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We develop a numerical test of hyperbolicity of chaotic dynamics in time-delay systems. The test is based on
the angle criterion and includes computation of angle distributions between expanding, contracting, and neutral
manifolds of trajectories on the attractor. Three examples are tested. For two of them, previously predicted
hyperbolicity is confirmed. The third one provides an example of a time-delay system with nonhyperbolic chaos.
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Hyperbolic chaotic attractors, such as the Smale-Williams
solenoid and some other mathematical examples, manifest
deterministic chaos justified in a rigorous mathematical sense
[1–3]. In such attractors all orbits in state space are of
saddle type, and their expanding and contracting manifolds
do not have tangencies but can only intersect transversally.
These attractors demonstrate strong stochastic properties and
allow a detailed mathematical analysis. They are rough,
i.e., structurally stable. This means robustness with respect
to variation of functions and parameters in the dynamical
equations, and insensitivity of chaos characteristics to noises,
interferences, etc. In the theory of oscillations, since the classic
work of Andronov and his school [4,5], rough or structurally
stable systems are regarded as those subjected to priority
research and as the most important for practice. It seems natural
that the same should be true for systems with structurally stable
uniformly hyperbolic attractors. However, until very recently,
no physical examples were known. The hyperbolic attractors
were commonly regarded as purified abstract mathematical
images of chaos rather than something intrinsic to real-
world systems. In this situation, a good method was to
turn to a purposeful construction of systems with hyperbolic
dynamics using a toolbox of physics (oscillators, particles,
fields, interactions, feedback circuits, etc.) instead of that of
mathematics (geometric, algebraic, topological constructions).
In this regard, certain progress has been achieved recently, and
many realizable physically motivated systems with hyperbolic
attractors have been offered [6,7].

Naturally, physical and technical devices we deal with
are not well suited to allow mathematical proofs, although
confident confirmation of hyperbolicity is significant to exploit
properly the relevant results of mathematical theory. So it is
vital to employ numerical instruments for computational tests
of hyperbolicity.

In this respect one has to mention first the so-called
cone criterion based on a mathematical theorem adapted to
computer verification that has been applied for some low-
dimensional systems [8–10].

The second approach is based on the verification of
transversality of stable and unstable manifolds for orbits
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belonging to the attractor, or more generally, to an invariant set
of interest. It involves an inspection of statistical distributions
of the angles between the manifolds. If hyperbolicity holds, all
the observed angles have to be distant from zero. This method
was suggested initially in Ref. [11] and then developed and
used with modifications in Refs. [12–22]. It may be regarded
as an extended version of Lyapunov analyses, well-established
and applied successively not only for low-dimensional systems
but for spatiotemporal systems too.

An important class among nonlinear systems with complex
dynamics is formed by systems containing time-delay feed-
back loops. Such examples are widespread in electronics, laser
physics, acoustics, and other fields [23]. An adequate math-
ematical description for these objects is based on differential
equations with delays [24–26]. These dynamical systems have
to be treated as possessing infinite-dimensional state space
since a continuum of data, i.e., a trajectory segment, determines
each new infinitesimal time step. A number of time-delay
systems with chaotic dynamics was explored [27–37]. Several
examples of them were suggested as realizable devices for
generation of rough hyperbolic chaos [33–37]. However, no
computer verification of hyperbolicity was provided for these
systems as no appropriate methods were elaborated for this
special class of infinite-dimensional dynamics.

In the present paper we extend the angle criterion to make it
applicable for time-delay systems with one constant retarding
time.

To start with, let us recall the content of the angle crite-
rion for finite-dimensional systems following Refs. [19,20].
For a system defined by a set of m ordinary differential
equations Ẋ = F (t,X), the corresponding variational equation
for infinitesimal perturbations near the reference orbit X(t)
reads

