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We propose a new three-dimensional map that demonstrates the two- and three-frequency quasi-
periodicity. For this map, all basic quasi-periodic bifurcations are possible. The study was real-
ized by using Lyapunov charts completed by plots of Lyapunov exponents, phase portraits and
bifurcation trees illustrating the quasi-periodic bifurcations. The features of the three-parameter
structure associated with quasi-periodic Hopf bifurcation are discussed. The comparison with
nonautonomous model is carried out.
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1. Introduction

Quasi-periodic oscillations are widespread in nature
and technology [Blekhman, 1988; Landa, 1996;
Pikovsky et al., 2001; Anishchenko et al., 2007a].
Examples of quasi-periodic behavior are found in
electronics [Glazier & Libchaber, 1988], neurody-
namics [Izhikevich, 2000], astrophysics [Lamb et al.,
1985], physics of lasers [Mel’nikov et al., 1991], geol-
ogy [Didenko, 2011] and other areas of science.

In the simplest case, the quasi-periodic oscil-
lations are characterized by the presence of two
incommensurable frequencies. In the phase space,
attractors corresponding to such oscillations have
the form of invariant tori [Anishchenko, 1995;
Shil’nikov et al., 2001; Broer & Takens, 2010].
There are more complicated cases of greater number
of incommensurable frequencies — then multifre-
quency oscillations are observed which correspond
to invariant tori of higher dimensions. Invariant
tori may undergo a variety of bifurcations. In this
case we speak about quasi-periodic bifurcations
[Broer et al., 2008a, 2008b; Vitolo et al., 2011].

The basic ones are the next three bifurcations:

• the saddle-node bifurcation. Collision of stable
and unstable tori leads to the abrupt birth of
higher-dimensional torus.

• the quasi-periodic Hopf bifurcation. Torus of
higher dimension is born softly.

• the torus-doubling bifurcation.

Currently there are no reliable identification algo-
rithms for such bifurcations and their search is exe-
cuted by means of the characteristic dependence
of Lyapunov exponents on parameter [Broer et al.,
2008a, 2008b; Vitolo et al., 2011].

While examining the quasi-periodic bifurcations
the selection of the model for studying plays a
crucial role. Some aspects can be studied based
on nonautonomous systems. However, such sys-
tems form a separate, special class. As concern-
ing the known autonomous models, the number of
low-dimensional variants is not very large. Several
examples of suitable generators have been proposed
recently. The first example, obviously, is a Chua’s
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circuit, which is described by specific piecewise-
linear characteristics [Matsumoto et al., 1987].
In [Nishiuchi et al., 2006] a generator based
on the modified Bonhoeffer–van der Pol sys-
tem is offered. Also we know a modification
of climate Lorenz model — the Lorenz-84 low-
order atmospheric circulation model [Shil’nikov
et al., 1995]. Another radiophysical example imple-
mented as a four-dimensional system is a modified
Anishchenko–Astakhov generator [Anishchenko &
Nikolaev, 2005; Anishchenko et al., 2006, 2007a].
In [Kuznetsov et al., 2010; Kuznetsov et al., 2013,
2015; Kuznetsov & Stankevich, 2015], a family
of simple generators of quasi-periodic oscillations
described by three-dimensional models was sug-
gested and studied (including experiment). There
have been studied cases of autonomous dynamics
as well as on the generator under external forcing
and dynamics of coupled oscillators [Anishchenko
et al., 2006, 2007b; Kuznetsov et al., 2013; Stanke-
vich et al., 2015].

It is known that flow systems (differential equa-
tions) are quite difficult for research, especially
when concerning the study of delicate effects like
quasi-periodic bifurcations. Therefore, it is natu-
ral to deal with a simpler model such as discrete
maps. In this case, the image of two-frequency oscil-
lations in the phase space is an invariant curve. As
for flows, the same object emerges in the Poincaré
section of torus. (Thus frequently such invariant
curves are also referred to as tori.) The higher is
the map dimension the higher may be dimension
of the torus. Most recently, appropriate investiga-
tions of model maps have been undertaken. In paper
[Kuznetsov et al., 2012b] the four-dimensional sys-
tem of two coupled universal maps with Neimark–
Sacker bifurcation is examined. In [Sekikawa et al.,
2014; Kamiyama et al., 2014], a four-dimensional
map representing two logistic maps with delay was
studied. The authors of the papers [Hidaka et al.,
2015a; Hidaka et al., 2015b] undertook an analo-
gous study of six-dimensional system in the form
of three logistic maps with delay. In [Adilova et al.,
2013] the six-dimensional model which represents
two coupled discrete versions of the Rössler system
is examined.

