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We study bound states embedded into the continuum of edge states in two-dimensional topological 
insulators. These states emerge in the presence of a short-range potential of a structural defect coupled 
to the boundary. In this case the edge states flow around the defect and have two resonances in the local 
density of states. The bound state in continuum (BIC) arises due to an interference of the resonances 
when they are close to the degeneracy. We find the condition under which the BIC appears, study the 
spacial distribution of the electron density, and show that the BIC has a helical structure with an electron 
current circulating around the defect.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The existence of bound states embedded into the continuum of 
quantum states was proposed at the dawn of quantum mechanics 
by von Neumann and Wigner [1] for certain attractive potentials of 
very specific form. The formation of the bound state in continuum 
(BIC) can be considered as a result of a destructive interference 
of partial waves in the potential due to which the wave function 
vanishes at large distance. It is essential that the BICs are true 
eigenstates of the Hamiltonian and therefore are orthogonal to the 
eigenstates of the continuous spectrum. Because of a rather com-
plicated form of the potential these states were regarded a long 
time as mathematical curiosities. However, further developments 
have produced a better understanding of the kind of potential 
that can create such bound states. Friedrich and Wintgen [2] have 
pointed out that the resonant states play an important role in the 
BIC formation and proved that a BIC could emerge as two coupled 
resonant states connected to a continuum are driven into degener-
acy by changing a parameter governing the resonant states.

The advances in the nanostructure technology have provided 
new possibilities to create the required potential and the interest 
to BICs has strongly increased due to their manifestations in quan-
tum transport, optical phenomena, and potential applications for 
quantum information devices. Herrick [3] and Stillinger [4] have 
proposed a construction of the potential supporting BICs for epi-
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taxial heterostructure superlattices. The localized states with prop-
erties very close to BICs have been realized by Capasso et al. [5] in 
semiconductor heterostructures. In recent years the BICs are widely 
studied also in photonic crystals and were observed experimen-
tally [6].

Theoretical studies of the occurrence of BICs in low-dimensional 
structures have been investigated for a variety of systems such as 
quantum Hall effect and narrow-wire circuits [7], systems of cou-
pled quantum dots [8–10], open quantum billiards [11], trilayer 
graphene flakes connected to nanoribbon leads [12]. A distinct 
mechanism of the BIC formation was recently proposed for a chi-
ral quantum system coupled to leads with a continuum energy 
band [13].

In the present paper we address the question of how the unique 
properties of topological insulators (TIs) affect the possibility of the 
BIC formation and come to the conclusion that at least in the case 
of two-dimensional (2D) TIs the emergence of BICs is facilitated by 
the presence of the topological order so that a BIC appears in a 
simple potential produced by a structural defect or impurity.

The distinctive feature of the 2D TIs is the presence of heli-
cal edge states with massless Dirac spectrum in the gap of bulk 
states [14]. In the edge states the electrons move along the bound-
ary and their spin is locked to the momentum because of strong 
spin–orbit interaction. In recent works [15,16] we have studied the 
electronic states induced by nonmagnetic defects and found that 
a defect with a short-range potential creates two bound states in 
contrast to topologically trivial insulators where only one bound 
state exists at such a defect. These states differ in both the pseu-
dospin structure and the spatial distribution of the particle density. 
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It is also interesting that they arise for any sign of the defect po-
tential. The presence of two states is caused by the fact that in 2D 
TIs there are two mechanisms of the bound-state formation. One 
mechanism is conventional. The bound state is formed by a po-
tential attracting the quasiparticles of one of the bands. Another 
mechanism is specific for TIs. It is caused by the formation of an 
edge state circulating around the defect similarly to the edge states 
near the boundary. One can say that the defect effectively creates 
a boundary condition for the wave function.

When the defect is located at a finite distance from the bound-
ary, the bound state is coupled with the edge states giving rise to 
the formation of the edge states flowing around the defect. These 
states have a continuous spectrum with resonances in the local 
density of states near the defect at the energy close to the bound 
state energy [16].

In the present paper we study the true bound states, which 
form due to the interference of these resonances. These states have 
a square integrable wave function and the energy embedded into 
the continuum of the edge states flowing around the defect. Be-
cause of strong spin–orbit interaction these BICs have a helical 
structure.

