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INTRODUCTION

The diagnostics of the preclinical stage of the Par�
kinson disease (PD) at which the disease is in progress
but the clinical features are not manifested is a topical
problem of modern medicine and neurophysiology.
Such a stage is studied in experiments with animals
when the development of the disease is provoked [1].
PD cannot be provoked in clinics, so that the PD clinical
features are studied at the earliest stages to extrapolate
such features to the preclinical stage and, hence, reveal
the high�risk group.

Correct diagnostics of the early clinical manifesta�
tions of the PD remains to be a difficult problem. Mul�
tiple features of the earliest stages of the disease [2]
exhibit relatively low specificity, so that each of them
can be related to an alternative brain pathology. The
positron�emission tomography is the most informative
method for the PD diagnostics. However, such an
expensive procedure cannot be widely employed in
practice for the diagnostics of preclinical and initial
stages. Electroencephalography (EEG) and elec�
tromyography (EMG) of muscles and mechanical
tremor can be implemented using relatively cheap
devices (in comparison with the setups for neurovisu�
alization) and, hence, can be widely used for screening

aimed at diagnostics of early stages and identification
of the high�risk groups at the PD preclinical stage.

Widely spread available methods for the clinical
EEG are used for more than 50 years but the progress
in such a study was moderate. It was mentioned in the
first works that PD patients exhibit a decrease in the
frequency of the EEG dominant rhythm [3, 4]. The
progress of the disease is accompanied by a further
variation in the EEG power and frequency. A critical
attitude to the PD records based on the conventional
clinical EEG is due to the fact that EEG primarily
characterizes electric processes in the cerebral cortex
and is only indirectly related to the pathological pro�
cesses and functional transformations that take place
in complicated cortical and subcortical networks when
the PD is in progress.

Recent methods for the analysis of the EEG data
are based on variants of wavelet transforms under dif�
ferent brain pathologies [5–7]. Such approaches pro�
vide new possibilities, since they allow a detailed analysis
of the dynamics of the EEG data. The wavelet trans�
form was used in [8] for the analysis of the EEG data
of the PD patients at early stage. The results of the
spectral analysis of [9, 10] yield a reliable decrease in
the frequency of the dominant interval of the EEG.

Time–Frequency Analysis of Simultaneous Measurements 
of Electroencephalograms, Electromyograms, 

and Mechanical Tremor under Parkinson Disease
O. S. Sushkovaa, A. V. Gabovab, A. V. Karabanovc, I. A. Kershnerd, 

K. Yu. Obukhovd, and Yu. V. Obukhova

aKotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 
Mokhovaya ul. 11, str. 7, Moscow, 125009 Russia

bInstitute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 
Butlerova ul. 5a, Moscow, 117485 Russia

cScientific Center of Neurology, Russian Academy of Medical Sciences, 
Volokolamskoe sh. 80, Moscow, 125367 Russia

dMoscow Physicotechnical Institute (State University), 
Institutskii per. 7, Dolgoprudnyi, Moscow oblast, 141700 Russia

e�mail: o.sushkova@mail.ru
Received February 4, 2015

Abstract—A method for the analysis of the time–frequency dynamics of the background brain activity is pro�
posed and used to reveal three main features of the early�stage Parkinson disease (PD): hemispheric asym�
metry of the time–frequency characteristics of electroencephalogram in the central lead of the motor zone
of the cerebral cortex, generation of the rhythm of electroencephalogram in these leads in a frequency interval
of 4–6 Hz and its correlation with electromyograms and mechanical tremor of contralateral limbs upon Par�
kinsonian tremor, and disorganization of the dominant rhythm corresponding to the general concept of the
disorganization of various systems under PD.

DOI: 10.1134/S1064226915100113

APPLICATIONS OF RADIOTECHNOLOGY AND ELECTRONICS
IN BIOLOGY AND MEDICINE



1110

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 60  No. 10  2015

SUSHKOVA et al.

However, the most interesting result is related to the
disorganization and time�instability of the wavelet
spectrograms of EEG data that are clearly manifested
in the dominant frequency interval. The correspond�
ing results are in agreement with the well�known data
that prove that disintegration syndrome is a charac�
teristic feature of PD manifested at different system
levels, primarily, in the motor zones of the cerebral
cortex [9, 10].