ẋ = J(t)x, (1)

where X,x ∈ Rm are the state vector and the perturbation
vector, respectively, and J(t) ∈ Rm×m is the Jacobi matrix.
The notation J(t) presumes the dependence of this matrix both
on t and X(t). If the dependence of F and, consequently, of
J on t is explicit, the system is nonautonomous. (In this case
we always restrict ourselves to considering equations with
periodic dependencies of coefficients on t .)
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Assume that we deal with an invariant set (attractor)
possessing p positive, one zero, and m − p − 1 negative
Lyapunov exponents. To compute the angles between expand-
ing, neutral, and contracting tangent subspaces we first need to
run the standard algorithm for computing Lyapunov exponents
[38,39]. The main system is solved simultaneously with p + 1
copies of the variational Eq. (1). Periodically, perturbation
vectors x produced by the variational equations are orthogo-
nalized and normalized. In matrix notation it corresponds to
the so-called QR decomposition [40] of a m × (p + 1) matrix
whose columns are the perturbation vectors x. This procedure
represents the matrix as a product of an orthogonal matrix
Q and an upper triangle matrix R. Often this is implemented
via the Gram-Schmidt algorithm [40]. The columns of Q are
used in further computations as new perturbation vectors. After
excluding transient iterations, they converge to the so-called
backward Lyapunov vectors [20] (they are called “backward”
since arrive at t after initialization in the far past; notice also
that the convergence does not imply the time constancy of these
vectors). Computing Lyapunov exponents, one accumulates
logarithms of the diagonal elements of R, but in the framework
of the angle criterion one has to store the backward Lyapunov
vectors instead. The time interval between successive QR
decompositions can be chosen arbitrarily, but it must be not
too large to avoid an overflow of computer digital registers.
The backward Lyapunov vectors are stored for a discrete set
of points where the angles will be computed later.

The next stage of the routine consists in the passage along
the same reference orbit backward in time applying the similar
Lyapunov algorithm but for p + 1 vectors generated now by
the adjoint variational equation

ẏ = −J∗(t)y. (2)

Here J∗(t) is the adjoint matrix for J(t), such that the inner
products involving arbitrary vectors a and b satisfy the
identity 〈J∗a,b〉 ≡ 〈a,Jb〉. If the inner product is defined as
〈a,b〉 = bTa, then we have simply J∗ = JT, where “T” stands
for transposition. The orthogonal matrices obtained from the
QR procedure in the course of the computations with the
adjoint Eq. (2) in backward time converge to the so-called
forward Lyapunov vectors [20].

Now we use the stored forward and backward Lyapunov
vectors relating to the identical trajectory points. Information
about the angles is encoded in a (p + 1) × (p + 1) matrix
of their pairwise inner products. The smallest singular value
σk of its top left k × k submatrix is the tangency indicator:
θ1 = (π/2 − arccos σp) is the angle between the expanding
subspace and the sum of the neutral and contracting ones, and
θ2 = (π/2 − arccos σp+1) is the angle between the expanding
plus neutral subspace and the contracting one [19].

One can easily check that for arbitrary solutions to Eqs.
(1) and (2) the inner product remains constant in time, i.e.,
satisfies the identity

d

dt
〈x(t),y(t)〉 ≡ 0. (3)

In particular, in the case of nonzero inner product, if one of
the solutions is characterized by a Lyapunov exponent so that
x(t) ∼ eλt , then the other one has a Lyapunov exponent with

the opposite sign, y(t) ∼ e−λt . Hence, the Lyapunov spectra
corresponding to Eqs. (1) and (2) are identical up to the signs.

Given only one of Eqs. (1) and (2), one can use Eq. (3)
to find the other one. This idea can be employed to recover a
generic form of the adjoint variational equation for time-delay
systems.

Consider a time-delay system,

Ẋ = F (t,X,Xτ ), (4)

where X ≡ X(t) ∈ Rm, Xτ ≡ X(t − τ ), and τ is the delay
time. The corresponding variational equation reads

ẋ = Jx(t)x(t) + Ju(t)x(t − τ ), (5)

where Jx(t) and Ju(t) are the derivative matrices composed
of partial derivatives of F over components of X and Xτ ,
respectively.

As a preliminary step to guess a proper form for the adjoint
variational equation, we rewrite Eq. (5) as an equation for
a system containing explicitly a delay line, where a signal
propagation is characterized by the time τ :

ẋ = Jx(t)x(t) + Ju(t)u(t,L), (6)

ut + uξ = δ(ξ )x(t), (7)

u(t,ξ < 0) = 0, u(t,ξ > 0) = x(t − ξ ). (8)

Here u ≡ u(t,ξ ) is the delay line variable, L = τ is the
length of the delay line, and the subscripts t and ξ stand for
corresponding partial derivatives. The solution to Eq. (7) is a
wave (8) propagating in the positive direction from a source at
ξ = 0. Substituting it into Eq. (6) yields the original Eq. (5).