2. Model and equations determining the BIC

Consider a 2D TI, which contains a defect located at a distance 
yd from the boundary. The defect creates a potential V (x, y − yd)

localized in a small region. We use a layout in which the x-axis 
coincides with the boundary and the y-axis is directed into the 
TI. The electronic states in the 2D TI are described by the model 
Hamiltonian proposed by Bernevig, Hughes, and Zhang (BHZ) for 
HgTe/CdTe quantum wells [17]. This model has the Sz symmetry 
since it does not take into account a possible spin–orbit interaction 
arising from the lack of the inversion symmetry. The corresponding 
generalization seems not to be essential at this stage and will be 
done elsewhere.

Thus, the Hamiltonian of the system is

H =
(

h(k) + V (r) 0
0 h∗(−k) + V (r)

)
, (1)

where k is the momentum operator and

h(k) =
(

M − (B + D)k2 A(kx + iky)

A(kx − iky) −M + (B − D)k2

)
, (2)

with M , A, B and D being the parameters of the BHZ model. The 
topological phase is realized when M B > 0 [17,18]. In practically 
important cases of the HgTe/CdTe and InAs/GaSb/AlSb quantum 
wells, the parameters M, B, D < 0, and A > 0. The basis set of the 
wave functions is {|E1 ↑〉, |H1 ↑〉, |E1 ↓〉, |H1 ↓〉} where |E1 ↑〉 and 
|E1 ↓〉 are superpositions of the electron states of s-type and the 
light-hole states of p-type with spin up and spin down; |H1 ↑〉
and |H1 ↓〉 are the heavy-hole p-type states with opposite spins. 
In what follows we will restrict ourselves by considering the sym-
metric model where D = 0.

As boundary conditions for the wave function, we impose 
�(x = 0, y) = 0 at the boundary and suppose that the wave func-
tion �(x, y) does not diverge at the infinity (x → ±∞, y → ∞).

A simplification arising from the Sz symmetry of the BHZ 
model is that the Hamiltonian is block diagonal and therefore it 
is enough to consider only one spin component.

The eigenfunctions of the Hamiltonian (1) are found using the 
Fourier transform with respect to x variable and the Laplace trans-
form for y variable. This method allows one to find exactly the 
eigenfunctions in the case of the short-range potential where the 
interaction radius is small compared to the characteristic length 
scale of the wave function. The procedure of the solution was de-
veloped previously [16], so we present here only final equations 
without technical details.

For convenience we use the dimensionless variables:

ε = E/|M|, {x′, y′} = {x, y}√M/B, a = A/
√

M B,

v(x′, y′) = V (x, y)/|B|, b = yd

√
M/B, (3)

and in what follows we shall omit the prime in the variables x, y.
The Fourier–Laplace transform �̃(k, p) of the eigenfunctions is 

expressed through two variables: �(k; v, b) and �(v, b), where 
�(k; v, b) is the Fourier transform of the y-derivative of �(x, y)

at the boundary y = 0 and �(v, b) is the value of the wave func-
tion at the defect �(v, b) = �(0, b). The equation that determines 
�̃(k, p) reads as:

[ε − h(k, p)]�̃(k, p)

= σz�(k; v,b) + I2×2 ṽ(k, p)e−bp�(v,b) , (4)

where I2×2 is the identity 2 × 2 matrix, σz is the Pauli matrix, 
ṽ(k, p) is the Fourier–Laplace transform of v(x, y). For simplic-
ity, we will present hereafter the equations in a reduced form for 
ṽ(k, p) ≈ v .

�(v, b) is determined by the following equation:

[I2×2 −K(ε; v,b)] �(v,b) = C(ε; v,b)F(ε;b)χ, (5)

where K(ε; v, b) and F(ε; v, b) are 2 × 2 matrices which are ex-
pressed via the matrix elements of the Hamiltonian h(k); χ is the 
following spinor: χ = (1, −1)T ; C(ε; v, b) is a function, which can 
be determined by the normalization of the wave function.

The equations defining K(ε; v, b) and F(ε; b) are rather cum-
bersome. In an explicit form they are given in Appendix A.