The methods that make it possible to estimate the
time–frequency and space–time dynamics of signals
have been developed with allowance for the above fea�
tures of the electric activity of brain under PD. The
application of the wavelet transform of the EEG data
for the analysis of the electric activity of brain dates
back to the 1990s [6, 11, 14]. However, such a highly
informative method is rare in practice, apparently, due
to the fact that the wavelet transforms are used only for
the visualization of the time–frequency dynamics of
the EEG data.

The analysis of tremor of the Parkinsonian�tremor
and healthy patients can be found in [12, 13].

The quantitative estimation of the time–frequency
EEG spectrograms (in particular, hemispheric asym�
metry, presence of theta rhythm, and degree of disor�
ganization and their correlation with the mechanical
tremor) can be helpful in the diagnostics of the early�
stage PD. Below, we present methods for the quantita�
tive estimation of the wavelet spectrograms (primarily,
estimation of the hemispherical asymmetry) and the
degree of their disorganization and the results of the
simultaneous analysis of the EEG data and mechani�
cal tremor.

1. PATIENTS 
AND EXPERIMENTAL METHODS

For the simultaneous study of the EEG and EMG
data and mechanical tremor, we employ a Neurosoft
Neuron�spectr�5 (41�channel measurement system
for neurophysiological measurements). The pass band
of the EEG signals is 0.3–35 Hz, and the sampling rate
is 500 Hz. The pass band of the EMG signals is 0.5–
250 Hz and the sampling rate is 500 Hz. The tremor is
measured with the aid of piezoelectric accelerometers
on the hand back at a sampling rate of 1378 Hz.

We perform clinical and electrophysiological anal�
ysis of tremor of patients with essential tremor and
Parkinsonian tremor and healthy patients. Variations
in the tremor frequency and amplitude are estimated
using the accelerometry. The comparison of the time
diagrams and spectral components of tremor makes it
possible to reveal several characteristic features that
are important for interpretation of pathogenesis and
differential diagnostics of the diseases.

Fifteen PD patients are involved in the experi�
ments. The diagnostics was based on the PD clinical
diagnostic criteria of the UK Brain Bank [15]. The
ages of eight women and seven man range from 60 to

74 years. For fourteen patients, the duration of the dis�
ease is less than 1 year, and for one patient, the dura�
tion is one and a half year. To determine the stage of
the disease, we use the Hoehn–Yahr scale [16]. The
first and second stages were determined for 14 and
1 patient, respectively. All of patients are right�hand�
ers. In accordance with the commonly accepted clas�
sification, 15 patients suffer from the mixed (akinetic�
origid–tremor) PD and 0 patients suffer from the Par�
kinsonian tremor. For eight and seven patients, the
disease was started from the tremor and bradykinesia
of the left and right hand, respectively. To estimate the
motor disturbance, we employ a unified PD rating
scale (UPDRS) [17]. The UPDRS ratings are 10, 11,
and 12 for five, seven, and three patients, respectively.
The patients did not receive anti�PD therapy prior to
the experiments.

2. ANALYSIS OF THE EEG DATA USING 
THE MORLET WAVELET TRANSFORM

It is known that the disintegration syndrome that is
manifested at different system levels (movement disor�
ders, vegetative and neurohumoral disintegration, and
emotional and psychiatric disorders) is a characteristic
feature of PD. Variations in the time–frequency struc�
ture of the EEG data that are revealed using the wave�
let analysis indicate that the disintegration can also be
manifested in the dynamics of the electric activity of
brain. The results for the second� and third�stage
patients (in accordance with the Hoehn–Yahr scale)
were analyzed in [9]. Below, we present the results of
the wavelet analysis of the EEG data for untreated
patients at the first stage in comparison with the results
for the control group and the group of the second� and
third�stage patients.

The time–frequency spectrogram of the continu�
ous Morlet wavelet transform is given by

Sx(τ, f) = |W(τ, f)|2, (1)

(2)

(3)

where Sx(τ, f) is the power spectral density, f is the fre�
quency, T is the compression parameter, f = 1/T, x(t)
is the original signal, t is the time, τ is the time shift,
W(τ, T) is the wavelet transform of function x(t), η =
(t – τ)/T is the dimensionless period, ψ(η) is the Mor�
let wavelet function, ψ*(η) is the complex�conjugated
Morlet wavelet function, and Fb and Fc are the param�
eters. It is commonly accepted that Fb = Fc = 1.

