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Image-potential-induced spin-orbit interaction in one-dimensional electron systems
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We study the spin-orbit interaction effects in a one-dimensional electron system that result from the image
charges in a nearby metallic gate. The nontrivial property of the image-potential-induced spin-orbit interaction
(iSOI) is that it directly depends on the electron density because of which a positive feedback arises between the
electron density and the iSOI magnitude. As a result, the system becomes unstable against the density fluctuations
under certain conditions. In addition, the iSOI contributes to the electron-electron interaction giving rise to strong
changes in electron correlations and collective excitation spectra. We trace the evolution of the spectrum of the
collective excitations and their spin-charge structures with the change in the iSOI parameter. One out of two
collective modes softens as the iSOI amplitude grows to become unstable at its critical value. Interestingly, this
mode evolves from a pure spin excitation to a pure charge one. At the critical point its velocity turns to zero
together with the charge stiffness.
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I. INTRODUCTION

The Rashba spin-orbit interaction (RSOI) in low-
dimensional systems arises because of a structure inversion
asymmetry, which results from an external electric field acting
on electrons in addition to the crystalline field. The RSOI plays
a central role in such areas as the generation, manipulation
and detection of spin, topological states, Majorana fermions,
low-dimensional materials with Dirac-type spectra, and even
cold-atom systems (for a recent review see Ref. [1]).

The RSOI is described by the Rashba Hamiltonian [2],

HRSOI = α(�E × k)σ , (1)

where �E is an external electric field, which is usually
considered as a given value. By tuning the field E, one can gain
control over the RSOI parameter αR = αE. This is important
for the spin manipulation by electrical means.

In the present paper we consider a principally different
situation where the structure symmetry is broken by a metallic
gate placed in close proximity to the electronic system and
coupled to it by the Coulomb forces. This situation is close to
the experiments where the electron system under investigation
is placed directly on a conductive gate [3]. In this case the
RSOI can arise even without any potential applied to the
gate thanks to the image charges electric field as shown
in Fig. 1. This field is strong enough in the vicinity of
the interface. One may therefore expect strong effects due
to the image-potential-induced spin-orbit interaction (iSOI).
The presence of the iSOI recently was confirmed by several
experiments where the spin-orbit splitting was observed in the
surface electron states formed by the image potential on the
Au(001) surface [4] and at the graphene/Ir(111) interface [5].
The values of αR measured in these experiments agree well
with the calculations performed by McLaughlan et al. [6].

A novel and fascinating property of the iSOI is that αR

depends on the electron density. This dependence creates an
efficient mechanism for density fluctuations to grow, which
under certain circumstances can result in a dramatic trans-
formation of the ground state. The mechanism is as follows.
An electron-density fluctuation induces an additional image
charge and hence increases an electric-field component normal

to the gate surface. This enhances the iSOI parameter αR and
consequently lowers the electron energy within the fluctuation
region, attracting there electrons from adjacent regions or
reservoirs. Thus the density fluctuation once appeared starts to
grow.

II. QUALITATIVE CONSIDERATIONS

Let us begin with a qualitative description of the process. To
be specific, consider a single-mode quantum wire parallel to
a metallic gate, separated by a distance of a/2 from the latter.
Let us determine the electron density in the wire for the case
of a fixed chemical potential μ. For now, we restrict ourselves
to a mean-field theory, assuming the electron-density n to be
uniformly distributed.

The single-electron state energy reads as

εks = �
2

2m

[
(k + skso)2 − k2

so

] + vn, (2)

where k is the longitudinal wave vector and s = ±1 is the
spin index. The Coulomb interaction energy is v = 2e2

ε
ln(a/d)

with d being the quantum wire diameter and ε as the dielectric
constant. The iSOI wave vector is kso = αRm/�

2. The iSOI
parameter αR = αE⊥ is proportional to the normal component
of the electric field where the SOI constant α does not depend
on the field. It is important that the field is determined by
the electron-density E⊥ = 2ne/εa. Whence it follows that
kso = 2enαm/�

2εa. The equation for the electron density
is found by summing over the occupied states. Taking into
account that there are two values of the Fermi momenta for
each spin direction k

