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Abstract. A method of analysis and visualization of electroencephalo-
grams (EEG) based on wave trains is developed. In this paper, we use
the “wave train” term to denote a signal localized in time, frequency,
and space. The wave train is a typical pattern in a background EEG and
detecting/analyzing such signals gives useful information about the brain
activity. Alpha spindles, beta spindles, and sleep spindles are the best
known examples of the wave trains in EEG. The preliminary results of
the research give evidence that EEG analysis and visualization method
based on the wave trains is useful for looking for group statistical regu-
larities in early stages of Parkinson’s disease and searching EEG features
that are prospective for early stages of Parkinson’s disease diagnostics.
The novelty of this work is in developing a new method to search parame-
ters of wave trains useful for evaluating the group statistical regularities
in EEG data.

1 Introduction

The method of analysis of electroencephalograms (EEG) based on wave trains
that was described in [1] was extended and visualization of the data was added.
In physics, a wave train (or a wave packet) is a short “burst” or “envelope”
of localized wave action that travels as a unit. We use the “wave train” term
to denote a signal localized in time, frequency, and space. The wave train is
a typical pattern in a background EEG and detecting/analyzing such signals
gives useful information about the brain electrical activity. Alpha spindles, beta
spindles, and sleep spindles are the best known examples of the wave trains in
EEG. Several methods based on Fourier spectra, wavelets, autoregressive models,
adaptive filtering, etc. have been developed for detecting and analyzing these
EEG patterns (see surveys in [2,3]).

The idea of the new method of EEG analysis consists of that the wave trains
in a wide frequency band from 2 Hz to 30 Hz are detected and analyzed using
ROC curves. The wave trains are detected as local maxima in a wavelet spec-
trogram of EEG record. Various attributes of these wave trains are computed.
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Then visualization and statistical analysis on the base of these attributes are
implemented. In the paper [1], it was demonstrated that the investigation of
wave train attributes reveals the new statistically significant regularities in a
group of de novo Parkinson’s disease patients. Namely, the Mann-Whitney sta-
tistical test indicates a significant decrease of the quantity of the wave trains
in the C3 and C4 electrodes in the beta frequency range. In this paper, the
problem of searching such wave train features that are appropriate for recogni-
tion/diagnosis of early stages of Parkinson’s disease on the base of EEG data
is considered. Thus, the main difference between this paper and the previous
work [1] is in that earlier we have analyzed the wave train features in standard
theta, alpha, beta, and gamma frequency ranges and in this paper we also deter-
mine frequency ranges that are prospective for the recognition/diagnosis using
ROC curves.

The idea of the wave trains in EEG is described in Sect. 2. In the Sect. 3, the
experimental setting used for the verification of the wave train analysis method
is considered. The data mining method is introduced in Sect. 4. Examples of
data visualization are considered in Sect. 5.

2 The Idea of the Wave Trains in EEG

Let M be a local maximum in a wavelet spectrogram (see Fig. 1). We estimate
the full width at half maximum (FWHM) of M in the time plane FWHMTIME

and in the frequency plane FWHMFREQUENCY . Then we check whether there
are no values in the rectangle area

FWHMTIME × FWHMFREQUENCY

Fig. 1. An example of a spectrogram of a wave train in a time-frequency domain. The
diagram on the left shows the spectrogram of the signal in the time plane. The abscissa
indicates a time and the ordinate indicates a power. The diagram on the right shows
the spectrogram of the signal in the frequency plane. The abscissa indicates a frequency
and the ordinate indicates a power.
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Fig. 2. Time and frequency bounds of the M wave train in the wavelet spectrogram.
The abscissa indicates the time and the ordinate indicates the frequency.

that are bigger than the M value (see Fig. 2). We consider M as a case of a wave
train if FWHMTIME of M is greater or equal to the TD threshold (see Fig. 1).
The TD threshold is a function of the central frequency f of the maximum M :

FWHMTIME ≥ TD = NP /f,

where NP is a constant given by an expert. In this paper, we apply the value:
NP = 2.