The wavelet spectrogram of the EEG data consists
of a series of peaks that correspond to variations in the
amplitude of spectral coefficients in different fre�
quency intervals. Such a structure is due to the fact
that the EEG record consists of trains of oscillations
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Fig. 1. Wavelet spectrograms of the EEG records of the C3 lead: (left�hand panel) control and (right�hand panel) first�stage
PD patient.

with different frequencies and durations. The left� and
right�hand panels in Fig. 1 present the wavelet trans�
forms of the EEG records of a healthy patient and the
patient with the first�stage PD (in accordance with the
Hoehn–Yahr scale), respectively.

It is seen that the wavelet spectrograms of both
patients contain series of sloping peaks (one or two
peaks per second) of the power spectral density on
time–frequency plane. For normal patients, the peaks
emerge at approximately the same frequency and form
regular ranges, which yield delta, theta, alpha, beta,
etc. rhythms upon the Fourier analysis. For the PD
patients, the peak positions (coordinates on the time–
frequency plane) and the spread of frequencies exhibit
substantially stronger variations with time and the cor�
responding power spectral density is redistributed
between the frequency intervals. In particular, note
significant growth of the low�frequency (4–6 Hz)
peaks. The correlation of the tremor frequency and the
EEG oscillations in the theta range has been mentioned
in several works (see, for example [18] and references
therein).

The dominant EEG rhythm has the amplitude that
is higher than the amplitude in the remaining frequency
intervals. Multiple frequencies of single local peaks cor�
respond to the interval of the dominant rhythm. For
normal patients, the peaks form a developed range that
represents the alpha rhythm, which indicates suffi�
cient frequency stability of the dominant rhythm. The
3D pattern is significantly disorganized for the first�
stage patients: the range of the wavelet transform con�
sists of peaks that have different (with respect to nor�
mal) frequencies.

The PD features can be revealed at early stages
using the peak positions on the wavelet spectrograms
and the analysis of the statistics of distribution of
time–frequency coordinates of the peaks and the cor�
responding powers [19, 20]. The statistics can be dif�
ferent for patients with different stages of the disease.
Histograms of distributions of the number of peaks
and/or total power spectral density in a relatively nar�
row frequency interval can be used as statistical data.

Amplitudes Ai(fi, ti) of the spectrogram peaks are
determined for the processing and analysis of the
wavelet spectrograms of the EEG signals. Then, time–
frequency plane (0–T, fmin–fmax) is divided into win�
dows with sizes Δt and Δf. It is expedient to choose
time windows of Δt = (0.05–1.00)t (s) and frequency
windows of Δf = (0.02–0.03)fmax (Hz). Sums of ampli�

tudes of spectrogram peaks  are calculated for

each window, and histograms of sums  versus fre�
quency are constructed.

Figure 2 shows several distributions of the peak
amplitudes in the time–frequency windows. The
upper and lower panels correspond to a volunteer from
the control group and the first�stage patient, respec�
tively. The left� and right�hand panels correspond to
the C3 and symmetric C4 leads, respectively. The dis�
tributions show the asymmetry of the brain activity at
the initial stage of PD in comparison with the normal
activity: the dominant rhythm is disorganized (the fre�
quency spread of the peaks is increased) in the diseased
hemisphere.

The inherent nonstationary character of the EEG
signals necessitates the quantitative estimation of such
instability (disorganization) and the comparison of the
results for normal and first�stage patients. The nonsta�
tionary behavior is in agreement with the concept of
the disorganization of the EEG rhythms under PD. The
proposed approach involves the estimation of pairwise
correlations for the frequency distributions of the sums
of peak amplitudes over the time windows [21]. 

For the examples of Fig. 2, the number of such
windows is 14. Thus, we obtain a symmetric matrix of
correlation coefficients with a unity diagonal. Under
normal conditions, the correlation matrices contain
significant amounts of relatively large correlation
coefficients. For a PD patient, the correlation matrix
contains a relatively large number of small correlation
coefficients. To estimate the degree of disorganization
(nonstationary character) of the rhythms, it is expedi�
ent to construct histograms of the correlation coeffi�
cients in the correlation matrix. Figure 3 shows the

iA∑
iA∑
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Fig. 2. Distribution of the sum of amplitudes for the extrema of the wavelet spectrograms in time–frequency windows: (upper
panels) volunteer from control group, (lower panels) first�stage PD patient with the left�hand manifestations, (left�hand panels)
C3 lead, and (right�hand panels) symmetric C4 lead.
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histograms of the correlation coefficients for the
C3 leads of the same patients. It is seen that the histo�
grams of the correlation coefficients for normal
patients are concentrated at relatively large values,
whereas the spread over all correlation coefficients is
observed for the PD patient.