(s)
F = −skso ± [k2

so + 2m(μ − vn)/�
2]1/2,

we obtain an equation to determine n at zero temperature,

n = 2

π

√(
2αme

�2εa

)2

n2 + 2m

�2
(μ − vn). (3)

Its solutions are

n±(α∗) = n0
−v∗ ±

√
1 − α∗2 + v∗2

1 − α∗2 , (4)
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FIG. 1. The schematic of a one-dimensional (1D) electron system
with image charges induced on a gate. The arrows show the electric
fields acting on electrons from their own image charges and from the
images of neighboring electrons.

where n0 = √
8mμ/π�, v∗ = v

√
2mμ−1/π�, and α∗ =

4αme/π�
2εa is a dimensionless iSOI parameter.

The electron density exhibits an S-type dependence on α∗ as
seen from Fig. 2. At weak iSOI α∗ < 1, the solution is unique.
In the range of 1 < α∗ < α∗

c there appear two solutions, the
stability of which should be examined. At α∗ > α∗

c the solution
is at all absent within the simple model considered. The critical
iSOI magnitude is given by

α∗
c =

√
1 + v∗2. (5)

Such behavior of n(α∗) indicates a possible instability of
the electron system at sufficiently strong iSOI α∗ ∈ (1,α∗

c )
and a tendency for a radical transformation of the electron
state at α∗ > α∗

c , which may lead to the emergence of spatially
inhomogeneous structures or a new correlated state. Nontrivial
effects are expected already when α∗ is of the order of unity.
Our estimates show that such values of α∗ can be attained
in materials with a strong spin-orbit interaction [1]. Presently
the tunable RSOI with the parameter as large as αR ∼ 4 ×
10−10 eV m is attained in such materials as Bi2Se3 in quantum
wells in the presence of the electric field of the order of 3 ×
105 V/cm [1,7]. Using these data one can estimate the distance
a between the electron system and the gate at which α∗ ∼ 1.
For m = 0.1me and ε ∼ 10 we estimate a ∼ 40 Å, which is
realizable in modern heterostructures.
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FIG. 2. The electron-density dependence on the iSOI parameter
for v∗ = 2.

Mechanisms stabilizing the electron system at strong iSOI
and the nature of the emerging electron state constitute a
challenging problem that deserves a separate study. A possible
mechanism should include the processes leading to an essential
rearrangement of the density of states, such as the population
of the higher transverse sub-bands in the quantum wire and
the formation of a new correlated state.

III. COLLECTIVE MODES

In this section we study the spectra of collective excitations
in a 1D electron system below a threshold of a possible
instability to find out the conditions under which the stability
of the excitations could be lost.

An important aspect of the iSOI is a nontrivial modification
of the electron-electron (e-e) interaction Hamiltonian. The
image charges not only screen the Coulomb interaction to make
it dipolelike, but also create a new spin-dependent component
of the e-e interaction. This effect should be manifested in a
qualitative change in the correlation functions. The properties
of the correlated electron state and its collective excitations are
investigated here in such circumstances.

Our model Hamiltonian reads as

H = Hkin + He-e + HiSOI. (6)

The first term is the kinetic-energy Hkin =
(2m)−1 ∑

s

∫
dx ψ+

s (x)p2
xψs(x), where ψs(x) stands for

the electron field operator and px stands for momentum.
The operator of the e-e interaction energy is

He-e = 1

2

∑
s1s2

∫
dx1dx2ψ

+
s1

(x1)ψ+
s2

(x2)

×U(x1 − x2)ψs2 (x2)ψs1 (x1). (7)

Here U(x) = e2√
x2+d2 − e2√

x2+a2 is the e-e interaction poten-
tial screened by the image charges. Its Fourier transform
Uq = ∫

dx U(x)e−iqx is a table integral [8], equal to Uq =
2e2[K0(qd) − K0(qa)] with K0 being the modified Bessel
function [9].

The iSOI Hamiltonian can be formulated on the basis of
the standard form (1) taking into account that the electric field
is produced by all the charges in the system. Using Eq. (1) in
the case of the iSOI is supported by calculations carried out in
Ref. [6] within the relativistic multiple-scattering methods.

