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Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and
boundary states, but to bound states localized at structure defects as well. We clarify how the unusual
properties of the defect-induced bound states are manifested in optical absorption spectra in two-di-
mensional topological insulators. The calculations are carried out for defects with short-range potential.
We find that the defects give rise to the appearance of specific features in the absorption spectrum,
which are an inherent property of topological insulators. They have the form of two or three absorption
peaks that are due to intracenter transitions between electron-like and hole-like bound states.
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1. Introduction

Topological quantum states arising in topological insulators
(TIs) due to strong spin-orbit interaction and time reversal sym-
metry attract a great deal of interest because of their nontrivial
properties as well as because they provide us with opportunities
to explore qualitatively new physical phenomena challenging for
construction of novel quantum devices, spintronic applications
and topological quantum computation [1–3]. The topological
states are robust since they are protected against the scattering by
weak non-magnetic impurities and disorders. The main attention
is paid to topological states that exist near the surface of three-
dimensional TIs and the edge of two-dimensional (2D) TIs. How-
ever, unusual electron states arise also at impurities and structure
defects located in the bulk.

Impurity induced states were studied both for impurities on
the surface of three-dimensional TIs [4–9], and in 2D TIs [10–14].
In addition, the impurity states were discussed for one-dimen-
sional topological systems [12]. The main conclusion is that the
electron density localizes near the defect in a highly unusual way.
A similar phenomenon can occur in a trivial one-dimensional
system with spin-orbit interaction in the presence of a weak
v).
magnetic field [15].
In the present paper we address to the 2D TIs since many ex-

periments presently indicate the important role of structural de-
fects in these materials, especially in the electron transport. The-
oretical studies of bound states induced by nonmagnetic defects in
the bulk of 2D TIs have revealed specific properties of these states
which are inherent to 2D TIs and absent in the topologically trivial
crystals.

It turns out that in 2D TIs there are two mechanisms of the
bound state formation in contrast to the trivial case where a bound
state arises only as a quasiparticle (electron or hole) is localized in
a quantumwell produced by the defect. In 2D TIs, bound states are
formed by the repulsive potential as well. These states are similar
to the helical edge states at the boundary of the 2D TI. Their dis-
tinguishing feature is that the electron density is low in the center
but concentrated around the defect. Correspondingly there are
two kinds of the states located at the defect. In particular, a defect
with strongly localized potential induces two states irrespective of
the sign of its potential. This contrasts to the trivial case where the
same defect produces only one state. It is worth noting that two
states located at a given defect are distinguished also by their
pseudospin structure. In one state, the hole component of the
spinor equals zero in the center while in the other state, the
electron component turns to zero there. Correspondingly the
states can be classified also as the electron-like and hole-like states
[14,16].
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In experiments, the defect-induced bound states are still poorly
understood though they attract continuously increasing interest,
which is stimulated mainly by discrepancies between the experi-
ments and expectations of the theory. The discrepancies are
usually associated with the presence of uncontrolled defects, the
density of which is apparently high under the real conditions.

In particular, the electric conductance of the edge states in
experiments [17–22] appears to be smaller than the universal
quantity e h/2 predicted by the existing theories [1]. It turns out
that in many experiments [19–22] the conductance is decreased by
several times or even orders of magnitude. Along with this, the
common observation is that the suppression of the conductance
weakly depends on the temperature. These facts suggests that the
conductance reduction is related to structural defects in the TIs.
Moreover, the energy spectrum of the defect-induced states plays
an important role, since the scattering of electrons in helical edge
states on non-magnetic defects is possible only due to inelastic
processes [23,24], particularly due to intracenter transitions.
Nevertheless, present theories of spin-flip scattering on defects are
based on phenomenological models of a defect ignoring its real
spectrum and electronic structure [25,26].

Our study is motivated by the idea that optical methods could
be a promising tool for studying the unusual properties of defects
in TIs. Such techniques are now well developed for defects in
semiconductors [27] and are increasingly used in the studies of 2D
electron systems [28,29].