The spinor �(k; v, b) is determined by the following equation:

�(k; v,b)

= − A′(ε,k)B(ε,k;b)

�1(ε,k)
� + C(ε; v,b)χδ[k − k0(ε)], (6)

where k0(ε) is the root of the determinant �1(ε, k) defined in 
Eq. (A.9). It is easy to show from Eqs. (A.9), (A.6) and (A.11) that 
k0(ε) is exactly the spectrum of the edge states in the absence of 
the defect:

k0(ε) = −ε

a
. (7)

Eqs. (5) and (6) allow one to calculate the wave function

�(x, y)

=
∞∫

−∞

dk

2π
eikx

c+i∞∫
c−i∞

dp

2π i

epy

�(ε,k, p)

×
[

D0(ε,k, p)�(k; v,b) + v(k, p)e−bp D1(ε,k, p)�(v,b)
]
.

(8)

Let us turn to Eq. (5) which plays a key role in finding the 
BIC. This equation has solutions of two kinds depending on the 
determinant of the matrix in the left-hand side

��(ε; v,b) = [
1 −K11(ε; v,b)

][
1 −K22(ε; v,b)

]
−K12(ε; v,b)K21(ε; v,b). (9)

If ��(ε; v, b) �= 0, the solutions of Eq. (5) correspond to the 
continuum of the edge states flowing around the defect. If the de-
terminant equals zero, this equation has one more solution which 
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exists in the case where the function C(ε; v, b) is zero. This solu-
tion exists only at a discrete value of the energy ε0 defined by the 
root of the determinant:

��(ε0; v,b) = 0 . (10)

In this case

�(v,b) = Cbs

(
1

(1 −K11)
/
K12

) ∣∣∣∣∣
ε=ε0

, (11)

with the constant Cbs being determined by the normalization.
For such a solution to exist the wave function should be square 

integrable. Since �(x, y) is finite and tends to zero at y → ∞, it 
is sufficient to require that �(x, y) goes to zero when x → ±∞
faster than |x|−1/2.

The asymptotics of �(x, y) can be found from Eqs. (8) and (6). 
It has the following form:

�(x → ∞, y)

� ieikx

8aε
∂�1
∂k

[
e−p2 y

p2
D0(ε,k,−p2)

− e−p1 y

p1
D0(ε,k,−p1)

]
A′(ε,k)B(ε,k;b)�(ε,b)

∣∣∣∣∣
k=k0(ε)

.

(12)

At this point we will take into account the following property of 
the matrices A′(ε, k) and B(ε, k; b) in the integrand:

A′(ε,k)B(ε,k;b)

(
1

1

)
≡ 0, (13)

which can be verified by direct calculation. Because of this equa-
tion we find that �(x → ∞, y) → 0 if

� = ψ

(
1

1

)
. (14)

Combining Eq. (14) with Eqs. (10) and (11) we arrive at the fol-
lowing equation system that determines a bound state embedded 
into the continuum of the edge states flowing around the defect:{

1 −K11(ε; v,b) −K12(ε; v,b) = 0
1 −K22(ε; v,b) −K21(ε; v,b) = 0.

(15)

A solution of these equations, if it exists, defines the energy εbs
of the BIC and a relation between v and b under which this state 
exists.

3. Energy of the BIC and conditions of its existence

In this section we show that Eq. (15) really has a solution and 
clarify how the energy of the BIC εbs and the potential vbs , at 
which it emerges, depend on the distance b for realistic systems.

First we prove that Eq. (15) has one solution when the distance 
b is large enough. It is convenient to present the matrix K(ε; v, b)

given by Eq. (A.1) in the form where the dependence on v is writ-
ten explicitly

K(ε; v,b) = v
[
K∞(ε) +K(ε;b)

]
. (16)

Here the first term in the right-hand side is easily shown to be 
diagonal and the second term exponentially decreases with b.

To begin we consider the limit where b → ∞. In this case 
K12 =K21 = 0 and Eq. (15) takes the form{

1 − vK∞
11(ε) = 0

1 − vK∞(ε) = 0.
(17)
22
Fig. 1. (Color online.) Resonant energies as functions of the defect potential for a 
variety of distances between the defect and the boundary, b = 4, 5, 6, near the point 
where the resonances are degenerate. The asterisks show the energy of the BIC for 
a given b. The calculations were carried out for a = √

2. The inset illustrates the 
defect, the BIC and edge states flowing around the defect.

Here the first equation defines the energy of the electronlike 
bound states, εe(v), and the second equation defines the energy 
of the holelike bound states, εh(v). The equations are compatible 
if εe(v) = εh(v). The energies εe(v) and εh(v) as functions of v
were investigated in our previous works [15,16]. It was found that 
the equation εe(v) = εh(v) has a unique solution for both positive 
and negative v . Thus, the equation system (17) is satisfied when 
ε = ±ε and correspondingly v = ±v .