In view of this recasting of the variational equation, it is
natural to define the inner product of two perturbation vectors
x̄ = (x,u) and ȳ = (y,v) as

〈x̄,ȳ〉 = yT(t)x(t) +
∫ L

0
vT(t,ξ )u(t,ξ ) dξ. (9)

The arbitrary solution ȳ of desired adjoint variational
equations and x̄ satisfying Eqs. (6)–(8) have to fulfill a
condition analogous to Eq. (3), i.e., d〈x̄,ȳ〉/dt ≡ 0, with
respect to the inner product (9). This requirement results in
the following form of the adjoint variational equations:

ẏ = −JT
x (t)y(t) − v(t,0), (10)

vt + vξ = δ(ξ − L)JT
u(t)y(t), (11)

v(t,ξ > L) = 0,

v(t,ξ < L) = JT
u(t − ξ + L)y(t − ξ + L). (12)

(One can check directly that the identity d〈x̄,ȳ〉/dt ≡ 0 is
fulfilled taking into account the equality (d/dt)

∫ L

0 f (t −
ξ )dξ = f (t) − f (t − L).) Observe that, in contrast to Eq. (7)
containing a source, we introduce a kind of sink in Eq. (11);
in other words, we exploit here an advanced wave solution of
Eq. (11) instead of the usual retarding wave solution.

Substituting Eq. (12) into Eq. (10), one can reformulate
the adjoint variational problem as a differential equation with
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deviating argument:

ẏ = −JT
x (t)y(t) − JT

u(t + τ )y(t + τ ). (13)

The theory of differential equations with deviating argu-
ments distinguishes three main cases: equations with a retarded
argument [like Eqs. (4) and (5)], equations of neutral type
(we do not deal with them here), and equations of leading or
advanced type [like Eq. (13)] [24–26]. The latter are regarded
as poorly defined with respect to the existence of solutions to
initial value problems. In the context of our study, however,
we will solve such equations in backward time only, so that
they behave in a good way like the equations of retarded type
in forward time.

Notice that computing the inner products (9) of vectors
obtained as trajectory segments of time duration τ produced by
Eqs. (5) and (13), one needs to reverse the order of the adjoint
trajectory variables: for Eq. (5) we set [u(t,0),u(t,L)] =
[x(t),x(t − τ )], but for Eq. (13) [v(t,0),v(t,L)] = [y(t +
τ ),y(t)].

We will solve both Eq. (4) and the variational Eq. (5)
numerically with Heun’s method that belongs to the class of
second-order Runge-Kutta methods with constant time step
[41]. The full state vector of the discrete-time approximation of
Eq. (5) includes k + 1 elements (xn−k,xn−k+1, . . . ,xn), where
we assume k = τ/h to be an integer, and h is a time step. Nu-
merical integration of this linear equation implies successive
multiplications of the state vector by a numerical Jacobi matrix
J composed of [m(k + 1)] × [m(k + 1)] elements. Regardless
of k, only a small number of the matrix elements are nontrivial;
most of them are merely zeros and ones. In particular, for the
Heun method this matrix has 3m2 nontrivial elements. In the
course of the forward time stage of the angle computation
algorithm one can store these matrix elements without the risk
of exhausting a computer memory. Then, the backward time
stage can be implemented without explicitly solving Eq. (13).
One just computes adjoint matrices from the stored matrix
elements and performs the iterations with them.

Computed in this way, the perturbation vectors converge as
h → 0 to solutions of Eqs. (5) and (13) if the adjoint numerical
Jacobi matrix is defined as

J∗ = H−2JTH2, (14)

where H = diag(1,
√

h, . . . ,
√

h) and H2 is a metric tensor
generated by a discrete version of the inner product (9);

〈x̄,ȳ〉 = yT
n xn + h

k∑
i=1

vT
i ui = yTH2x. (15)

Here ui = xn−i , and if vi corresponds to an adjoint vector, the
elements of the backward in time solution yi have to be taken
in the reverse order: vi = yn+k+1−i .

