolute change in the viscosity 

coefficient (b) of mycelial film under study caused by ethylacetate. Lentinula edodes F-249 

mycelium, 14-days-aged, synthetic nutrient medium fortified with indolyl-3-acetamide, 0.1 g/l. 

Extracting agent is aqueous ethanol (50%, v/v). 
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