The iSOI Hamiltonian reads as

HiSOI = α

�

∑
i

1

2
[Ey(xi)pxi

+ pxi
Ey(xi)]σzi

, (8)

where σzi
is the Pauli matrix of the ith electron and Ey(xi) is

the y component of the electric field acting on the electron.
This field contains two principally different contributions that
come from external charges and the images of all electrons in
the system. We emphasize that the iSOI cannot be described by
a single-particle Hamiltonian as opposed to RSOI described
in Refs. [10–18] by a fixed parameter αR .

The two-particle contribution is the total field of other
electron images acting on a given electron,

Eee
y (xi) =

∑
j �=i

E(xi − xj ), (9)
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where E(xi − xj ) = −ea[(xi − xj )2 + a2]−(3/2). A corre-
sponding collective contribution to the Hamiltonian (8) equals

Hee
iSOI = α

2�

∑
s1s2

∫
dx1dx2ψ

+
s1

(x1)ψ+
s2

(x2){E(x1 − x2)S12

+S12E(x1 − x2)}ψs2 (x2)ψs1 (x1), (10)

with S12 = (px1σz1 + px2σz2 )/2.
The Hamiltonian (10) together with Eq. (7) forms a

modified Hamiltonian of the e-e interaction that contains a
spin-dependent component appearing because of iSOI.

A single-particle contribution, coming from the image of
the positive background charge nion in the wire (and the charge
in the gate, should there be any) as well as the field of the
electron’s own image E(0) equals E0

y = E(0) − nionE0, where
E0 is the q = 0 component of the Fourier-transform Eq =
−2e|q|K1(|q|a) of the field E(x) [8]. This leads to a single-
particle contribution to the Hamiltonian (8),

H 0
iSOI = α

�

∑
s

∫
dx ψ+

s (x)E0
ypxσzψs(x). (11)

Below we investigate a linear response of the system defined
by the Hamiltonian (6)–(11) to an external perturbation of the
form Hext = ∑

s

∫
dx ψ+

s (x)ϕ(s)(x,t)ψs(x). The calculations
are based on two independent methods, viz. the random-phase
approximation (RPA) and bosonization. Both approaches yield
compatible results. The calculations are performed for a 1D
system of length L with fixed mean electron-density n0. The
periodic boundary conditions are imposed, and the limit L →
∞ considered.

A. RPA approach

RPA calculations are based on the equation of motion for
the Wigner function derived in the Appendix. The Fourier
components n(s)

qω of electron density with the z component of
spin s, wave-vector q, and frequency ω are shown to satisfy
the following system of linear equations:

n(s)
qω

(
χ−1

qω − Uq + mα2Eq

�2
(2F0 + n0Eq) − sω

2mαEq

�q

)

+ n(−s)
qω

(
−Uq + mα2Eq

�2
(2F0 + n0Eq)

)
= ϕ(s)

qω. (12)

The mean electric field F0 = E(0) + (n0 − nion)E0 as com-
pared to E0

y contains additionally the contribution from the
mean electron density. By χqω we denote the Lindhard
susceptibility,

χqω = m

2π�2q
ln

(q − 2kF )2 − (
2mω+i0

�q

)2

(q + 2kF )2 − (
2mω+i0

�q

)2 , (13)

where kF = πn0/2.
Setting the determinant of (12) to zero, we obtain the

dispersion equation for both branches of collective excitations,(
ω±
qvF

)2

= 1 + (Ũq − α̃2F̃0Ẽq)

±
√

(Ũq − α̃2F̃0Ẽq)2 + α̃2Ẽ2
q . (14)

FIG. 3. The square of the frequency ω2
− of collective excitations

as a function of wave vector and iSOI amplitude. Additionally, a
plane ω2

− = 0 is shown. The frequency is normalized at ω0 = vF kF .
The system parameters are taken as follows: kF aB = 1.27, d =
0.078aB, a = 0.39aB , and nion = n0.

Dimensionless amplitudes are α̃ = 2
π

αn0
eaB

, Ũq = Uq

π�vF
, F̃0 =

F0

en2
0
, and Ẽq = Eq

en0
with vF = �kF

m
and aB = �

2/me2.