However, the dimension of the above-mentioned
systems is too large compared to the dimension
which is formally necessary to observe two- and
three-frequency quasi-periodicity. An exception is
the paper [Dementyeva et al., 2014] that studied

the three-dimensional system in the form of three
coupled in a ring of logistic maps with a specific cou-
pling. Nevertheless, the analysis of the problem in
this paper seems inadequate. The noteworthy model
from [Broer et al., 2008a, 2008b; Vitolo et al., 2011]
was used for studying quasi-periodic bifurcations,
but its construction is a complex formal procedure.
Although the model describes the very important
points, the discussed picture is still not quite com-
plete. (The authors carried out only two-parameter
analysis, they mainly focused on the description of
resonance 1:5.)

It can be noted that in [Anishchenko et al.,
1994] the coupled logistic maps with quasi-periodic
forcing are studied. The research concerns bifurca-
tions and mechanisms of transition to chaos through
the destruction of three-dimensional torus. How-
ever, not all the essential points have been inves-
tigated in detail. Moreover, this model belongs to
the class of nonautonomous systems, i.e. systems
with external forcing.

Thus, there is a problem to construct
autonomous models in the form of maps with the
minimum necessary dimension equal to three that
allows to study the properties of quasi-periodic
dynamics and quasi-periodic bifurcations (we use
the world “simplest” in the paper title to emphasize
the lowest dimension of our autonomous model).
In the present paper, such a model is represented
by a discrete analogue of quasi-periodic generator
[Kuznetsov et al., 2013, 2015]. We focus on the
research of the structure of the parameter space
focusing on the phenomena associated with quasi-
periodic Hopf bifurcation.

2. Torus Map Construction

Let us consider the generation of quasi-periodic
oscillations [Kuznetsov et al., 2013, 2015]:

ẍ − (λ + z + x2 − βx4)ẋ + ω2
0x = 0,

ż = b(ε − z) − kẋ2.
(1)

The multiplier ahead of the derivative ẋ contains
the parameter λ which characterizes the depth
of the positive feedback in the oscillator, the non-
linear term x2 stimulates the excitation of oscilla-
tions and the term x4 responsible for the saturation
of the oscillations at large amplitudes. The dynam-
ics of the variable z can occur linearly at a speed
b or undergo the nonlinear saturation due to the
term kẋ2.
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Fig. 1. Lyapunov chart for generating of quasi-periodic
oscillations (1), b = 1, ε = 4, k = 0.02, ω0 = 2π.

The model (1) has an equilibrium x0 = y0 = 0,
z0 = ε. It is easily verified that this equilibrium
undergoes Andronov–Hopf bifurcation AH at λ =
−ε leading to the birth of a limit cycle. By increas-
ing the parameter λ, the Neimark–Sacker bifurca-
tion NS consisting in the birth of a two-dimensional
torus is possible. In Fig. 1, we demonstrate the
Lyapunov chart for system (1) where different col-
ors indicate the areas of periodic regimes P , the
two-frequency quasi-periodicity T2 and chaos C. We
can see the curve of Neimark–Sacker bifurcation NS
with the adjoined set of Arnold tongues immersed
in the region of quasi-periodic oscillations.

Let us rewrite Eqs. (1) in the form of first-order
system

ẋ = y,

ẏ = (λ + z + x2 − βx4)y − ω2
0x,

ż = b(ε − z) − ky2

(2)

and construct a discrete analog of Eqs. (2). For
this purpose, we use a substitution for time deriva-
tives by finite differences similarly to [Zaslavskii
et al., 1988; Zaslavsky, 2007; Arrowsmith et al.,
1993]. The transition to finite differences will pro-
vide some additional characteristic time scale — a
discretization step, which usually leads to new types
of dynamics. The result is a model that we call a
torus map:

xn+1 = xn + h · yn+1,

yn+1 = yn + h · ((λ + zn + x2
n − βx4

n)yn − ω2
0xn),

zn+1 = zn + h · (b(ε − zn) − ky2
n).

(3)

Here h is a discrete time step. Note that for the
first equation we use a semi-explicit Euler scheme,
i.e. we take the value of the variable y in (n + 1)th
moment. This discretization usually leads to more
physically correct models [Morozov, 2005].