The present paper aims to clarify how the defect-induced states
are manifested in optical absorption spectra. We find that the
defects located in the bulk of the 2D TI produce specific peaks in
the absorption spectrum which can be identified experimentally.
The peaks originate from electron transitions between the quan-
tum states of different types that are located at the same defect. In
one state, a particle is captured by the attractive potential and in
the other state, a particle circulates around the defect. An im-
portant factor affecting the formation of the peaks is also a specific
dependence of the energy of the bound states of the defect po-
tential. The energy of both states turns out to be weakly depen-
dent on the amplitude of the defect potential in a wide range of
the potentials. It is for this reason the light quanta absorbed by the
defects with different potentials have close energies thereby
forming the peak.
1 In basic 2D TIs widely studied at present, the dielectric constant ϵ is as fol-
lows: in thin films of ϵBi Se2 3 is as high as 100 [31,32], in heterostructures HgTe/
CdHgTe ϵ ≈ 15 [33] and in heterostructures InAs/GaSb ϵ ≈ 12.5 [22].
2. Model and general equations

Our study of optical transitions in 2D TIs with structural defects
is based on the Hamiltonian proposed by Bernevig, Hughes and
Zhang (BHZ) [30]. This model adequately describes single-particle
states in the low-energy region with using four-component basis
(| ↑ 〉 | ↑ 〉 | ↓ 〉 | ↓ 〉)E H E H, , , T , where | ↑ 〉E and | ↓ 〉E are superposition
of electron and light-hole states with the moment projection

= ±m 1/2J , and | ↑ 〉H and | ↓ 〉H are the heavy-hole states with
= ±m 3/2J . If the spin-orbit interaction (SOI) due to structural

inversion asymmetry and bulk inversion asymmetry is absent, the
BHZ Hamiltonian is block diagonal:
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2 2 with ( )=μd k
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2 ; k̂ is the momentum operator and σ μ are the

Pauli matrices. A B C D M, , , , are model parameters depending on
the quantum-well width [30]. Of critical importance is the sign of
the parameter MB that defines the ordinary and inverted-band
situations: >MB 0 corresponds to the topological phase, <MB 0 is
topologically trivial case.

The defects are represented by a localized potential (| − |)V r rj .
We suppose that the density of the defects is not very high so that
they do not interact one with other and can be considered in-
dependently. Particularly, we do not consider defect clusters
forming electron puddles, which are sometimes discussed in
connection with the scattering of electrons in edge states. In the
present paper we study optical absorption due to defects with
short-range potential. This is a reasonable simplification which is
justified since the dielectric constant of TIs is usually high1 and
therefore one can expect that the long-range part of the defect
potential is small.

Consideration of the defects with short-range potential is of
considerable interest also for the reason that in this case the
structure of the bound state spectrum weakly depends on the
details of the potential shape and therefore one can expect the
appearance of universal results.

In what follows, it is convenient to use dimensionless notations
for the energy ε = | |E M/ , the distance ˜ =r r M B/ , the wave vector
˜ =k k B M/ , and the potential = | |v V M/ . For brevity we will drop
the tilde. In addition, we introduce important dimensionless
parameters

= =
( )

a
A
MB

d
D
B

, ,
2b

which determine the band structure of electrons in homogeneous
crystal in the BHZ model. Parameter db determines the asymmetry
of the electron and hole bands, and the parameter a to a large
extent determines the shape of the dispersion relation in the
conduction and valence bands.

In order to study the optical absorption one should calculate
the matrix elements of the electron transitions between different
states localized on an impurity and between the impurity states
and band states.

First consider the band states in absence of the SOI. Since the
Hamiltonian (1) has block-diagonal structure, the spin-up and
spin-down sectors can be considered independently. The band
states are characterized by the band index λ = ±, which corres-
ponds to the c- and v-bands, and the spin = ↑ ↓s , .

The electron energy is independent of the spin. The dispersion
relation in the c- and v-bands has the following form:

ε λ= + ( − ) + ( )λ d k k a k1 . 3s k b, ,
2 2 2 2 2

The band states in the spin-up sector are presented by the
following spinor:

Ψ
λ
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where = ±±k k ikx y, λ ↑C k, , is normalization constant.
The band spectrum has the qualitatively different shape in the

following three regions of the parameters a and db. At
> ( + | |)a d2 1 b , the energy gap equals | |M2 and the dispersion

curves has the minimum in the c-band and the maximum in the v-
band at k¼0. At < ( − | |)a d2 1 b , the dispersion curve has a
mexican hat shape in both bands, with the gap being smaller than
2 | |M . When ( − | |) < < ( + | |)d a d2 1 2 1b b , only one of the bands
has a mexican hat shape.



