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Abstract – An example of strange nonchaotic attractor (SNA) is discussed in a dissipative system
of mechanical nature driven by a constant torque applied to one of the elements of the construction.
So the external force is not oscillatory, and the system is autonomous. Components of the motion
with incommensurable frequencies emerge due to the irrational ratio of the sizes of the involved
rotating elements. We regard the phenomenon as strange nonchaotic self-oscillations, and its
existence sheds new light on the question of feasibility of SNA in autonomous systems.
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The self-oscillations are commonly understood as
sustained oscillatory behaviors in nonlinear dissipative
systems with feedback, which are maintained due to a
stationary (nonoscillatory) energy source [1–3]. Thus, the
characteristics of the oscillations (their form, amplitude
and frequency) are determined by the system itself and
do not depend on the specific initial conditions (at least
in some range of their variations). It is well known that the
images of periodic self-oscillations are attractive limit cy-
cles in phase space. In nonlinear dynamics and chaos the-
ory attractors of other types are considered too, e.g., tori
corresponding to sustained quasi-periodic oscillations, and
strange attractors associated with chaotic self-oscillations.

Note that nontrivial attractors may not necessarily
correspond to self-oscillations. For example, dynamical
behaviors in nonlinear systems with periodic (or more
complex) external driving are interpreted usually as forced
oscillations rather than as self-oscillations, although they
are associated too with attractors in the extended phase
space (that is the state space supplemented with the
time axis). A remarkable creature among them is an
object called strange nonchaotic attractor (SNA), which
may be regarded as somewhat intermediate between
order and chaos. The epithet “strange” opposes SNA to
the torus-attractor, a smooth object in the phase space
formed by the trajectories characterized by the ergodic
property. The term “nonchaotic” opposes SNA to the
strange chaotic attractor as it does not manifest exponen-
tial sensitivity of trajectories with respect to infinitesimal
perturbations, and has no positive Lyapunov exponents.

SNAs were introduced since 1984 [4], and studied
quite widely in relation to nonlinear systems with quasi-
periodic driving (for example, driving with combination
of two or more signals with irrational ratios of the ba-
sic frequencies) [5]. However, attempts to observe SNAs
in autonomous systems, where components with incom-
mensurable frequencies would arise not from the external
driving but generated in the system in a natural way were
unsuccessful [6–8]. Apparently, the consensus is that the
SNAs, as typical objects, do not occur in autonomous dy-
namical systems.

The concept of strange nonchaotic self-oscillations,
which we intend to discuss in this article, corresponds
to a somewhat different and more physical aspect of the
problem; indeed, as noted, the concepts of attractors and
self-oscillations are not identical. We will deal here with a
class of systems of mechanical nature, in which the incom-
mensurable frequencies may appear due to an irrational
ratio of sizes of the rotating elements involved in the mo-
tion, while the external driving is not oscillatory being
implemented by the applied torque, which is constant in
time. Such systems may be represented by pendulums in-
teracting via the belt or friction transmissions between the
rotating shafts or disks attached to them, or by vehicles
equipped with wheels of different sizes performing motions
on a rough surface without slip.

For a simple system of dissipative pendulums with
frictional transmission and constant torque driving we
will demonstrate a sustained dynamical behavior, which
must be regarded as self-oscillatory according to the
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Fig. 1: (Color online) Schematic representation of a mechanical system able to manifest strange nonchaotic self-oscillations.

basic definition, being associated with SNA in the phase
space of the system described by ordinary differential
equations.

Consider a set of disks 1, 2, 3 mounted in a vertical
plane (fig. 1); two of them (1 and 3) are coaxial and un-
dergo mutual viscous friction proportional to the relative
angular velocity. The motion is provided by a constant,
not varying in time, torque applied to the disk 1, which
touches the disk 2, so that frictional transmission of ro-
tation without slipping takes place. In addition, the disk
1 undergoes viscous friction under rotation proportional
to its angular velocity. For simplicity, we assume that the
inertial properties of the system are completely provided
by the point masses m1, m2, m3 attached to the disks on
the distances l1, l2, l3 from the respective disk axes.

In essence, this is a system of pendulums with imposed
mechanical constraint. The ratio of radii of the disks 1

and 2 connected through the friction transmission is sup-
posed to be defined by an irrational number ρ = r1/r2.
Note that the irrational value of ρ is a matter of principle.
If ρ is rational, a synchronization of rotary motion of disks
1 and 2 will occur, and an ergodicity of quasiperiodic ro-
tation with respect to the initial phases of the rotators will
be broken. This restriction does not violate the physical
realism of the model, since the set of irrrational numbers
has measure “one” on the number axis, so we can expect
that SNAs will occur for a positive measure in a param-
eter space. The condition of motion without slip of the
rotating disks is expressed by the relation to the angular
coordinates θ2 = ρθ1 + u and to the angular velocities
θ̇2 = ρθ̇1. Taking this into account, we can write down
the Lagrange function of the system as dependent only on
the angular coordinates θ1,3 and velocities θ̇1,3:
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1
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Introducing dissipation via the Rayleigh function,
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we obtain the equations of motion of the form [9]
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we obtain the equations