3. Properties of Torus Map with
Quasi-Periodic Dynamics

Let us study the obtained map. We use the same
set of parameters as for Fig. 1 and will gradually
increase the discretization parameter h. In the cen-
ter of Fig. 2 a numerically calculated Lyapunov
chart for system (3) at the value h = 0.05 is shown.
Different colors in the chart denote the following
regions defined in accordance with the spectrum of
Lyapunov exponents Λ1,Λ2,Λ3:

(a) P — periodic regimes (cycles), Λ1 < 0, Λ2 < 0,
Λ3 < 0;

(b) T2 — two-frequency quasi-periodicity, Λ1 = 0,
Λ2 < 0, Λ3 < 0;

(c) T3 — three-frequency quasi-periodicity, Λ1 = 0,
Λ2 = 0, Λ3 < 0;

(d) C — chaotic regimes, Λ1 > 0, Λ2 < 0, Λ3 < 0;
(e) HC — hyperchaotic regimes, Λ1 > Λ2 > 0,

Λ3 < 0;
(f) D — a divergence of trajectories.

Due to the smallness of the discretization
parameter h the structure of the chart is partly
qualitatively similar to that of the original flow
system (1). (The smaller h the better an approxi-
mation to the flow system.) However the discretiza-
tion leads to the replacement of periodic regimes
of flow system (1) by two-frequency regimes and
two-frequency by three-frequency ones in Fig. 1.
Thus in Fig. 2 can see a picture of tongues of two-
frequency regimes that in configuration are similar
to traditional Arnold tongues. The mentioned set
of tongues immerses in a region of three-frequency
tori. The tongues in Fig. 2 correspond to resonant
two-frequency tori lying on the surface of three-
frequency torus.

In Fig. 2, we show examples of phase portraits
at the various points of the parameter plane. Below
right to the line QH torus looks like a simple oval.
In the three-frequency region this oval is smeared.
Inside the tongues of two-frequency regimes the
attractors have the form of closed invariant curves.
In different tongues on the plain (x, y) these curves
differ in the number of turns around the origin.
Such curves replace the simple limit cycles in the
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Fig. 2. Lyapunov chart of the torus map (3) and typical phase portraits. QH is a line of quasi-periodic Hopf bifurcation.
Discretization parameter value h = 0.05.

Poincaré section of the original model (1) and
their shape indicates that discretization even with
a small step h leads to a specific modification of the
observed structure.

In turn inside tongues of two-frequency tori
the areas of periodic regimes arise. In this case
on the invariant curve of complex shape there is
a set of points of appropriate long-period cycle, i.e.
such regimes are resonant with respect to the cor-
responding two-frequency torus.

Let us now discuss bifurcations of quasi-
periodic regimes. With this goal we turn to Lya-
punov exponent plots in Fig. 3 calculated along
those selected in Fig. 2, line β = 0.057. Such a
line crosses the three-frequency periodicity region
from the bottom to the top. At the point QH a
two-frequency torus (Λ1 = 0) undergoes bifurca-
tion. As can be seen from Fig. 3, the feature of this

bifurcation is that below the threshold the expo-
nents Λ2 and Λ3 are equal, Λ2 = Λ3. At the bifur-
cation point, both these exponents vanish. Beyond
the bifurcation point, exponents do not coincide:
the second exponent is equal to zero, Λ2 = 0, and
the third one becomes negative, Λ3 < 0. Exactly at
the point of bifurcation the condition Λ1 = Λ2 = 0
is fulfilled and a three-frequency torus emerges. This
bifurcation is called quasi-periodic Hopf bifurcation
QH. Its distinguishing feature is the realization of
criterion of coincidence of two exponents beyond the
bifurcation point [Vitolo et al., 2011; Broer et al.,
2008a].