Orthonormalization routines employed in the angle compu-
tations have to be reimplemented according to the nonstandard
form of the inner product (15). When exploiting linear
algebra libraries, a simpler alternative is to change the basis
for the perturbation vectors setting a′ = Ha with respective
transformation of the Jacobi matrix,

J′ = H J H−1. (16)

ρ

0
1
2
3
4

0 π/8 π/4 3π/8 θ

h=τ/600
h=τ/1200
h=τ/2400

FIG. 1. Distributions of θ1 for system (17) at different time steps
h; see the legend. T = 6, τ = 3

4 T , A = 4.7, ε = 0.3, ω0 = 2π . The
first four Lyapunov exponents are 0.114, −0.139, −0.714, −0.801.

One can see that aT H2b = (a′)Tb′, and b = Ja is equivalent
to b′ = J′a′. In other words, the transformed Jacobi matrix J′

and the corresponding vectors are written in orthonormal basis
whose metric tensor is the identity. Altogether, computing
the Jacobi matrices along a forward time trajectory we first
transform them according to Eq. (16) and then perform the
angle computation algorithm implementing standard orthonor-
malization routines without the need to redefine the inner
product.

Now we are ready to apply the angle criterion to particular
time-delay systems.

The first is a nonautonomous system based on the van der
Pol oscillator of natural frequency ω0 supplied with a specially
designed time-delay feedback [33]:

Ẍ − [A cos(2πt/T ) − X2]Ẋ + ω2
0X = εXτ Ẋτ cos ω0t.

(17)
The parameter controlling the oscillator excitation is mod-
ulated with period T and amplitude A. Accordingly, the
oscillator alternately manifests activation and damping. If the
retarding time τ is properly tuned, say τ = 3

4T , the emergence
of self-oscillations at each next stage of activity is stimulated
by a signal emitted at the previous activity stage. Since the
delayed signal is squared and mixed with auxiliary oscillations
of frequency ω0, the stimulating force has again frequency
ω0, but the doubled phase in comparison with the original
oscillations. As a result, we get a sequence of oscillation trains
with phases at successive excitation stages obeying the doubly
expanding circle map that is a chaotic Bernoulli-type map,

φn+1 = 2φn + const mod 2π. (18)

According to argumentation in Ref. [33], this means that the
attractor for a Poincaré map, which corresponds to states
obtained stroboscopically at tn = nT , is of Smale-Williams
type, and the respective chaotic dynamics is hyperbolic. (In
fact, the system (17) has an additional attracting fixed point
X = 0, but its basin of attraction is very narrow. Arbitrarily
chosen initial conditions of relatively large amplitude provide
an approach of orbits to the Smale-Williams attractor.)

The system (17) has a single positive Lyapunov exponent
and the others are negative. (Zero Lyapunov exponent is absent
because of the nonautonomous nature of the system.) Thus, we
need to implement the angle computation routine with p = 1.

Figure 1 shows histograms of the angle distributions com-
puted for numerical solutions of the equations with different
time steps h. The angles are obtained for the corresponding
stroboscopic map at t = t0 + nT , where t0 is large enough to
exclude transients, and n = 0,1,2, . . .. Regardless of h (being
sufficiently small), the distributions have a well-reproducible
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FIG. 2. The minimum cutoff angle θmin against (a) T and
(b) τ . (a) τ = 3T/4. Curve 1: A = 4.7, ε = 0.3; 2: A = 5, ε = 0.25;
3: A = 5.5, ε = 0.2. (b) Curve 1: A = 4.7, ε = 0.3, T = 6; 2: A = 5,

ε = 0.2, T = 6.5; 3: A = 5.2, ε = 0.15, T = 7.5. For both panels
ω0 = 2π .

form that supports the correctness of our definitions in the
continual limit. The form of the histograms certainly confirms
the hyperbolicity of chaotic dynamics in the system. Indeed,
the distribution is well separated from zero angles.