Of most interest is branch ω− since it has an unusual
dependence on the wave-vector q and the iSOI parameter α̃.
This dependence is demonstrated in Fig. 3 in the case where
the distance a is small enough. The frequency of this mode and
its velocity decrease with increasing α̃. The frequency squared
ω2

−(q) turns to zero at some condition,

α̃ = α̃0
q ≡

√
1 + 2Ũq√

Ẽ2
q + 2F̃0Ẽq

, (15)

and even becomes negative in the region of α̃ > α̃0
q , where the

excitations become unstable. It is worth noting that upon the
increase in α̃ the excitations start losing their stability in
the long-wave region where also the largest frequency incre-
ment appears in the instability regime.

Spin-dependent interactions break the spin-charge sepa-
ration between the branches ω± of collective excitations. It
is interesting to investigate how the spin-charge structure of
the excitations evolves as α̃ is increased. From Eq. (12) we
determine the spin-charge separation parameter ξ± for both
branches of excitations,

ξ± = n+
qω + n−

qω

n+
qω − n−

qω

∣∣∣∣
ω±

= 1

α̃Ẽq

(
ω±
qvF

− qvF

ω±

)
. (16)

At α̃ = 0, the parameter ξ− = 0, which means that branch
ω− corresponds to a purely spin excitation (n+

qω = −n−
qω)

with dispersion law ω− = vF q. However, as α̃ → α̃0
q , the

frequency ω−(q) → 0 and the parameter ξ− → ∞ as shown
in Fig. 4. Consequently, near the threshold α̃ = α̃0

q the
collective excitation ω−(q) turns into a purely charge excitation
(n+

qω = n−
qω).

The system stiffness � = − limq→0 χ−1
nn (q,0) with a charge

susceptibility χnn(q,ω) = (n+
qω + n−

qω)/ϕqω determined from
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FIG. 4. The spin-charge separation parameter (solid line) and
normalized phase velocity (dashed line) for the ω− collective mode
as a function of iSOI amplitude. The same system parameters as in
Fig. 3.

Eq. (12) equals

� = π�vF (1 + 2Ũ0)

[
1 −

(
α̃

α̃0
0

)2
]

. (17)

The stiffness turns to zero at α̃ = α̃0
0 . This points at the insta-

bility of the charge subsystem. This is the most pronounced
manifestation of the iSOI in the e-e correlations.

On the contrary, at α̃ = 0 another branch ω+ corresponds
to purely charge excitations, which transform into purely spin
ones as α̃ increases. Their spectrum is shown in Fig. 5. Upon
the increase in α̃ their velocity v+(q) always remains positive.
The stiffness of the spin subsystem does not turn to zero.

Let us compare the critical iSOI value α̃0
0 from Eq. (15) at

which the long-wave collective excitations start losing their
stability with α∗

c of Eq. (5), corresponding to the instability of
the ground state of a system with a fixed chemical potential. For
the case when the system is sufficiently close to the gate n0a �
1, we obtain for dimensional iSOI values α̃0

0 ∝ √
n0a α∗

c ,
which means that the collective excitations instability develops

FIG. 5. The square of the frequency ω2
+ of collective excitations

as a function of wave vector and iSOI amplitude. Additionally, a plane
ω2

+ = 0 is shown. The same system parameters as in Fig. 3.

first. In the opposite limiting case of n0a � 1, they are of the
same order of magnitude.

B. Bosonization approach

The bosonization [19] treatment of the problem leads to
similar results. The presentation is simplified greatly in the
absence of the mean electric-field F0. Then the eigenstates
of the kinetic energy can be chosen as the basis functions.
Linearizing their spectrum, we introduce the bosons a+

s (q) =
( 2π
L|q| )

1/2 ∑
r=± θ (rq)ρrs(q) where the normal ordered density

of fermions with spin projection s on branch r is ρrs(q) =∑
p :c+

rs(p + q)crs(p):. The quadratic part of a bosonized
Hamiltonian (6) is

H = �vF

2

∑
q > 0

r,s = ±

q

[
a+

s (rq)as(rq)(2 + Ũq + rsα̃Ẽq)

+ 1

2
[a+

s (rq)a+
−s(−rq) + H.c.](Ũq + rsα̃Ẽq)

+ 1

2
[a+

s (rq)a+
s (−rq) + a+

s (rq)a−s(rq) + H.c.)]Ũq

]
.