When the distance b is finite but large enough so that 
K12, K21 � 1, one can seek a solution of Eq. (15) by expanding 
ε and v near ε and v at a given b. On putting ε = ε + δε and 
v = v + δv , we arrive at the following equations:{

v2K′
1δε + δv = v2[K11(ε;b) −K12(ε;b)]

v2K′
2δε + δv = v2[K22(ε;b) −K21(ε;b)], (18)

where K′
1,2 = ∂εK

∞
11,22(ε)

∣∣
ε

. It is easy to show that the determinant 
of this system does not equal zero and there is a unique solution.

A different situation occurs when the distance b is small. In this 
case the system (15) turns out to have no solution.

Thus the BIC can exist if the distance b exceeds a threshold 
value and the potential v is equal to a definite value vbs(b) for a 
given b.

Now we present results of numerical studies of the BIC. Since 
the BIC arises due to the interference of the resonances in the local 
density of the edge states flowing around the defect, we present 
first the resonant energies in the vicinity of the avoided cross-
ing point of the resonances originating from the electronlike and 
holelike bound states. Fig. 1 shows the resonant energies as func-
tions of the defect potential v . The points where the BIC arises are 
shown by the asterisks for different b.

The variation of the BIC energy with the distance between the 
defect and the boundary is shown in Fig. 2(a). Fig. 2(b) presents 
the defect potential vbs , at which the BIC arises, as a function of 
the distance b. It is seen that with increasing b the BIC energy and 
the defect potential tend to the limiting values ε and v defined by 
Eqs. (18).

To complete the description of the BIC in 2D TI we present also 
the spacial distribution of the particle density in the BIC and the 
electron current density distribution. The wave function is given 
explicitly by Eq. (8) where the matrices in the integrand should 
be calculated for the energy εbs and the defect potential vbs . The 
electron density defined as |�(x, y)|2 is shown in Fig. 3(a). The 
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Fig. 2. (Color online.) The BIC energy εbs (a) and the defect potential vbs , at which the BIC arises, (b) as functions of the distance between the defect and the boundary. The 
calculations were carried out for three values of the parameter a = 1.3, 

√
2, 1.5.

Fig. 3. (Color online.) (a) The spacial distribution of the particle density in the BIC induced by the defect located at the distance b = 5. The BIC energy is εbs = −0.984. 
(b) Vector plot of the electron current density in the BIC. The calculations were carried out for the parameter a = √

2.
wave function is seen to be strongly localized near the defect. In 
contrast, the edge states with very close energies extend along the 
boundary to infinity.

An interesting property of the BIC in 2D TI is the existence of 
an electron current. The current density can be calculated using 
the current operator for the BHZ model [16]. Direct calculations 
show that in the BIC there is a nonzero current whose direction is 
locked to the spin similarly to the current in the edge states. The 
vector plot of the current density is shown in Fig. 3(b).

The presence of the circulating current can be interpreted as an 
indication that the BIC is largely formed by the helical edge modes 
circulating around the defect. In this regard it should be noted that 
actually there are two BICs since the state we have found exists for 
each spin direction. In these states the currents are directed oppo-
sitely. However, only one state at a given defect can be occupied by 
an electron. Therefore around each of the defects, which forms the 
BIC, there is the electron current, the direction of which is locked 
to the spin of the trapped electron.

4. Conclusion

The bound states embedded in the energy continuum is a 
nontrivial quantum phenomenon which attracts increasing inter-
est though they remain fragile objects in spite of the progress in 
the experiments on nanostructures. Particularly, very special con-
ditions are required for their realization. In this paper we have 
shown that owing to unique properties of the 2D TIs it becomes 
possible to create the BICs in the potential of a quite simple form.