With increasing of control parameter λ the
route β = const on the chart in Fig. 1 crosses
many tongues of two-frequency tori. In the plot
of Fig. 3(a) such tongues manifest themselves as
dips in the graphs of the second exponent. The
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(a)

(b)

Fig. 3. Three Lyapunov exponents of the model (3) versus (a) parameter λ and (b) the magnified fragment. Also seen is
the location of quasi-periodic Hopf bifurcation point QH and saddle-node torus bifurcations SNT. Discretization parameter
h = 0.05, parameter β = 0.057.

boundaries of these areas are formed by lines of
saddle-node torus bifurcation SNT. One of the
deepenings in the enlarged view is demonstrated in
Fig. 3(b). Distinct characteristics of SNT bifurca-
tion is that the second Lyapunov exponent Λ2 van-
ishes, but values Λ2,Λ3 are not equal to each other
[Vitolo et al., 2011; Broer et al., 2008a]. Herewith
the third exponent Λ3 remains always negative [see
Fig. 3(b)]. On the other side of the tongue, such a
bifurcation takes place in reverse order.

Accordingly we can indicate the curve of quasi-
periodic Hopf bifurcation QH in Fig. 2 separat-
ing three-frequency and two-frequency regions. In
the discrete model (3) such a line replaces the
line of Neimark–Sacker bifurcation NS in the flow-
prototype (1) displayed in Fig. 1.

It should be noted that quasi-periodic Hopf
bifurcation is essentially three-parameter phenom-
enon in contrast to the traditional two-parameter
Neimark–Sacker bifurcation. The physical nature of
this fact is explained by adding a parameter asso-
ciated with additional frequency. In model (3) such
a parameter can be a discretization step h, which
is responsible for an additional time scale. There-
fore, we will increase the parameter h and trace the
emerging changes in the structures of domains on
the examined parameter plane.

Let us discuss the case h = 0.1, Fig. 4. There
are significant qualitative changes on the parame-
ter plane. A distinctive set of Arnold-type tongues
disappears. From the line of a quasi-periodic Hopf
bifurcation QH the bands of two-frequency regimes
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(a)

(b)

(c)

Fig. 4. (a) Lyapunov chart of torus map (3) for parameter
of discretization h = 0.1, (b) its enlarged segment and (c) the
chart of regimes of torus map.

are issued. The crosswise bands of periodic regions
(exact resonances) are built in these two-frequency
areas. In the enlarged part of Lyapunov chart,
Fig. 4(b), we see that the mentioned resonances
generate secondary sets of the fan-shaped two-
frequency tongues, immersed in a three-frequency
region.

To better visualize and distinguish periodic
regimes we mark by different colors and numbers
the cycles of various periods [Fig. 4(c)]. Gray color
corresponds to all the nonperiodic regimes. It can be

seen that the built-in areas of periodic regimes have
different periods, and their values are large enough.

Another representative fact in Fig. 4 consists in
period-10 tongue approaching the mentioned two-
frequency band from the main two-frequency area
as described in [Broer et al., 2008b].

In Fig. 5, we demonstrate the examples of phase
portraits. There the cycle of period-10 can be seen
and also its transformations within the correspond-
ing two-frequency resonance region. An emergence
of small isolated ovals may be observed around the
elements of the period-10 cycle. Cycles of very high
periods inside narrow regions of periodic regimes are
very typical. Thus, the structure of the parameter
plane is different from that in Fig. 2.

Plots of Lyapunov exponents calculated along
the vertical line in Fig. 5 are shown in Fig. 6. In
this case, we observe a quasi-periodic Hopf bifurca-
tion QH. Another illustration of such bifurcation is
a bifurcation tree presented in Fig. 6(b) of appro-
priate scale. One can note the “smeary” crown of
the tree that signalized about the quasi-periodic
dynamics. At the point of quasi-periodic Hopf bifur-
cation QH, we observe the widening of the bifurca-
tion tree, and it occurs in a gentle way.

Figure 7 presents the enlarged fragments of
Fig. 6. We can see a strong irregularity of diagrams
due to the increasing complexity of the parame-
ter plane. There are many alternating regions of
two-frequency quasi-periodic and periodic regimes.
Nevertheless, there are distinguished areas of res-
onance tori bounded by saddle-node bifurcation
points SNT.

In Fig. 7(b), we show the part of the bifurca-
tion tree to conclude that in contrast to the points
QH, at saddle-node torus bifurcation SNT points,
the expansion of the crown occurs abruptly. It hap-
pens due to the nature of the bifurcation — stable
and saddle two-frequency tori collide and three-
frequency torus occurs abruptly [Vitolo et al., 2011;
Broer et al., 2008a]. On the bifurcation tree, also
clearly seen is the resonance window of the periodic
regime.