3 The Experimental Setting

In the paper, the analysis and visualization method is considered by an example
of real data acquired in a neurophysiological examination. Let us consider a set
of wave trains detected in a group of de novo Parkinson’s disease patients and a
healthy volunteers group (see Fig. 3). The group of patients includes 17 patients
with right-hand tremor and 11 patients with left-hand tremor in the first stage of
Parkinson’s disease without Parkinson’s disease treatment. The group of healthy
volunteers includes 15 people.

The ages of patients were from 38 to 71 years old; the mean age was 60 years
old. The ages of healthy volunteers were from 48 to 81 years old; the mean age
was 58 years old. No statistically significant differences between the patients’
ages and the volunteers’ ages were detected. The amount of male patients was
11; the amount of female ones was 17. The amount of male healthy volunteers
was 5; the amount of female ones was 10. The size of the groups is typical for
a neurophysiological examination. It is difficult to collect more patients without
any treatment in the early stage of Parkinson’s disease.
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Fig. 3. The set of wave trains detected in the group of de novo Parkinson’s disease and
the healthy volunteers group. The abscissa indicates frequencies of the wave trains. The
ordinate indicates squared amplitudes of the wave trains in a logarithmic scale. The
applicate indicates durations of the wave trains. The patients are indicated by dark red
diamonds and the healthy volunteers are indicated by light circles. The patients with
right-hand tremor, background EEG, channel C4. (Color figure online)

The patients were diagnosed according to the standard Hoehn and Yahr
scale. All patients and volunteers were right-handed. A standard 10× 20 EEG
acquisition schema was used. A background EEG was recorded in standard con-
dition. Examined person sat in an armchair relaxing with arms disposing on the
armrests and fingers dangling freely from the ends of armrests. Besides, EEG
was recorded in a non-standard condition [4]. Namely, a subject was instructed
to keep a special pose with the muscle tension that provokes a tremor: the arms
were placed on armrests of the chair; the palms were straightened, placed in a
vertical plane, and stretched a bit; the feet were stretched a bit and touched
the floor by the heels only. The eyes were closed during the recordings. A 41-
channel digital EEG system Neuron-Spectrum-5 (Neurosoft Ltd.) was used for
the data acquisition. The sampling rate was 500 Hz. The 0.5 Hz high-pass filter
and the 50 Hz supply-line filter were used. Three EEG records were acquired
for every subject with interruptions for a rest and a relaxation. The duration of
every record was about 2 min. Then the best of three records was selected that
contains a minimal number of artifacts. The record was analyzed as is, without
selection of areas in the signal.

Special software was developed for analyzing the data. The analysis includes
the following EEG pre-processing operations:

1. The Huber’s X84 method [5] for outlier rejection was used for removing EEG
artifacts.

2. A set of notch filters was applied for removing a power-line noise at 50, 100,
150, and 200 Hz.
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3. The eight order 2–240 Hz band pass Butterworth filter was applied. Signals
were filtered in the forward and reverse directions to eliminate a phase dis-
tortion.

4. Signals were decimated with the decimation factor 4.

The spectrograms were created using the complex Morlet wavelet:

Ψ(x) =
1√
πFb

exp (2iπFcx) exp

(
−x2

Fb

)

In this paper, Fb equals 1 and Fc equals 1. The frequency step in the spectrograms
equals 0.1 Hz.

In this paper, the C3 and C4 electrodes are considered only, because these
electrodes approximately correspond to the motor cortex areas and are situated
in the scalp area that produces a minimal number of muscle artifacts.