θ̈ = − sin θ − λ2 sin (ρθ + u) + γϕ̇ − (β + γ)θ̇ + M,

µϕ̈ = −λ3 sin ϕ + γ(θ̇ − ϕ̇), (6)

where θ = θ1, ϕ = θ3. Under the condition µ ≪ 1 the
equations are reduced to

θ̇ = ω,
ω̇ = − sin θ − λ2 sin (ρθ + u) − λ3 sin ϕ − βω + M,
ϕ̇ = −λ3γ

−1 sin ϕ + ω.
(7)

In what follows we will investigate the model (7) fixing
λ3 = 1, β = 1, γ = 1, ρ = (

√
5 + 1)/2, and varying the

parameters λ2 and M .

30004-p2



Strange nonchaotic self-oscillator

Fig. 2: Attractors in projection onto the plane in the Poincaré
section θ (mod 2π) = 0 for λ2 = 0.8 corresponding to a two-
dimensional torus at M = 2.3 (a), a three-dimensional torus at
M = 3.0 (b), a strange nonchaotic attractor at M = 2.1 (c),
and a chaotic attractor at M = 2.2 (d).

Figure 2 shows examples of attractors of the sys-
tem (7) depicted as projections of the cross-sections
of the attractors at instants in which the phase vari-
able θn = θ0 + 2πn, n = 1, . . . , 106. In panel (a) one
can see a smooth closed invariant curve, which cor-
responds to a cross-section of the attractor being a
two-frequency torus. Panel (b) corresponds to a three-
frequency torus-attractor; its section gives rise to a smooth
two-dimensional toral surface. Attractors in panels (c) and
(d) are strange, and for their identification the dynamic
and metric characteristics have to be evaluated (Lyapunov
exponents, phase sensitivity, fractal dimensions). As we
will see, the first of them is a SNA, and the other is a
chaotic attractor.

The calculation of the Lyapunov exponents was carried
out in accordance with the well-known algorithm [10], for
which the system (7) was linearized:

˙̃θ = ω̃,

˙̃ω = −θ̃ cos θ − λ2(ρθ̃ + ũ) cos (ρθ + u) − λ3ϕ̃ cosϕ − βω̃,

˙̃ϕ = −λ3γ
−1ϕ̃ cosϕ + ω̃. (8)

Next, together with the system (7), a set of three
copies of the variation equations (8) with the vectors
{θ̃(k), ω̃(k), ϕ̃(k)}k=1,...,3 and ũ(k) = 0 was integrated nu-
merically, subjected to the procedure of Gram-Schmidt
orthogonalization and normalization at successive steps of
the integration. The logarithms of the normalizing coeffi-
cients were summed and averaged coefficients resulting in
a set of three Lyapunov exponents.

For the two-frequency torus in fig. 2(a) the Lya-
punov exponents are Λ1 = 0 ± 0.00001, Λ2 = −0.0979,

Fig. 3: (Color online) The power spectra calculated for the
variable θ̇ for the system (7) in the case of λ2 = 0.8: (a) M =
2.3, two-dimensional torus; (b) M = 3.0, three-dimensional
torus; (c) M = 2.1, SNA; (d) M = 2.2, chaotic attractor.

Λ3 = −0.798 (there is one zero and two negative expo-
nents). For the three-frequency torus of fig. 2(b) we have
Λ1 = 0±0.00001, Λ2 = 0±0.00001, Λ3 = −0.937 (two zero
exponents and a negative one).

The attractor in fig. 2(c) is characterized by a set of
Lyapunov exponents Λ1 = 0±0.00001, Λ2 = −0.105, Λ3 =
−0.894, that indicates its nonchaotic nature. Finally, the
chaotic attractor in fig. 2(d) has a positive, a zero, and
a negative exponent: Λ1 = 0.0206, Λ2 = 0 ± 0.00001,
Λ3 = −0.869.

The characteristic power spectra for the respective os-
cillation modes are shown in fig. 3. The spectrum is
discrete for the two- and three-frequency quasi-periodic
modes (panels (a) and (b)), discrete-continuous for the
strange nonchaotic self-oscillations (panel (c), cf. [5,11]),
and it is continuous for the chaotic regime (panel (d)).

Figure 4(a) depicts the Lyapunov exponents vs. param-
eter M for a fixed value of λ2 = 0.8. This allows to reveal
exactly intervals of chaotic dynamics, where the senior
Lyapunov exponent is positive, and intervals of 3-torus,
where two zero and one negative exponents exist. As well,
this diagram makes it possible to guess the existence of
a SNA taking into account the degree of brokenness of
the parameter dependences for the nontrivial exponents.
This brokenness appears as a consequence of the paramet-
ric sensitivity (structural instability) of SNA to variations
in the control parameter of the system responsible for the
intensity of the constant external driving.