Figure 2 shows the dependencies of the minimum cutoff
angle θmin against the system parameters to verify robustness of
the hyperbolic chaos. In Figs. 2(a) and 2(b), T and τ are varied,
respectively, for three arbitrarily chosen sets of parameters.
Observe that the angle distributions remain well separated
from the origin in a wide parameter domain. (The spikes on
the curves in Fig. 2(a), e.g., at T = 6, 6.5, 7 etc., correspond to
situations when the angle distributions are maximally distant
from zero, although it is not easy to explain the origin of the
phenomenon clearly.) In the left part of the plot [Fig. 2(a)],
relating to the case τ = 3

4T , one can see a narrow domain
where the minimal angles are close to zero, and the dynamics
becomes nonhyperbolic. In Fig. 2(b) an extensive domain of
hyperbolicity in the middle part shows that the fine tuning of τ

at given T is actually not necessary because the hyperbolicity
persists in a relatively wide range.

The second system we consider is an autonomous model
with an attractor of Smale-Williams type suggested in Ref.
[34]; see also [6,42]:

Ẋ = −ω0Y + 1
2μ

(
1 − X2

τ − Y 2
τ

)
X + εXτYτ ,

Ẏ = ω0X + 1
2μ

(
1 − X2

τ − Y 2
τ

)
Y. (19)

Here μ is an excitation parameter and ω0 can be treated
as a natural frequency. When ε = 0, this system generates
trains of oscillations of frequency ω0 periodically alternating
with damping stages of very low amplitude. Due to the
term providing a delayed feedback controlled by the small
parameter ε, each new train of oscillations arises from a
seed signal produced by the system at the previous excitation
stage. Because of the quadratic nonlinearity of the respective
term, each time the phase is doubled in comparison with the
previous one. As a result, the phases at successive excitation
stages evolve according to the Bernoulli-type map (18), and,
as argued in Ref. [34], this means that the Poincaré map
constructed for the system (19) has an attractor of Smale-
Williams type. Following Ref. [34], we will consider the
Poincaré map on the surface X2 + Y 2 = 1 taking into account

ρ

 0
 20
 40
 60

0 π/120 π/60 3π/120 θ1

(a) h=τ/200
h=τ/400
h=τ/800

ρ

 0
 40
 80

 120

0 π/120 π/60 3π/120 θ2

(b)

FIG. 3. Distributions of the first (a) and second (b) angles for the
Poincaré map of the autonomous system (19) computed at different
time steps; see the legend. μ = 1.6, ω0 = 2π , ε = 0.05, τ = 2.
The first four Lyapunov exponents are 0.060, 0, −1.938, −2.463.

the passages of phase trajectories in the direction of increasing
amplitude and computing the angles between subspaces there.

Autonomous system (19) has a single positive Lyapunov
exponent, a zero one, and the other exponents are negative.
The zero Lyapunov exponent and the corresponding neutral
subspace vanish for the Poincaré map, so that one can consider
only the angles between the expanding and contracting
subspaces as above. However, implementing this approach,
one needs to project the computed perturbation vectors onto
the section surface and then evaluate the angles between these
projections. A simpler way is to consider perturbation vectors
as they appear in computations in full phase space and to check
both the angles θ1 (the expanding subspace versus the sum of
neutral and contracting subspaces) and θ2 (the expanding plus
neutral subspace versus the contracting subspace). Chaos is
hyperbolic when both of these angles never vanish.

Figure 3 shows histograms of the distributions of these
angles obtained for certain parameters of the system (see
the caption) at different values of the integration step h. We
see a good convergence as h → 0 both for θ1 and for θ2

(Figs. 3(a) and 3(b), respectively). Both distributions are well
separated from the zero angle having clearly expressed cutoffs
that confirms hyperbolicity of the attractor. The robustness of
this regime is illustrated in Figs. 4(a)–4(c), which represents
the dependence of the minimum cutoff angles θmin1 and
θmin2 versus the parameter of time delay τ for three sets
of other parameters. On all three plots well-defined ranges
occur corresponding to domains of existence of the hyperbolic
attractor, where both angles are well detached from zero.

The last example we present is aimed to outline the
difference between the hyperbolic and nonhyperbolic chaos.
It is the well-known Mackey-Glass system [30–32]

Ẋ = aXτ/
(
1 + X10

τ

) − bX, (20)

where a = 0.2 and b = 0.1. When τ > 17, chaotic oscillations
occur in the system [31,32].

