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INTRODUCTION

The interest to the properties of surface plasmon
polaritons is first of all due to the high spatial field
localization, which makes possible to use these
polaritons in the subwave and near�pole optics. Silver
and golden nanowires are widely used as sensors [1].
Plasmon resonances in them are realized in the ultra�
violet part of the spectrum [1]. The use of silver nan�
otubes makes possible to shift the frequencies of plas�
mon resonances into the visible part of the light spec�
trum [2, 3].

New material graphene, which was recently dis�
covered, is a monoatomic graphite layer, in which car�
bon atoms form a 2D crystalline lattice with the dis�
tance between neighboring atoms 0.142 nm [4].
Graphene exhibits unique electron�optical properties
in the wide frequency band stretching from the light to
terahertz range. The electrodynamic characteristics of
structures with graphene elements may change under
the influence of an exterior electric field [5]. There�
fore, various devices of nanodimensional electron�
ics—sensors, modulators, switches, and filters—can
be produced on the basis of graphene [6, 7].

A great number of works are devoted to scattering
of electromagnetic radiation by graphene objects of
different geometry (for example, see [7] and the bibli�
ography cited there). In works [8, 9], plasmon reso�
nances appearing when a terahertz plane electromag�
netic wave is diffracted by a graphene ribbon are
numerically investigated. In this work, the resonance
properties of a graphene ribbon in the infrared range
are studied.

1. FORMULATION OF THE PROBLEM 
AND THE METHOD OF SOLUTION

The problem of the plane wave diffraction by a
graphene ribbon is considered (Fig. 1). The plane wave
propagates in the free space along the direction of the
unit vector   and is characterized by
the following components of the electromagnetic
field:

(1)

The ribbon of the width 2a is located in the plane 
and is infinite along the z axis. The dependence on
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time is chosen in the form  where 
 c is the light speed in vacuum, λ is the wave�

length, and η =  = 120π Ω is the wave imped�
ance of free space.

It is more suitable to investigate the formulated
problem with the use of the z component of the mag�
netic field  =  The boundary problem
for function  is scalar.

Complete field  satisfies the Helmholtz
equation

(2)

The components of the electric field can be expressed
in terms of function 

(3)

The boundary conditions on a graphene ribbon have
the form [10]

(4)

where σ is the surface conductivity of graphene. For
function , these conditions have the form

(5)

The complete field consists of the incident ( )

and scattered ( ) fields

(6)

The incident field is specified by the function

(7)

In the cylinder coordinate systems 
, the scattered field must satisfy the radia�

tion condition in the far zone

(8)

where  is the scattering pattern.
The boundary problem consisting of Eq. (2),

boundary conditions (5), and radiation condition (8)
can be reduced by standard methods to the integro�
differential equation for the function

(9)

which has the sense of  the surface current on the rib�
bon. This equation has the form

(10)

where  is the Hankel function. Equation (10) can
be obtained, for example, by the method applied in
work [11] for the investigation of the problem of dif�
fraction by an anisotropically conducting ribbon. A
solution to Eq. (10) should be looked for in the class
of functions equating to zero at the ends of the inter�
val 

(11)

This condition provides for the convergence of the

integral  near the ribbon edges (the Meix�

ner condition [12]).
The scattering pattern is expressed in terms of the

current according the formulas

(12)

Scattering and absorption cross sections σs and σa are
determined according the expressions

(13)

(14)

According to the optical theorem, we have

(15)

The numerical solution of integro�differential
equation (10) is obtained on the basis of the method of
continued boundary conditions [13, 14]. The accuracy
of the obtained solution is controlled by the fulfillment
of condition (15) of the optical theorem.

2. NUMERICAL RESULTS

The surface conductivity of graphene is calculated
according to the Kubo formula [10, 15]
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where e is the electron charge,  is the Planck con�
stant, kB is the Boltzmann constant, μ is the chemical
potential, Γ is the relaxation energy of charge carriers,
and T is the graphene temperature.

It is accepted to express energy quantities  
μ, and Γ in electron�volts. The relationship

 (eV) =  (μm) (17)

is valid for the photon energy and wavelength. The fol�
lowing values of physical constants are used:

 (eV/К), (18)

In the scientific literature, relaxation time τ, Γ, is often
used instead of 

The dependence of the real and imaginary pats of
the dimensionless quantity  on the wavelength is
illustrated in Figs. 2 and 3 for the room temperature
T = 300 K and the parameters typical for graphene.
Note that the conductivity of graphene depends on
chemical potential μ that can be changed by the
applied external electric field. It is seen that, in the
considered range of wavelengths, the inequalities

(19)

are true.
The surface wave [6]
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can propagate along a graphene film of infinite dimen�
sions.

Field (20) satisfies Helmholtz equation (2) and
boundary conditions (5) in infinite interval

Formulas (19) and (20) necessitate the inequalities
 and  which mean the subwave y localiza�

tion of the field and oscillations along the x coordinate
that are frequent on the wavelength λ scale. Just these
properties of the surface wave make possible the exist�
ence of plasmon resonances in a ribbon that is narrow
as compared to wavelength λ. The resonances appear
owing to the surface wave rereflections from the ribbon
edges [8, 9].