Figure 4(b) gives a more detailed picture of the param-
eter space structure for the system (7). There we present
a fragment of the parameter plane chart where the “in-
teresting” dynamics occur, including different transitions
between regular and “strange” dynamic modes, and, prob-
ably critical phenomena of codimension 2 similar to those
discussed in [12,13]. The blue color represents the areas
of two-frequency tori (2T), green designates the three-
frequency tori (3T), yellow means the strange nonchaotic
attractor (SNA), and the red color corresponds to chaos
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Fig. 4: (Color online) (a) Plots of the Lyapunov exponents vs.

parameter M at λ2 = 0.8. (b) Chart of dynamical regimes for
the system (7), where blue areas correspond to two-frequency
tori, green designates the three-frequency tori, yellow means
SNA, and red regions correspond to chaos.

(CA). In the white area below the line M = λ2 + 1, the
attractor is a trivial stable equilibrium point.

In order to identify the regions of existence of SNA
with certainty, distinguishing them from domains of the
two-frequency tori, which have the same signature of the
Lyapunov spectrum {0, −, −}, we use the phase sensi-
tivity method [5,14]. For this, in the linearized sys-
tem (8) we introduced the additional infinitesimal phase
shift ũ = const �= 0, and then eqs. (8) were integrated
together with (7) and with initial conditions θ̃(0) =
0, ω̃(0) = 0, ϕ̃(0) = 0, ũ(0) = 1. Now, define a piecewise
smooth function as magnitude of the maximal varia-
tion of the variables along the orbit segment, namely,

Γmax(T ) = maxt∈[0,T ]

√

θ̃2(t) + ω̃2(t) + ϕ̃2(t). Next, fol-

lowing [14], we introduce the phase sensitivity function as
minimum over the functions Γmax(T ) computed along a
set of N trajectories with randomly specified initial con-
ditions: Γ(T ) = min(θn(0),ωn(0),ϕn(0))n=1,...,N

Γmax(T ). It
is known that the function of the phase sensitivity is
bounded when the attractor is a smooth torus, and in-
creases without limit according to a power law Γ(T ) ∝ T δ,
where δ > 0 is the index of the phase sensitivity in the case
of SNA. Typical plots of Γ(T ) for a smooth two-frequency

Fig. 5: (a) Plot of the phase sensitivity function for the SNA
mode (δ = 1.7) and for the 2-frequency torus (δ = 0). (b) The
dependence of the Rényi entropy Hq(ε) on the partition scale
ε for q = 0, 1, 2.

torus (δ = 0) and for an SNA (δ = 1.7) are shown
in fig. 5(a). The parameter values are the same as in
fig. 2(a), (c).

Direct verification of the “strange” geometric structure
of the attractor can be performed by calculating the frac-
tal dimensions [15]. The spectrum of generalized dimen-
sions is introduced via the Rényi entropy values Hq(ε)
depending on the parameter q:

Hq(ε) =
1

1 − q
log

⎛

⎝

N(ε)
∑

i=1

pq
i

⎞

⎠ , Dq = − lim
ε→0

Hq(ε)

log ε
. (9)

Here ε is the size of the elements covering the attractor,
pi is the measure (the probability of visiting) attributed
to the i-th element. With q = 0, 1, and 2 we get the ca-
pacitance, information, and correlation dimension, respec-
tively. (It should be noted that with q = 1 the l’Hôpital
rule has to be applied in formulas (9) to exclude the un-
certainty.) It is believed [16,17] that the dimensions for
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the strange nonchaotic attractor are D0 = 2, D1 = 1 and
D2 < 1.

To calculate the dimensions we perform the Poincaré
section for trajectories on the attractor at θn = θ0 +
2πn, n = 1, . . . , 107. Next, at a given q = 0, 1, 2 we plot
the Rényi entropies Hq(ε) vs. ε and select linear parts
of the plots there (see fig. 5(b)); the slope coefficient just
yields the respective fractal dimension Dq. The following
values were obtained: D0 = 1.8, D1 = 1.02, D2 = 0.96,
which reasonably agrees with the estimation cited above.

Thus, it is shown that the nonchaotic oscillatory regimes
of the system (7) may possess dynamic and metric char-
acteristics intrinsic to SNA, and be observable in wide
parameter ranges of the physical system of mechanical
nature. This raises a number of issues related to the oc-
currence and destruction of SNA in the self-oscillating sys-
tems. In general, the ability to convert irrationally related
spatial scales to the incommensurable temporal ones ex-
pands essentially the class of systems, which can manifest
the strange nonchaotic dynamics. We stress that in terms
of the theory of dynamical systems the model system (7)
formally is autonomous (with coefficients independent ex-
plicitly of time) in contrast to all the previously considered
systems with SNA.
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