Fig. 1. Energy of the electron-like, εe, and hole-like, εh, bound states as a function of
the defect potential. Dashed lines are the limiting energies ε ∞e and ε ∞h , dash-and-
dot line is the Fermi level μ. (a) The calculation within the asymmetric BHZ model
without the SOI. The arrows indicate the optical transitions, which are considered
in the calculation of the absorption spectrum in Section 3. Calculations were carried
out for a¼2, db¼0.2, Λ¼5. (b) The same as in the panel (a), but with account of the
SOI. The SOI parameter is Δ M/ ¼0.5.
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We now turn to the states bound at the defect. They are found

from the Schrödinger equation: Ψ[ ^ + ( ) − ] =H V r E 00 . For the spin-
up block we have

ε Ψ Ψ[ − (^)] ( ) = ( ) ( ) ( )h v rk r r , 5

where Ψ ψ ψ( ) = ( ( ) ( ))r r r,e h
T .

This equation is easily solved in the case where the potential is
localized in a region which is small compared with the char-
acteristic length scale of the wave function [14]. Using the Fourier
transform we arrive at a system of equations for spinor compo-
nents at the defect, Ψ ψ ψ¯ ( ≈ ) ≡ ( ¯ ¯ )r 0 ,e h

T ,
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where ( )ε εΔ = ( − ) − ( − ) −k d k k a k, 1b
2 2 2 2 2 2 and vk is the Fourier

transform of the potential v(r)

∫= ( ) ( ) ( )
∞

v drrv r J kr , 8k
0 0

with ( )J z0 being the Bessel function.
The bound state energies are determined by Eqs. (6) and (7). It

is obvious that they have solutions in two cases:
1. Electron-like states: ψ̄ ≠ 0e , ψ̄ = 0h . The energy of these states

ε ε= ( )ve is determined by the equation
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2. Hole-like states: ψ̄ = 0e , ψ̄ ≠ 0h with the energy ε ε= ( )vh that is
determined by the equation
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In each case there is only one solution [14]. Thus, at a given
potential of the defect there are two bound states: electron-like
and hole-like ones. They are described by the following wave
functions:
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where φ is the azimuth angle of r,
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To analyze possible spectra of the defect-induced optical
absorption, it is important to clarify how the energy of the bound
states depends on the defect potential amplitude. In the case of 2D
TIs, this dependence turns out to be very unusual. With increasing
the potential, the energies of both the electron-like and hole-like
states, εe and εh, tend to finite limiting values, ε ∞e and ε ∞h , as it is
illustrated in Fig. 1(a) for the potential of the form:

Λ π Λ( ) = ( ) ( − )v r v r/ exp2 2 2 . The presence of these limiting energies
of the bound states is a specific property of 2D TIs.

The analysis of the bound states in a wide range of the para-
meters a and db shows that the properties of the bound states
described above are qualitatively the same for all areas of the
parameters. The only essential condition is the band structure
inversion ( > )MB 0 .

The existence of the electron-like and hole-like bound states in
2D TIs as well as occurrence of the limiting energies was first
found in our recent paper [14] in the frame the BHZ model sym-
metric with respect to the electron and hole states. In this paper
we generalize these results to the case of the asymmetric electron-
hole band structure. It should be noted that the electron-hole
asymmetry is very essential for all realistic 2D TIs used in
experiments.

Now we consider the effect of the SOI, which is also present in
the realistic systems. To be specific we take into account the SOI
arising due to both the bulk and interface inversion asymmetry,
which is described by the Hamiltonian [34,35]
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SOI

We have studied this case within the same approach as above.
In this case the calculations are much more cumbersome since the
Hamiltonian does not split into two independent blocks and
therefore the equations for eigenfunctions should be used in full
4�4 form. However, the results turn out to be qualitatively very
similar to those shown above. Therefore, we do not give the de-
tails, and present only the main results.

We have found that a defect with short-range potential pro-
duces two bound states. Their energies vary with the potential
amplitude in the same manner as in the case without the SOI. This
is illustrated by Fig. 1(b) where specific results are presented for
the same parameters a and db as in Fig. 1(a), but the SOI is added. It
is seen that the SOI of rather high value ( )Δ =M/ 0.5 does not
qualitatively change the bound-state spectrum and its dependence
on the defect potential. The main effects of the SOI are as follows:

(i) The band gap decreases, but not much. In the case of Fig. 1, the
gap is decreased from 2 to E1.77.