In all of the calculations, it is supposed that a =
0.13 μm and T = 300 K. Figure 4 shows the frequency
characteristics of absorption cross�sections σa for the

slide angles  and π/6 (curves 1 and 2). It is
seen that, in the considered frequency band, curve 1,
which corresponds to the normal incidence, contains
four resonance peaks. In the case of the oblique inci�
dence, three additional resonances appear (curve 2).

Figure 5 shows the distributions of normalized
absolute value  of the current at the three lower
resonance frequencies. These distributions look like
standing oscillations. The resonances  ≈ 0.074 and
0.14 correspond to wave fields  that are even
with respect to coordinate x, and resonance  ≈ 0.11
correspond to the odd wave fields.
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Fig. 2. Dependence of the real part of the surface conduc�
tivity of graphene on the wavelength when T = 300 K and
Γ = 10–4 eV. Curves 1, 2, and 3 correspond to μ = 0.3, 0.5,
and 0.7 eV.
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Fig. 3. Dependence of the imaginary part of the surface
conductivity of graphene on the wavelength when T =
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The charge conservation law makes it possible to
express surface charge density  in terms of cur�
rent 

(22)

( )xρ

:( )g x

( )1( ) .
dg x

x
i dx

ρ = −
ω

It follows from Fig. 5 and formula (22) that, in the
case of the dipole resonance , the opposite
charges are concentrated near the ribbon edges, and
the charge distribution of resonances of the higher
orders is described by an alternating function with a
large number of oscillations.

Figure 6 shows scattering cross section σs for
 and π/6. The comparison of Figs. 4 and 6

shows that the absorption and scattering spectra are
substantially different. First, function σs has no odd
resonances. Second, near higher even resonances,
function σs has deep dips, which mean that the effect
of the ribbon being imperceptible takes place in a nar�
row frequency band. Formulas (12) and (13) imply
that in the quasi�static approximation , the
scattering cross�section is zero when the current on
the ribbon satisfies the condition

(23)

As a result, the interference suppression of the field
develops in the far zone. Figure 7 shows the distribution
of absolute value  of the current at the frequency of
the dip of function σs (curve 1). It is seen that function

 approximately satisfies condition (23).
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We discuss in more detail the influence of angle 
on the spectral characteristics of the field. In the
quasi�static approximation , the right�hand
part of Eq. (10) can be approximated by the expression

(24)

The first and second summands in (24) are responsible
for the excitation of the even and odd parts of the wave

0ϕ

( 1)ka �

0 0sin (1 cos ), .ikx x a− ϕ − ϕ <

field. Note that the second summand is substantially
smaller than the first one and is zero when the plane
wave is normally incident  Therefore, the
odd resonances are not excited in the case of the nor�
mal incidence, and, in the case of the oblique inci�
dence, they are less expressed than the even reso�
nances (see Fig. 4). It is obvious that condition (23) is
automatically fulfilled for odd oscillations. Therefore,
function σs has no resonance peaks at the correspond�
ing frequencies (see Fig. 6).

Formula (14) implies that the absorbed power is
minimal if

(25)

Figure 7 also shows the current distribution at the fre�
quency  which corresponds to the minimum
of the absorbed power (curve 2). Note that the ampli�
tude of this current is three times less than the current
amplitude on curve 1. However, when , the
scattered power is larger by almost two orders of mag�
nitude than the power scattered at the frequency of the
dip at  The result, which is unexpected at
the first sight, can be explained by the fact that the cur�
rent distribution at  does not satisfy condi�
tion (23) of the far field dip.

Let us investigate the influence of relaxation energy
 on the properties of plasmon resonances. The heat

loss grows with parameter . Figures 8 and 9, respec�
tively, show the spectra of absorbed and scattered
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power when Γ = 10–4, 10–3, and 10–2 eV. It is seen that,
when Γ = 10–2 eV, the odd resonance disappear in the
absorption spectrum as well. Note that, in contrast to
a silver cylinder [16], in the graphene ribbon, multi�
pose plasmon resonances become apparent in the far
field as well (see Fig. 9) owing to their high Q�factor.

Formulas (12) implies that, for the considered case
of narrow ribbons , the scattering patterns at
all frequencies can be approximated by the equation

( 1)ka �

 Thus, plasmon resonances become appar�
ent only when amplitude A grows. Note that, in a cylin�
der, multipole resonances of different orders are char�
acterized by different scattering diagrams  [16].

The position of resonances on curves σs(λ) and
σa(λ) can be controlled by the change of chemical
potential μ. The influence of the chemical potential
on the scattering and absorbing properties of the rib�
bon in the neighborhood of the dipole resonance is
illustrated in Figs. 10 and 11, respectively.
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Fig. 8. Frequency dependence of the absorption cross�sec�
tion of the graphene ribbon when μ = 0.5 eV and 
Curves 1, 2, and 3 correspond to Γ = 10–4, 10–3, and 10–2 eV.
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CONCLUSIONS

The resonance effects observed when a plane wave
is diffracted by a graphene ribbon were numerically
investigated. The influence of the energy of relaxation
and the chemical potential of graphene on the absorb�
ing and scattering properties of the ribbon in the infra�
red wavelength range was considered. It was shown
that the absorption and scattering spectra were princi�
pally different. It was found that, near even higher res�
onances, the spectral scattering characteristic had
deep dips resulting in the effect of the ribbon obscurity.
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