To perform an adequate comparison with the previous cases,
we have to introduce for this system an appropriate Poincaré
section providing well-expressed separation of the successive
crossings by phase trajectories. A good and satisfactory
expedient is based on complementing the model (20) with
an auxiliary equation τ Ẏ = X − Xτ − Y and locating the
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θmin
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(a) θmin1 θmin2
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 0.3
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 0
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 0.3

τ1 1.25 1.5 1.75 2 2.25 2.5 2.75

(c)

2.75

FIG. 4. First and second minimum cutoff angles vs. delay time τ

at various parameters: (a) μ = 1.6, ε = 0.05; (b) μ = 1.8, ε = 0.07;
(c) μ = 2, ε = 0.03. For all panels ω0 = 2π .

section surface at Y = 0. The variable Y roughly follows X

but smooths out its high-frequency fluctuations.
Figure 5 shows histograms for the angle θ1 between the

expanding subspace and the sum of neutral and contracting
subspaces for the attractor observed at τ = 23. The attractor
has one positive, one zero, and other negative Lyapunov expo-
nents. Observe the clearly expressed violation of hyperbolicity:
the distributions demonstrate a significant probability of angles
close to zero, which implies occurrence of tangencies for
the subspaces. It is a sufficient condition to judge about the

ρ

 0
 0.5

 1
 1.5

 2
 2.5

0 π/8 π/4 3π/8 θ

h=τ/500
h=τ/1000
h=τ/2000

FIG. 5. Distribution of θ1 for system (20) at different time steps;
see the legend. τ = 23. The first four Lyapunov exponents are
0.0096, 0, −0.0114, −0.0350.

absence of hyperbolicity, so that there is no need to analyze a
distribution for θ2.

To conclude, we have developed the method of hyperbol-
icity verification based on the angle criterion for time-delay
systems, which may be regarded as an extension of numerical
Lyapunov analysis. Three particular examples have been
tested. For two of them the previously believed hyperbolicity
has been confirmed and for the third one the nonhyperbolic
nature of the generated chaos has been established. We have
restricted ourselves here to considering systems with one
delay time. Extension for two or more delays requires further
elaboration of the algorithm.

As regards the theoretical foundation and general formu-
lation of the method, the work was supported by RSF Grant
No. 15-12-20035 (S.P.K.). The work of elaborating computer
routines and numerical computations for particular examples
was supported by RFBR Grant No. 16-02-00135 (P.V.K.).
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Phys. Rev. Lett. 99, 130601 (2007).
[17] C. L. Wolfe and R. M. Samelson, Tellus A 59, 355 (2007).
[18] P. V. Kuptsov and S. P. Kuznetsov, Phys. Rev. E 80, 016205

(2009).
[19] P. V. Kuptsov, Phys. Rev. E 85, 015203 (2012).
[20] P. V. Kuptsov and U. Parlitz, J. Nonlinear. Sci. 22, 727 (2012).
[21] S. P. Kuznetsov, Reg. Chaotic Dynam. 20, 649 (2015).
[22] S. P. Kuznetsov and V. P. Kruglov, Reg. Chaotic Dynam. 21,

160 (2016).
[23] T. Vyhlı́dal, J. F. Lafay, and R. Sipahi (eds.), Delay Systems:

From Theory to Numerics and Applications (Springer Science
& Business Media, Berlin, 2013), Vol. 1.

[24] R. Bellman and C. Cooke, Differential-Difference Equations
(Academic Press, New York, 1963).

[25] A. Myshkis, Linear Differential Equations with Retarded
Argument (Nauka, Moscow, 1972), p. 352, in Russian.

[26] L. El’sgol’ts and S. Norkin, Introduction to the Theory and
Application of Differential Equations with Deviating Arguments
(Academic Press, New York, 1973), p. 356.

[27] B. Dorizzi, B. Grammaticos, M. LeBerre, Y. Pomeau, E.
Ressayre, and A. Tallet, Phys. Rev. A 35, 328 (1987).

[28] J. Chrostowski, R. Vallee, and C. Delisle, Can. J. Phys. 61, 1143
(1983).