(ii) The spin state is changed. The z-component of the moment is
not a quantum number. The moment deviates from the z-axis
and depends on the potential amplitude.

Thus, the basic properties of the impurity states, which are
important for our study, remain qualitatively unchanged. There-
fore in the following calculations we drop the SOI.

The optical transitions between the bound states of different
types and between the bound states and the band states are stu-
died in the electric dipole approximation. Within the frame of the
kp-theory, the Hamiltonian of a light-matter interaction for spin-
up sector reads
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with A being the vector potential. Specific calculations are carried
out for right-hand-polarized electromagnetic field incident nor-
mally on the sample.
3. Optical transitions

In this section, we find out how the properties of the defect-
induced states are manifested in the optical absorption spectra of
2D TIs. The main features of the absorption spectrum are caused
by the intracenter transitions and the unusual dependence of the
bound state energies on the defect potential.

First of all, we note that the transitions between the electron-
like and hole-like states are allowed in the electric dipole ap-
proximations in each spin sector without changing the spin since
the orbital angular momenta of these states differ by unity. This
conclusion follows from the direct calculation of the matrix ele-
ments 〈 | | 〉h H eI of the transition between Ψe and Ψh states. For
example, the matrix element of the transition with the absorption
of the light quantum on the defects with positive v is expressed
via the spinor components ψ1e, ψ2e, ψ1 h and ψ2 h as follows
∫ ψ ψ ψ
ψ

ψ
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A similar equation can also be obtained for defects with <v 0.
Using Eqs. (12)–(15) it is easy to see that the right-hand side of Eq.
(19) is nonzero and the matrix element 〈 | | 〉h H eI is a smooth func-
tion of v.

When calculating the probability of the optical transitions in
the 2D TI, we assume that the real crystals of TIs contain a variety
of point defects with very different potentials. The distribution of
the defect potentials is described by a function ρ( )v , which is
supposed to be a smooth function going to zero at →v 0. We do
not have actual data on the magnitude of the defect potentials in
2D TIs. Nevertheless, one can do some estimates taking into ac-
count that the potential is determined by the difference in the
electron affinities of the defect and the host crystal. The electron
affinity is usually of the order of Volts while the band gap in 2D TIs
is typically of the order of 10 mV. Therefore, we can assume that
the scatter in the defect potentials far exceeds the energy gap.

The rate of the transition with the absorption of photons is
determined in the standard way [36] and has the form:

( )∫ ( )ω π ρ δ ε ε ω( ) =
ℏ

( ) ⟨ | | ⟩ − ( ) − ( ) − ℏ ( )−∞
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R dv v h H e f f v v

4
, 20I e h h e

2

where ω is the photon energy, fe and fh are the occupation
probabilities of the electron-like and hole-like states. This equa-
tion can be simplified by the integration of the δ-function:
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ε ε
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where vj is a root of the equation

ε ε ω( ) − ( ) = ( )v v , 22h e

and the summation is over all roots vj.
In general case, Eq. (22) has two roots. This is illustrated in

Fig. 2 where the left-hand side of Eq. (22) is presented as a func-
tion of v. There are two branches of ε ε[ ( ) − ( )]v vh e corresponding to
the positive and negative potential. One of the branches (the
branch for which >vd 0b ) has a maximum εΔ * at = *v v . In the
limit → ∞v , both branches go to the unique value εΔ ∞. When

ε ω εΔ < < Δ *∞  , there are two roots on the branch that has the
maximum. At ω ε< Δ ∞ , there are also two roots, but they belong
to different branches. Of course, in the other spin sector, the si-
tuation is the same. Eq. (21) takes into account both spin sectors.

