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ABSTRACT 

We report theoretical and experimental study of tapered double-clad fibers (T-DCF) and consider various amplifiers and 
lasers using this fiber as a gain medium. 
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1. INTRODUCTION 

Amplifiers and lasers employed tapered double-clad fiber (T-DCF) as a gain medium exhibit numerous unique 
advantages compared with regular active fibers. Primarily, T-DCF with large modal size and core diameter at taper end 
up to 200 µm could generate nearly ideal beam quality with low non-linear phase shift (B-integral) and is capable of high 
energy storage. The clad diameter of T-DCF up to 1.6 mm allows pumping by inexpensive powerful low brightness laser 
diode bars. The axial variation of taper diameter is accompanied by several attractive mechanisms which assist signal 
propagation. The variation of transverse size of the fiber taper results in a higher pump absorption due to improved clad 
mode mixing in T-DCF. Tapering of gain fiber also causes an efficient ASE suppression for amplification of low duty 
cycle pulses. Axially non-uniform geometry of taper increases significantly the SBS threshold for nanosecond pulses 
amplification. We have found recently that the threshold of the modal instability of T-DCF amplifier increases 
significantly due to small difference between propagation constants of interfering modes. 

We have experimentally demonstrated several amplifiers and lasers using ytterbium T-DCF gain fiber in the present 
paper. High power CW one-stage amplifier with 46 dB gain and nanosecond actively Q-switched laser produced 1.6 mJ 
pulse energy are presented as example of T-DCF applications. The picosecond all-fiber tapered MOPA system with 
record 0.3 mJ out-of-fiber pulse energy is described in details. 

2. PROPERTIES AND ADVANTAGES OF T-DCF 

The main advantages of T-DCF fibers compared with common LMA fibers are: 
• Large mode size; 
• Higher absorption per unit length; 
• Intrinsic built-in mechanism for ASE suppression; 
• Steady mode instability; 
• High factor of brightness increase. 
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distribution2. Gaussian beam profile requires preform with step-index or gradient index free from parasitic index 
variations since preform index profile follows the index distribution. Beam quality in a tapered fiber depends largely on 
core index profile of the preform, i.e. profile distribution without significant index modulation.  

2.2. High absorption per unit length 

It is well known that in powerful fiber lasers (amplifiers) short fibers with a high concentration of rare earth dopants are 
typically used to reduce the nonlinear effects. Increasing of the dopant concentration has certain limits, since it could 
leads to photodarkening of active fibers due to clasterization. T-DCF active double-clad fibers exhibit significantly larger 
absorption per unit length compared to a regular cylindrical fiber made from the same preform and provides the same 
brightness of the output radiation. 
T-DCF always has higher absorption per unit length (in the wide taper end), as the "center of gravity" of the distribution 
of the dopants in the fiber is shifted towards the wide end. As we have shown experimentally earlier2, there is no 
difference in terms of beam quality and brightness between emission from wide and narrow side of the T-DCF. The 
brightness of the output radiation generated or amplified by tapered fiber is equivalent to the regular (cylindrical) fiber 
and has parameters similar to that of narrow section of T-DCF. 
Absorption in the T-DCF is determined mainly by the amount of dopants in the core and the core/cladding aspect ratio. 
Fig. 3 shows the ratio of the lengths of conventional fiber and T-DCF with a linear profile with the same number of 
dopants in the core and the same brightness (the same narrow part) as a function of the tapering ratio. 
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Fig.3. The ratio of lengths of volume-equivalent cylindrical and tapered fibers versus tapering ratio. 

As can be seen from Fig.3, the tapering ratio of 5 enables an order of magnitude shorter T-DCF compared with a regular 
cylindrical fiber. Earlier4 we have made a comparative numerical analysis of the propagation, pump absorption and light 
generation of radiation in the laser containing tapered and equivalent cylindrical fiber. The results are shown in Fig. 4. 
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Fig. 4. Longitudinal distribution of pump (a) and signal (b) power. Pump power is 100 W at 920 nm. 
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2.3. Intrinsic built-in mechanism of ASE suppression 

The degradation of the pulse train contrast during amplification of low duty cycle pulses represents a significant 
problem. The decay of pulse train quality occurs due to accumulation of ASE between the pulses as a result of high gain 
and low repetition rate. The ASE storage leads to a high level of CW background radiation, which degrades the contrast 
of the output pulse sequence. This feature represents the main mechanism preventing generation of short pulses with low 
duty cycle, e.g. for repetition frequency below several hundred kilohertz. 
 Amplifying taper allows significantly reduce the negative impact of ASE as compared with uniform fiber 
amplifier. Indeed, as it has been shown previously4, ASE accumulation occurs during the interval between the pulses and 
it propagates only in direction from the narrow toward wide end of the tapered amplifier. ASE radiation propagating in 
the opposite direction (from the wide to narrow end), undergoes loss4: 
 
ܮ                                                                    = 20 ∙ ሺ݈݀݃ ݀ଶ⁄ ሻ[dB],                                     (1) 
 
where l is distance to the narrow end of T-DCF, dl and d2 are core diameters at the arbitrary location and at the narrow 
end of the taper. 
ASE emitted only within the aperture of NAl=NA*d2/dl could reach the narrow end of T-DCF which reduces 
significantly the overall level of ASE radiation. Thus, as it follows from (1), tapering the fiber by factor of 10, leads to 
the suppression of the ASE propagated in the opposite direction by 20dB. As it will be shown below, the mechanism of 
ASE suppression allows to reduce significantly the repetition rate (up to CW radiation) of amplified/generated pulses. 