010201-5

http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/10.1090/S0002-9904-1967-11798-1
http://dx.doi.org/10.3367/UFNe.0181.201102a.0121
http://dx.doi.org/10.3367/UFNe.0181.201102a.0121
http://dx.doi.org/10.3367/UFNe.0181.201102a.0121
http://dx.doi.org/10.3367/UFNe.0181.201102a.0121
http://dx.doi.org/10.1016/j.physleta.2006.12.071
http://dx.doi.org/10.1016/j.physleta.2006.12.071
http://dx.doi.org/10.1016/j.physleta.2006.12.071
http://dx.doi.org/10.1016/j.physleta.2006.12.071
http://dx.doi.org/10.1134/S1063784210120017
http://dx.doi.org/10.1134/S1063784210120017
http://dx.doi.org/10.1134/S1063784210120017
http://dx.doi.org/10.1134/S1063784210120017
http://dx.doi.org/10.1137/100795176
http://dx.doi.org/10.1137/100795176
http://dx.doi.org/10.1137/100795176
http://dx.doi.org/10.1137/100795176
http://dx.doi.org/10.1088/0951-7715/6/5/007
http://dx.doi.org/10.1088/0951-7715/6/5/007
http://dx.doi.org/10.1088/0951-7715/6/5/007
http://dx.doi.org/10.1088/0951-7715/6/5/007
http://dx.doi.org/10.1143/PTP.102.701
http://dx.doi.org/10.1143/PTP.102.701
http://dx.doi.org/10.1143/PTP.102.701
http://dx.doi.org/10.1143/PTP.102.701
http://dx.doi.org/10.1016/S0375-9601(00)00338-8
http://dx.doi.org/10.1016/S0375-9601(00)00338-8
http://dx.doi.org/10.1016/S0375-9601(00)00338-8
http://dx.doi.org/10.1016/S0375-9601(00)00338-8
http://dx.doi.org/10.1103/PhysRevLett.95.144101
http://dx.doi.org/10.1103/PhysRevLett.95.144101
http://dx.doi.org/10.1103/PhysRevLett.95.144101
http://dx.doi.org/10.1103/PhysRevLett.95.144101
http://dx.doi.org/10.1134/S1063776106020166
http://dx.doi.org/10.1134/S1063776106020166
http://dx.doi.org/10.1134/S1063776106020166
http://dx.doi.org/10.1134/S1063776106020166
http://dx.doi.org/10.1103/PhysRevLett.99.130601
http://dx.doi.org/10.1103/PhysRevLett.99.130601
http://dx.doi.org/10.1103/PhysRevLett.99.130601
http://dx.doi.org/10.1103/PhysRevLett.99.130601
http://dx.doi.org/10.1111/j.1600-0870.2007.00234.x
http://dx.doi.org/10.1111/j.1600-0870.2007.00234.x
http://dx.doi.org/10.1111/j.1600-0870.2007.00234.x
http://dx.doi.org/10.1111/j.1600-0870.2007.00234.x
http://dx.doi.org/10.1103/PhysRevE.80.016205
http://dx.doi.org/10.1103/PhysRevE.80.016205
http://dx.doi.org/10.1103/PhysRevE.80.016205
http://dx.doi.org/10.1103/PhysRevE.80.016205
http://dx.doi.org/10.1103/PhysRevE.85.015203
http://dx.doi.org/10.1103/PhysRevE.85.015203
http://dx.doi.org/10.1103/PhysRevE.85.015203
http://dx.doi.org/10.1103/PhysRevE.85.015203
http://dx.doi.org/10.1007/s00332-012-9126-5
http://dx.doi.org/10.1007/s00332-012-9126-5
http://dx.doi.org/10.1007/s00332-012-9126-5
http://dx.doi.org/10.1007/s00332-012-9126-5
http://dx.doi.org/10.1134/S1560354715060027
http://dx.doi.org/10.1134/S1560354715060027
http://dx.doi.org/10.1134/S1560354715060027
http://dx.doi.org/10.1134/S1560354715060027
http://dx.doi.org/10.1134/S1560354716020027
http://dx.doi.org/10.1134/S1560354716020027
http://dx.doi.org/10.1134/S1560354716020027
http://dx.doi.org/10.1134/S1560354716020027
http://dx.doi.org/10.1103/PhysRevA.35.328
http://dx.doi.org/10.1103/PhysRevA.35.328
http://dx.doi.org/10.1103/PhysRevA.35.328
http://dx.doi.org/10.1103/PhysRevA.35.328
http://dx.doi.org/10.1139/p83-144
http://dx.doi.org/10.1139/p83-144
http://dx.doi.org/10.1139/p83-144
http://dx.doi.org/10.1139/p83-144


RAPID COMMUNICATIONS

PAVEL V. KUPTSOV AND SERGEY P. KUZNETSOV PHYSICAL REVIEW E 94, 010201(R) (2016)

[29] S. Lepri, G. Giacomelli, A. Politi, and F. T. Arecchi, Phys. D
70, 235 (1994).