The chart of Lyapunov exponents for greater
value of parameter h is shown in Fig. 8. Now
the band of period-10 is not visible. The bot-
tom of the largest two-frequency tongue is limited
by the bifurcation line, where the corresponding
Lyapunov exponent vanishes. On the chart this
line appears as a thin blue strip. Its type can be
determined by studying the phase portraits: this
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(a)

(b)

Fig. 6. (a) Dependence of three Lyapunov exponents on parameter λ and (b) bifurcation tree, numerically calculated for the
model (3). The point of quasi-periodic Hopf bifurcation QH is marked. Discretization step h = 0.1, parameter β = 0.081.
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Fig. 7. Enlarged fragment of Fig. 6. Points of saddle-node torus bifurcation SNT and typical phase portraits are indicated.
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Fig. 8. A chart of Lyapunov exponents and phase portraits of torus map (3) at h = 0.16.

is a torus-doubling bifurcation [Anishchenko, 1995;
Vitolo et al., 2011]. Indeed, instead of a single oval
we have two overlapping ovals. They are obtained
by the projection of two isolated closed invariant
curves lying in three-dimensional space (x, y, z) on
the surface of the torus. The phase portrait in Fig. 8
illustrates another such bifurcation for already dou-
bled torus. Thus, on increasing the discretization
parameter, a new transformation occurs in compar-
ison with Fig. 4.

4. Nonautonomous Model with
Quasi-Periodic Dynamics

It is interesting to compare the studied dynam-
ics with the case of nonautonomous systems. It
is necessary to choose such a system to investi-
gate two-frequency quasi-periodicity and Neimark–
Sacker bifurcation. An appropriate example is a
universal map [Kuznetsov et al., 2012a] for which
there are all main bifurcation scenarios of two-
dimensional maps:

xn+1 = Sxn − yn − (x2
n + y2

n),

yn+1 = J + xn − 1
5
(x2

n + y2
n).

(4)

In Fig. 9, we demonstrate a diagram for the uni-
versal map [Kuznetsov et al., 2012b], which com-
bines the properties of Lyapunov exponent chart
and the chart of periodic regimes. It contains
Neimark–Sacker bifurcation line NS, J = 1, and
a set of Arnold regular tongues.

Let us use the next form of external driving:

xn+1 = Sxn − yn − (x2
n + y2

n),

yn+1 = J + xn − 1
5
(x2

n + y2
n) + ε cos 2πθn,

θn+1 = w + θn (mod 1).

(5)

Fig. 9. Combined chart of Lyapunov exponents and chart
of periodic regimes for universal two-dimensional map (4),
NS — line of Neimark–Sacker bifurcation.
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Three-Frequency Quasi-Periodicity and Quasi-Periodic Bifurcations

Fig. 10. Lyapunov chart of universal two-dimensional
map (5) with quasi-periodic external force. Parameter ε=0.1.

A parameter determining the frequency of driv-
ing force is equal to the golden mean, w =

√
5−1
2 ,

which provides the quasi-periodic type of observed
dynamics.

The Lyapunov chart of model (5) is shown in
Fig. 10. Compared with Fig. 9 the periodic regimes
are replaced by two-frequency regimes, and two-
frequency regimes become three-frequency ones in
Fig. 10. Also we can see bands of two-frequency
modes replacing the tongues as well as typical ovals
at the bottom of some of the wide tongues corre-
sponding to torus-doubling bifurcations. However,
a significant difference from the dynamics discussed
above is the lack of periodic resonances within
tongues. Accordingly, there are no secondary two-
frequency resonances in their neighborhood.

Thus, the nonautonomous systems exhibit
some characteristics that are typical for autono-
mous models with quasi-periodicity, but fundamen-
tal differences are inevitable.

5. Conclusion

Thus, the substitution of time derivatives by finite
differences in the equation when generating quasi-
periodic oscillations (1) provides a new conve-
nient model in the form of a three-dimensional
map. This map demonstrates the regimes of two-
frequency and three-frequency quasi-periodicity
and all basic quasi-periodic bifurcations. Typical
Lyapunov exponent plots and bifurcation trees
are presented. Such map allows to study a three-
parameter structure of quasi-periodic Hopf bifurca-
tion. With variation of third parameter there are
significant changes in the structure of the param-
eter plane and the form of phase portraits. The
fundamental difference from nonautonomous sys-
tems with quasi-periodic forcing is the possibility
of various periodic resonances and the secondary

tongues of two-frequency regimes associated with
them.
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