The BIC can arise at a nonmagnetic defect coupled to the edge 
states in the 2D TIs. The mechanism of the BIC formation is due to 
the interference of two resonances that exist in the local density 
of the edge states flowing around the defect. The fact that even 
the short-range potential of the defect creates two bound states 
in the bulk of the system is a specific property of 2D TIs, which 
is due to the presence of two mechanisms of the bound-state for-
mation. In topologically trivial crystals, this property is absent. The 
resonances are formed as the defect is coupled with the bound-
ary.

To our knowledge such a simple potential inducing the BICs was 
proposed only in Ref. [19] within a one-dimensional two-particle 
Hubbard model with an attractive impurity potential. The emer-
gence of the BICs on the surface of three-dimensional TIs was
noticed in numerical calculations of the electron states in the cor-
ner of a “L”-shaped potential [20].

The system we have considered in this paper favorably dif-
fers from above systems since it is quite realizable experimentally. 
Our calculations are based on the two-band BHZ model that well 
describes the real systems. Short-range potential is a common min-
imal model of a defect. Another merit of this model is that it has 
allowed us to carry out explicit analytical solution of the problem.

We have found that the BIC can arise if the distance between 
the defect and the boundary exceeds a threshold value. The BIC 
emerges at that defect with the definite potential the value of 
which depends on the distance from the boundary. In the future, it 
would be interesting to consider also the defect potential of larger 
radius which creates a larger number of the bound states and cor-
respondingly a larger number of resonances which could facilitate 
the conditions for the BIC to appear.

We have shown the electron density in the BIC is localized 
around the defect and has a dip in the center. We have also found 
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that the electron current flows around the defect. The current di-
rection is locked to the spin which indicates that the BIC has a 
helical structure.
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Appendix A. Matrices K(ε; v, b) and F(ε; b)

The explicit equation defining the matrices K(ε; v, b) and 
F(ε; b) are as follows:

K(ε; v,b) =
∞∫

−∞

dk

2π

[
1

4aε�1(ε,k)
D0(ε,k)A′(ε,k)B(ε,k)

+
i∞∫

−i∞

dp

2π i

v(k, p)

�(ε,k, p)
D1(ε,k, p)

]
, (A.1)

F(ε;b) = 1

4aε
D0

(
ε,k0(ε);b

)
, (A.2)

where aε = √
a2(a2/4 − 1) + ε2 and D0(ε, k; b) denotes the matrix

D0(ε,k;b) = e−bp1

p1
D0(ε,k,−p1) − e−bp2

p2
D0(ε,k,−p2). (A.3)

Other matrices, D0, D1, A′(ε, k), and B(ε, k; b), in the integrand 
are defined as follows:

D0 =
(

a22(ε,k, p) a12(ε,k, p)

−a21(ε,k, p) −a11(ε,k, p)

)
, (A.4)

D1 =
(

a22(ε,k, p) −a12(ε,k, p)

−a21(ε,k, p) a11(ε,k, p)

)
, (A.5)

A′(ε,k) =
(

a12(ε,k, p2) −a12(ε,k, p1)

−a22(ε,k, p2) a22(ε,k, p1)

)
, (A.6)

B(ε,k;b)

=
(

v(k, p1)a22(ε,k, p1)e−bp1 −v(k, p1)a12(ε,k, p1)e−bp1

v(k, p2)a22(ε,k, p2)e−bp2 −v(k, p2)a12(ε,k, p2)e−bp2

)
,

(A.7)

where aij(ε, k, p) are the elements of the matrix [ε − h(k, p)]:
a11 = ε + 1 − k2 + p2, a12 = −a(k + p),

a21 = −a(k − p), a22 = ε − 1 + k2 − p2. (A.8)

In addition, the scalar functions �1(ε, k), �(ε, k, p), and
p1,2(ε, k) have the form:

�1(ε,k) = a22(ε,k, p1)a12(ε,k, p2)

− a12(ε,k, p1)a22(ε,k, p2), (A.9)
�(ε,k, p) = −
[

p2 − p2
1(ε,k)

] [
p2 − p2

2(ε,k)
]
, (A.10)

with

p1,2(ε,k) =
√

k2 + a2/2 − 1 ±
√

a2(a2 − 4)/4 + ε2 (A.11)

and Rep1,2(ε, k) ≥ 0.
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