(18)

We diagonalize it by the Bogoliubov-Tyablikov transforma-
tion [20]. For this purpose, matrices defining commutators
[H,a+

k ] = ∑
i a

+
i Aik + aiBik for each boson ak from (18) are

constructed. Then the squares of the elementary excitations
frequencies are just the eigenvalues of matrix (A − B)(A +
B). They are

(
ω±
qvF

)2

= 1 + Ũq ±
√

Ũ 2
q + α̃2Ẽ2

q, (19)

which coincides with (14) at F0 = 0.

IV. CONCLUSION

In conclusion, we have shown that the Coulomb interaction
of 1D electrons with the image charges in the nearby metallic
gate has a spin-dependent component caused by the Rashba
spin-orbit interaction. This iSOI can strongly affect both the
ground state of the system and the collective excitations. The
main effect is an instability which occurs as the iSOI parameter
is large enough. Our estimations have shown that the critical
conditions are attainable in realistic systems. This effect seems
to be rather general for a wide class of 1D, quasi-1D, and
quasi-two-dimensional systems in materials with strong spin-
orbit interaction. The instability leads to the formation of a
new correlated state that needs to be investigated further.
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APPENDIX

Here we derive Eq. (12) of the main text. Define single- and two-particle Klimontovich operators [21] as

f̂ (s)(x,p,t) = 1

2π

∫
dη eipηψ+

s

(
x + η

2
,t

)
ψs

(
x − η

2
,t

)
, (A1)

and

f̂ (s1,s2)(x1,p1,x2,p2,t) = 1

(2π )2

∫
dη1dη2 ei(p1η1+p2η2)ψ+

s1

(
x1 + η1

2
,t

)
ψ+

s2

(
x2 + η2

2
,t

)
ψs2

(
x2 − η2

2
,t

)
ψs1

(
x1 − η1

2
,t

)
. (A2)

The average values f (s)(x,p,t) and f (s1s2)(x1,p1,x2,p2,t) of these operators with respect to the ground state are just the Wigner
distribution functions (WDFs), which allow one to find the observables of interest. Thus, the electron density is expressed as

n(s)(x,t) =
∫

dp f (s)(x,p,t). (A3)

By commuting f̂ (s)(x,p,t) with H + Hext and taking the average, the equation of motion for the WDF is obtained

i� ∂tf
(s)(x,p,t) = − i�2p

m
∂xf

(s)(x,p,t) + 1

2π

∫
dη dp1e

i(p−p1)ηf (s)(x,p1,t)
[
ϕs

(
x − η

2
,t

)
− ϕs

(
x + η

2
,t

)]

+ 1

2π

∑
ς

∫
dξ dη dp1dp2e

i(p−p1)ηf (s,ς)(x,p1,ξ,p2,t)
[
U

(
x − ξ − η

2

)
− U

(
x − ξ + η

2

)]

− iαsE0
y∂xf

(s)(x,p,t)− iαs

2π

∫
dξ dη dp1dp2e

i(p−p1)ηf (s,−s)(x,p1,ξ,p2,t)
[
E ′

(
x−ξ− η

2

)
+E ′

(
x−ξ+ η

2

)]

− iα

2π

∑
ς

ς

∫
dξ dη dp1dp2e

i(p−p1)η

(
1

2
∂ξf

(s,ς)(x,p1,ξ,p2,t) + ip2f
(s,ς)(x,p1,ξ,p2,t)

)
E
(
x − ξ − η

2

)

− iα

2π

∑
ς

s

∫
dξ dη dp1dp2e

i(p−p1)η

(
1

2
∂xf

(s,ς)(x,p1,ξ,p2,t) + ip1f
(s,ς)(x,p1,ξ,p2,t)

)
E
(
x − ξ − η

2

)

− iα

2π

∑
ς

ς

∫
dξ dη dp1dp2e

i(p−p1)η

(
1

2
∂ξf

(s,ς)(x,p1,ξ,p2,t) − ip2f
(s,ς)(x,p1,ξ,p2,t)

)
E
(
x − ξ + η

2

)