Eq. (21) allows one to qualitatively analyze main features of the
absorption spectrum caused by the intracenter electron transi-
tions. It is evident that a singularity of ω( )R appears when

=ε ε( − ) 0d
dv
h e . As can be seen from Fig. 2, the singularity occurs at

two points: = *v vj and → ∞vj . Correspondingly there are two
features in the spectrum of ω( )R . At ω ε= Δ * , the transition rate

ω( )R has the singularity of the form ε ω∼ (Δ * − )−R 1/2. Another
singularity at ω ε= Δ ∞ can be much more strong since the de-
nominator in Eq. (21) goes to zero as ω ε( − Δ )∞ 2. However, when

→ ∞v , the distribution function goes to zero. Therefore the be-
havior of ω( )R near the singularity point is determined by the
asymptotics of the ratio ρ ω ε( ) ( − Δ )∞v / 2 at → ∞v . It is easy to
show that the denominator is proportional to v2 as → ∞v . Thus,

ω( )R is finite in the singularity point if ρ( ) ≃ −v v 2, ω( )R diverges if



Fig. 2. Energy difference of the hole-like and electron-like states, ε ε−h e , as a
function of the defect potential. Full lines correspond to positive and negative
potential in the case where >d 0b . At <d 0b the lines are swapped. Dashed line
corresponds to the symmetric case, db¼0. Calculations were carried out for a¼2,
db¼0.2, Λ¼5.

Fig. 3. The spectrum of optical transition rate in 2D TIs with point defects. (a) Il-
lustration to the qualitative analytical calculations (see the text). Lines 1, 2 and
3 describe the spectrum shape near the singularity point ω ε= Δ ∞ for various
asymptotics of the distribution function ρ( )v at → ∞v . Dashed line–the absorption
due to the electron transitions from the bound states into the conduction band.
(b) The spectra calculated numerically for distribution function of different forms:
1–Gaussian, 2–Lorentzian, with vc¼50. Line 3 is the edge of the absorption due to
the electron transitions from the defects to the conduction band. In this curve, R is
scaled 1:100. The parameters used in the calculation are a¼2.0, db¼0.2, Λ¼5,
vc¼50.

V.A. Sablikov, A.A. Sukhanov / Physica B 503 (2016) 1–6 5
ρ( )v decreases with v slower than v�2, and ω( )R goes to zero if ρ( )v
decreases faster than v�2. This qualitative form of the absorption
spectrum is illustrated in Fig. 3(a), where we show the possible
shapes of the spectrum near the singularity points ( ω ε= Δ * and
ω ε= Δ ∞ ) for different distribution functions.
The full form of the spectrum of ω( )R is studied with the use of
numerical calculations taking into account the electron transitions
depicted by arrows in Fig. 1(a), including the transitions from the
defects to the c-band. The distribution function is taken in two
forms: the Gaussian ρ π( ) = ( ) [ − ( )]−v v v v2 exp / 2c c

1 2 2 and the Lor-
entzian ρ π( ) = ( + )−v v v v/c c

1 2 2 . The results are presented in Fig. 3(b).
They confirm generally the above qualitative picture. In the case of
the Gaussian ρ( )v , the singularity at ω ε= Δ ∞ has the form of two
peaks divided by a deep crevasse, while in the case of the Lor-
entzian ρ( )v only one peak exists at this point. The shape of the
spectrum near the other singularity at ω ε= Δ * has a form of an
asymmetric peak in both cases.
4. Conclusion

Electronic states bound at the structural defects in bulk of the
2D TIs are substantially different from the impurity states in trivial
crystals. We have shown that the nontrivial properties of these
states are manifested in the optical absorption spectrum. The
characteristic features of the spectrum originate from the in-
tracenter electron transitions.

We have studied in detail the case where the defects produce a
short-range potential. These defects create two bound states with
different pseudospin structure. The specific feature of 2D TIs is that
the energy of the bound states depends on the defect potential in
highly unusual way. The energies of both states tend to the lim-
iting values with increasing the potential. It is important that
electric dipole transition can occur between the states localized at
the same defect and hence the intracenter electron transitions can
largely determine the absorption of light. We have calculated the
optical absorption spectrum taking into account another im-
portant fact that the real crystal contains a large number of dif-
ferent defects. We have described the variety of defects by the
distribution function over the potential amplitude.

The main result of our studies is that the defects lead to the
formation of two singularities in the absorption spectrum. One
singularity occurs at the energy close to the difference between
the limiting values of the energies of the hole-like and electron-
like bound states. The form of the spectrum near this point de-
pends on the distribution function of the defect potentials. The
singularity can has the form of a peak or two peaks divided by a
deep crevasse. The second singularity is a peak. Its amplitude and
position are determined by the asymmetry of the electron and
hole bands in 2D TI.

Thus, we conclude that the optical spectroscopy of the bound
states localized at defects can provide valuable information about
nontrivial properties of TIs.
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