2.4. Suppression of intermodal interference and SBS 

Usually, double-clad fibers are multimode fibers both in the core and in the cladding. Consequently, intermodal 
interference causes a modal instability and modal noise in lasers and amplifiers based on double-clad fiber. Earlier, we 
have shown3, that this effect could be very significant, particularly, active fiber length modulation with amplitude of 10 
µm leads to intensity modulation with depth of 0.6%. Amplitudes of n-th harmonics of the intensity due to the 
intermodal interference signals are proportional to the propagation constants difference of the interfering modes3: 
 

I2nΩ~cos(βi-βj)L*J2n((βi-βj)*ΔL)~  J2n((βi-βj)*ΔL)                                                            (2) 
I(2n-1)Ω~sin(βi-βj)L*J2n-1((βi-βj)*ΔL)~(βi-βj)L*J2n-1((βi-βj)*ΔL)                                         (3) 
 

, where βi propagation constant of mode with index i, L – total fiber length, ΔL – amplitude of fiber’s length modulation 
with frequency Ω and Jn is Bessel function. 
 
Accordingly, to minimize the difference of propagation constants, we should minimize the impact of intermodal 
interference. With this approach, we can minimize the impact of intermodal interference by using of a tapered fiber. 
Indeed, the tapered fiber could be represented as a continuous transition between the waveguide, where several modes 
can propagate with propagation constants β1 β2···βn, and free space, where only a plane wave could propagate with the 
propagation constant k0=2πn/λ: 

 

 

                       β1 β2···βn→ k0=2πn/λ                                                      k0=2πn/λ                   

Fig.5. Mode propagation in the tapered fiber 
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Accordingly, the propagation through a tapered fiber changes the propagation constants of the modes so that the 
difference between them approaches zero, as it has been shown in Fig.6. 
 
 

 

 

 

 

 

(a)                                                                                 (b) 

Fig.6. Propagation constant (a) and difference between propagation constants (b) as a function of core diameter.  

As it follows from the results of calculations (Fig.6), the difference in between the propagation constants of 
LP01 and LP02 modes is decreased by more than 2 orders of magnitude with an increasing of core diameter 
from 10 to 200 µm. We have confirmed experimentally these calculations by demonstration of 500 W fiber 
laser with T-DCF3 free from any mode instability. 

2.5. High brightness magnification factor  

Fiber lasers (amplifiers) with a double-clad fiber (DCF) are effiecient devices for improving the pump light brightness. 
For DCF with core and clad areas of Acore and Aclad, respectively, the achievable brightness magnification factor by a 
laser(amplifier) can be given by: 
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,where S slope efficiency of a laser (amplifier), NAclad и NAcore are numerical apertures of cladding and core, 
respectively, Dclad and Dcore are diameters of cladding and core. 
 
For a standard DCF fiber (e.g. Liekki Yb1200) with a 20 µm core diameter, 400 µm cladding, and NA of core and clad 
of 0.06 and 0.46, respectively, the KDCF factor is about 3000. 
As it was noted above, the brightness of the output radiation of T-DCF launched via its wide end is determined by core 
parameters at the narrow end. Accordingly, the brightness magnification factor of T-DCF is determined by4: 
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,where Т – tapering ratio and, F is NA fill factor. 

 
As it follows from (4), the brightness magnification factor for T-DCF is higher than for regular DCF fiber, when T>1/F, 
that is usual situation.  
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Fig.15. Pulse energy for 60 ps duration and 10 kHz repetition rate versus launched pump power. 

Typical spectra of seeded (red line) and the amplified (black) signals are shown in Fig. 16 (a). Fig.16b shows the 
autocorrelation of the amplified 20 ps pulse. 
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Fig.16. (a) Spectra of seed source (red line) and amplified at T-DCF emission; (b) temporal shape of amplified 20ps 
pulse. 

The highest pulse energy obtained in the experiment was 280 µJ for 60 ps pulse duration at repetition rate of 10 kHz, 
which corresponds to 5 MW of peak power. 
 

4. CONCLUSION 

The presented paper overviews the basic properties of active T-DCF utilized as a medium for light amplification and 
generation. We have shown that T-DCF has a number of unique properties that allow to avoid non-linear effects during 
light amplification and generation. CW single stage amplifier using T-DCF demonstrates the record high gain of 46 dB 
in the saturated regime and output beam quality of M2=1.06. T-DCFs allows to build a simple and powerful nanosecond 
pulsed laser. Finally, we have demonstrated all-fiber picosecond amplifier with 0.28 mJ of output pulse energy and 5 
MW peak power. 
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