4 The Data Mining Method

Let MinFreq, MaxFreq are frequency bounds of 3D area S (a parallelepiped S)
in the space of the wave trains. Let MinPower, MaxPower are power bounds
of the area S; MinDurat, MaxDurat are duration bounds of the area S; and
MinBandwidth, MaxBandwidth are bandwidth bounds of the area S. One can
calculate a number of wave trains per second located in the area S in every indi-
vidual patient and healthy volunteer and create histograms of the quantity of the
wave trains per second (see an example in Fig. 4). A statistical difference between
the diagrams may indicate that the area S contains wave trains that are typical
for Parkinson’s disease, but not for the control group, or vice versa. A second
interesting issue is whether one can specify a threshold (a limit of the number of
the wave trains in the area S) that separates adequately the histograms, because
the presence of such threshold means that the quantity of the wave trains in the
area S may be used for the clinical diagnosis of Parkinson’s disease. For instance,
there is a strong statistical difference between the histograms in the Fig. 4 (the
Mann-Whitney test, p < 0.009). The diagram demonstrates that a typical num-
ber of the wave trains in the control group is about 0.13 per second in the given
frequency band. At the same time, a typical number of the wave trains in the
patients is about 0.06.

Let us consider a threshold Q of the wave trains quantity in the histograms.
Let us utilize this threshold as an indicator of Parkinson’s disease, that is, a
quantity of the wave trains per second greater than Q in a person N in the given
area S will indicate that the person N is probably ill. Thus, the True Positive
Rate (TPR) indicates the number of the patients that were diagnosed properly
using the threshold Q; and the False Positive Rate (FPR) indicates the number
of the controls that were mistakenly diagnosed as Parkinson’s patients. A ROC
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Fig. 4. On the left: histograms of the quantity of the wave trains per second in the
patients and the control group. Left hand tremor patients, channel C3. The wave trains
are considered in a parallelepiped S bounded by the following limits: a frequency range
is 10–12 Hz, a power range is 1–500 µV2/Hz, the duration range is 2–4 periods. The
patient histogram is indicated by the dark magenta color; and the control histogram is
indicated by the light cyan color. On the right: a ROC curve based on the histograms.
The abscissa indicates the False Positive Rate. The ordinate indicates the True Positive
Rate. The area under the ROC curve (AUC) indicates whether the area S is applicable
for separation of the patients and the control group. AUC < 0.5 indicates that the wave
trains quantity is greater in the control group than in the patients. (Color figure online)

curve can be created based on the histograms of the wave trains quantity, that is,
a diagram that indicates a relation between the TPR and FPR for various values
Q (see Fig. 4). The area under the ROC curve (AUC) is a standard indicator of
the quality of the ROC curve; big values of AUC (that are much more than 0.5)
and small values of AUC (that are much less than 0.5) indicate that the given
area S may be prospective for making clinical diagnosis.

Thus, in mathematical terms, the goal of our investigation is searching such
areas in the multidimensional space of the wave trains, where AUC differs suf-
ficiently from 0.5 and is approached to 1 or to 0. AUC > 0.5 indicates that the
wave trains quantity is greater in the patients than in the controls. Similarly,
AUC < 0.5 indicates that the wave trains quantity is greater in the control
group. An exhaustive search of the values MinFreq, MaxFreq, MinPower,
MaxPower, MinDurat, MaxDurat, MinBandwidth, and MaxBandwidth can
be implemented to investigate the multidimensional space, but we prefer an
accurate consideration of different slices of the space using various 2D and 3D
diagrams not to miss any interesting regularities in the space of the wave trains.
Several examples of this analysis are considered below.

Let us compute AUC values for various frequency ranges. In Fig. 5, the
functional dependence of AUC is shown, where the arguments of the func-
tion are the MinFreq and MaxFreq bounds. The frequency values varied from
2 to 25 Hz (with the 0.5 Hz step); the MinPower, MaxPower, MinDurat,
MaxDurat, MinBandwidth, and MaxBandwidth were constant: MinPower =
1, MaxPower = ∞, MinDurat = 0, MaxDurat = ∞, MinBandwidth = 0,
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Fig. 5. A diagram of AUC values calculated for various frequency bands. In the upper
left triangle of the diagram: the abscissa is the lower bound of the frequency band and
the ordinate is the upper bound of the frequency band. In the lower right triangle of
the diagram: the abscissa is the upper bound of the excluded frequency band and the
ordinate is the lower bound of the excluded band. The frequency varied from 2 to 25 Hz
with the 0.5 Hz step. The background EEG was analyzed, right hand tremor patients,
the C3 electrode. (Color figure online)