Figure 4 shows the mean values and medians of the
correlation coefficients for the PD patients and con�
trol group. For the first�stage PD patients, we use the
C3 and C4 leads of the diseased hemisphere. For the
control group and the second�stage patients, we
employ the leads of both hemispheres. It is seen that
the development of the disease leads to a decrease in
the mean values and medians of the correlation coef�

ficients and, hence, an increase in the degree of disor�
ganization of the dominant rhythm.

The comparison of the EEG data for the symmetric
fragments of the right� and left�hand�side hemi�
spheres always yields significant differences of the dis�
tributions of local maxima of the wavelet spectro�
grams. The features of the disorganization of the EEG
records can be more developed on either side. These
results are in agreement with the concept of the asym�
metry of the first manifestations of PD [2].

Neurophysiology employs a computer method for
the detection and quantitative estimation of tremor
that emerges under constant position of the joint
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the control group and the leads in the diseased hemisphere for the first� and second�stage PD patients.
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angle. Below, we describe the method that makes it
possible to select the frequency interval of the broad
EMG spectrum that corresponds to the motor action.
The method is based on the assumption that the mus�
cle force that is exerted on joint provides the motion
the shape of which is close to the EMG envelope [22].

The data on the hand tremor is contained in the
EMG envelope rather than the EMG signal, so that
the EMG envelope must be selected. The EMG enve�
lope is calculated using the Hilbert transform [23].

To obtain the amplitude and phase of arbitrary sig�
nal u(t) (modulated high�frequency signal), we must
construct the analytical signal

(4)

The real part of the analytical signal coincides with
desired signal u(t). Imaginary part w(t) is the Hilbert
transform of signal u(t). The Hilbert transform is cal�
culated as

(5)

Substituting formula (5) in expression (4), we
obtain the following result:

(6)

where a(t) is the signal envelope. The EMG envelope
is given by

(7)

The digitized EEG records are processed using the
fourth�order Butterworth filter to eliminate the signal
at a frequency of 50 Hz and the noise at a frequency of
100 Hz.

( ) ( ) ( ).w t u t i t= + v

( )
( ) ( ).

( )
u

t d
t
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τ
= τ

π − τ
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= + = πω(v( ) ( ) ) ( ) exp( ),w t u t i t a t i t
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2 2( ) ( ) ( ) .a t u t t= + v

Figures 5 and 6 show the time–frequency distribu�
tions of the extrema of the wavelet spectrograms for
the C3 and C4 leads of the motor zone of the cerebral
cortex and the extrema of the EMG envelope and
tremor in the contralateral limbs. Figures 7 and 8
present the integral histograms of the frequency distri�
butions of local maxima that correspond to the time–
frequency distributions. Figure 8 shows that the
extrema in the diseased motor zone of the right�hand
hemisphere are partly correlated (i.e., the peaks of the
sums of amplitudes almost coincide) with the extrema
of the mechanical tremor (MT) and EMG. Note the
absence of such correlation for the clinically healthy
left�hand hemisphere (the absence of the coincidence
of the peaks of amplitude sums) (Fig. 7).

CONCLUSIONS

The developed methods and software make it pos�
sible to obtain the main PD features at early stage:
hemispheric asymmetry of the time–frequency charac�
teristics of EEG, especially, in the central leads
(C3 and C4); rhythm generation in a frequency inter�
val of 4–6 Hz and its frequency synchronization with
the EMG activity and MT of limbs; and disorganiza�
tion of the dominant EEG rhythm that is in agreement
with the general concept of the PD�induced disorga�
nization of various systems. We quantitatively estimated
the disorganization of the dominant rhythm in the cen�
tral leads to select the groups of healthy patients, the
first�stage PD patients, and the second�stage
PD�patients.

The wavelet transform and the further quantitative
analysis prove several facts that characterize the EEG
features at the second and third stages of PD. Several
specific features of the time–frequency organization
of the EEG at the first stage of the disease are revealed.
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The proposed approaches and procedures are effi�
cient in the study of PD stages including the earlier
stages. In comparison with the Fourier spectra, the
histograms of the extrema of the EEG wavelet trans�
forms make it possible to more clearly reveal the PD
features and study the corresponding dynamics. The
results can be used in a further search for specific EEG

markers at the earliest (including preclinical) stages of
the disease.
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