− iα

2π

∑
ς

s

∫
dξ dη dp1dp2e

i(p−p1)η

(
1

2
∂xf

(s,ς)(x,p1,ξ,p2,t) − ip1f
(s,ς)(x,p1,ξ,p2,t)

)
E
(
x−ξ+ η

2

)
. (A4)

This is the first equation in the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy [22]. We truncate it using the RPA by
factorizing the two-particle WDF [23],

f (s1,s2)(x1,p1,x2,p2,t) = f (s1)(x1,p1,t)f
(s2)(x2,p2,t). (A5)

This defines the way the pair correlations are taken into account. Introduce the deviation f
(s)
1 (x,p,t) of f (s)(x,p,t) from its

equilibrium value f
(s)
0 (p) as a result of the external perturbation Hext,

f
(s)
1 (x,p,t) = f (s)(x,p,t) − f

(s)
0 (p). (A6)

The equation of motion for f
(s)
1 (x,p,t), linearized with respect to Hext, in Fourier representation reads as

− �ωf
(s)
1 (q,p,ω) = −�

2pq

m
f

(s)
1 (q,p,ω) (A7)

+ϕ(s)
qω

[
f

(s)
0

(
p + q

2

)
− f

(s)
0

(
p − q

2

)]
(A8)

+Uq

[
f

(s)
0

(
p + q

2

)
− f

(s)
0

(
p − q

2

)] ∑
ς

n(ς)
qω (A9)

−αqsF0f
(s)
1 (q,p,ω) (A10)

+αsEqp
[
f

(s)
0

(
p + q

2

)
− f

(s)
0

(
p − q

2

)]∑
ς

n(ς)
qω (A11)

+αEq

[
f

(s)
0

(
p + q

2

)
− f

(s)
0

(
p − q

2

)]∑
ς

ς

∫
κf

(ς)
1 (q,κ,ω)dκ. (A12)
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The terms (A7)–(A9) reflect the contribution of kinetic
energy, external potential, and Coulomb e-e interaction.

The term (A10) reflects the part of iSOI due to the mean
electric-field F0 = E(0) + (n0 − nion)E0. Let us discuss the
effects of the mean field in some more detail. RPA assumes
that the single-particle states, the distribution over which is
given by f

(s)
0 (p), are formed by a single-particle part of the

Hamiltonian, the mean electric field included. For a system
with a fixed particle number, this sets the Fermi momenta
for a spin direction s to be k

(s)
F = −skso ± kF , where kso =

αmF0/�
2 and kF stands for πn0/2. Restricting the equation

of motion to include just terms (A7)–(A10), we easily can find
the electron density for the case of iSOI exclusively due to
the mean field. For this purpose express the f

(s)
1 (x,p,t) and

integrate over p to obtain the equations for the density,

n(s)
qω = ϕ(s)

qωχ (s)
qω + Uqχ

(s)
qω

∑
ς

n(ς)
qω. (A13)

Here the Lindhard susceptibility,

χ (s)
qω =

∫
dκ

f
(s)
0

(
κ + q

2

) − f
(s)
0

(
κ − q

2

)
−�(ω + i0) + �2κq

m
+ αqsF0

= m

2π�2q
ln

(q − 2kF )2 − (
2mω+i0

�q

)2

(q + 2kF )2 − (
2mω+i0

�q

)2 (A14)

turns out to be independent of spin s and of the mean-field
F0. Hence, the collective excitations, the dispersion relation
of which

χ−1
qω

(
χ−1

qω − 2Uq

) = 0 (A15)

is obtained by setting the determinant of (A13) to zero, are the
spin-charge separated common plasmons and spinons. Their
velocity does not depend on SOI.

The terms (A11) and (A12) reflect the collective electron
contribution to iSOI. Whereas the structure of the term (A11)
resembles the Coulomb contribution (A9), there also appears
a qualitatively new integral term (A12). Integrate the equation
of motion with respect to p to get

(−�ω + αqsF0)n(s)
qω = −�

2q

m

∫
κf

(s)
1 (q,κ,ω)dκ

−αqsEq

n0

2

∑
ς

n(ς)
qω. (A16)

Substitute the integral term from Eq. (A16) to Eq. (A12),
express f

(s)
1 (q,p,ω), and integrate the latter with respect to p

to obtain the Eq. (12) of the main text.
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