MaxBandwidth = ∞. The upper left triangle of the diagram indicates the val-
ues of AUC corresponding to the MinFreq . . . MaxFreq frequency range. The
lower right triangle of the diagram indicates the AUC values corresponding to
the total frequency band 2 . . . 25 Hz except the MaxFreq . . . MinFreq band.
Note that in the lower right triangle of the diagram the MinFreq indicates the
upper limit (but not the lower) of the excepted frequency band and the MaxFreq
indicates the lower bound of the excepted values. The diagram in Fig. 5 reveals
three interesting frequency ranges that may be prospective for research. The first
range is mu (a blue region, the 10.5 . . . 13.5 Hz frequency band approximately),
the second is mu too (a red region, the 6 . . . 9.5 Hz frequency band approxi-
mately), and the third range is beta (a dark blue region, 18 . . . 24 Hz frequency
band approximately). We suppose that the first and second regions in the dia-
gram give a visual evidence for a shift of the mu rhythm to the lower frequency
areas. The third region in the diagram is a visual confirmation of the regularity
(a significant decrease of the wave train number in the beta band) discovered
by a group statistical analysis and reported in [1]. Moreover, a “good” values
AUC = 0.22 and AUC = 0.75 in the first and second colored spots indicate that
the mu frequency range may be prospective for making clinical diagnostic.

5 Examples of Data Visualization

Let us consider several examples of AUC diagrams. In Fig. 6, diagrams for left
hand tremor patients (the left column) and right hand tremor patients (the right
column) are demonstrated. The first row corresponds to the C3 electrode and the
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Fig. 6. Diagrams of AUC values calculated for various frequency bands. In the left
column: left hand tremor patients; in the right column: right hand tremor patients.
The first row corresponds to the C3 electrode and the second row corresponds to the
C4 electrode. (Color figure online)

second row corresponds to the C4 electrode. One can see a blue area 10 . . . 11 Hz
in all the diagrams. The corresponding red areas exist in all the diagrams too.
Thus, similar regularities are presented in both C3 and C4 electrodes, but the
diagrams corresponding to the left tremor patients and the right tremor patients
differ more than the diagrams corresponding to the C3 and C4 electrodes. This
is evidence than the compensatory mechanisms in the cortex in these two groups
of patients are not equal.

Let us compare these AUC diagrams corresponding to the background EEG
with diagrams corresponding to the EEG records created in the special pose
that provokes tremor. In the Fig. 7, the left column corresponds to the back-
ground EEG and the right column corresponds to the special pose EEG. Only
the right tremor patient diagrams are demonstrated in both columns. The first
row corresponds to the C3 electrode and the second row corresponds to the C4
electrode. Note that in the special pose the mu rhythm colored spots are less
pronounced. This is the evidence that we observe a shift of the mu rhythm, but
not of the alpha rhythm in the diagrams, because the special pose may suppress
the mu rhythm. Note that the blue spot in the beta frequency range is more
pronounced in the special pose diagrams. Probably the special pose increases
the regularity [1] in the beta frequency range.
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Fig. 7. Diagrams of AUC values calculated for various frequency bands. In the left
column: background EEG records; in the right column: the special pose records. Only
the right hand tremor patients are analyzed. The first row corresponds to the C3
electrode and the second row corresponds to the C4 electrode.

6 Conclusions

The method of a brain electrical activity investigation based on the EEG wave
train analysis and visualization is developed. The preliminary results of the
research give evidence that EEG analysis method based on the wave trains is
prospective for:

– Looking for group statistical regularities in the early stages of Parkinson’s
disease that gives a basic knowledge about the disease and compensatory
mechanisms in the cortex;

– Searching EEG features that are prospective for the early stages of Parkin-
son’s disease diagnostics.
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