[30] M. Mackey and L. Glass, Science 197, 287 (1977).
[31] J. D. Farmer, Phys. D 4, 366 (1982).
[32] P. Grassberger and I. Procaccia, Phys. D 13, 34 (1984).
[33] S. P. Kuznetsov and V. I. Ponomarenko, Tech. Phys. Lett. 34,

771 (2008).
[34] S. P. Kuznetsov and A. Pikovsky, arXiv:1011.5972 (2010).
[35] S. P. Kuznetsov and A. Pikovsky, Europhys. Lett. 84, 10013

(2008).
[36] S. V. Baranov, S. P. Kuznetsov, and V. I. Ponomarenko, Izvestiya

VUZ. Appl. Nonlin. Dynam. (Saratov) 18, No. 1, 11 (2010), in
Russian.

[37] A. S. Kuznetsov and S. P. Kuznetsov, Commun. Nonlinear Sci.
Numer. Simul. 18, 728 (2013).

[38] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn,
Mechanica 15, 9 (1980).

[39] I. Shimada and T. Nagashima, Prog. Theor. Phys. 61, 1605
(1979).

[40] G. H. Golub and C. F. Van Loan, Matrix Computations (John
Hopkins University Press, Baltimore, MD, 2012), Vol. 3.

[41] A. Bellen and M. Zennaro, Numerical Methods for Delay
Differential Equations (Oxford University Press, Oxford, 2013),
p. 410.

[42] D. S. Arzhanukhina and S. P. Kuznetsov, Izvestiya VUZ. Appl.
Nonlin. Dynam. (Saratov) 22, No. 2, 36 (2014), in Russian.

010201-6

http://dx.doi.org/10.1016/0167-2789(94)90016-7
http://dx.doi.org/10.1016/0167-2789(94)90016-7
http://dx.doi.org/10.1016/0167-2789(94)90016-7
http://dx.doi.org/10.1016/0167-2789(94)90016-7
http://dx.doi.org/10.1126/science.267326
http://dx.doi.org/10.1126/science.267326
http://dx.doi.org/10.1126/science.267326
http://dx.doi.org/10.1126/science.267326
http://dx.doi.org/10.1016/0167-2789(82)90042-2
http://dx.doi.org/10.1016/0167-2789(82)90042-2
http://dx.doi.org/10.1016/0167-2789(82)90042-2
http://dx.doi.org/10.1016/0167-2789(82)90042-2
http://dx.doi.org/10.1016/0167-2789(84)90269-0
http://dx.doi.org/10.1016/0167-2789(84)90269-0
http://dx.doi.org/10.1016/0167-2789(84)90269-0
http://dx.doi.org/10.1016/0167-2789(84)90269-0
http://dx.doi.org/10.1134/S1063785008090162
http://dx.doi.org/10.1134/S1063785008090162
http://dx.doi.org/10.1134/S1063785008090162
http://dx.doi.org/10.1134/S1063785008090162
http://arxiv.org/abs/arXiv:1011.5972
http://dx.doi.org/10.1209/0295-5075/84/10013
http://dx.doi.org/10.1209/0295-5075/84/10013
http://dx.doi.org/10.1209/0295-5075/84/10013
http://dx.doi.org/10.1209/0295-5075/84/10013
http://dx.doi.org/10.1016/j.cnsns.2012.08.006
http://dx.doi.org/10.1016/j.cnsns.2012.08.006
http://dx.doi.org/10.1016/j.cnsns.2012.08.006
http://dx.doi.org/10.1016/j.cnsns.2012.08.006
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1143/PTP.61.1605
http://dx.doi.org/10.1143/PTP.61.1605
http://dx.doi.org/10.1143/PTP.61.1605
http://dx.doi.org/10.1143/PTP.61.1605



