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Metastable and spin-polarized states in electron systems
with localized electron–electron interaction
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H I G H L I G H T S

� A metastable state arises in the elec-
tron system when pair interaction is
localized.

� In the metastable state, the system
can be both spin polarized and unpo-
larized.

� Critical conditions for the metastable
state to appear are studied.

� Electron cloud around the interaction
region affects the metastable state
energy.
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a b s t r a c t

We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair
interaction localized in a small region that is not separated by a barrier from surrounding gas of non-
interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in
which the electron–electron interaction is strong in a small constriction coupled to electron reservoirs
without barriers. Based on the analysis of the grand potential within the self-consistent field
approximation, we find that the formation of the polarized state strongly differs from the Bloch or
Stoner transition in homogeneous interacting systems. The main difference is that a metastable state
appears in the critical point in addition to the globally stable state, so that when the interaction
parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is
unpolarized. Another feature is that the spin polarization increases continuously with the interaction
parameter and has a square-root singularity in the critical point. We study the critical conditions and the
grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional
models in the case of extremely small size of the interaction region.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spin-related phenomena due to electron–electron (e–e) interac-
tion in mesoscopic systems attract great interest, since they exhibit
non-trivial physics of many-body systems and open new possibilities
to manipulate the spin degrees of freedom. One of the most
intriguing is the question of spontaneous breaking of the spin
symmetry in quantum point contacts [1]. These structures have
attracted attention also because they allow one to manipulate the

spin and generate spin currents [2,3]. However, currently there are
fundamental physical problems in understanding their electronic
structure and transport properties. Numerous experiments reveal
transport features, such as puzzling 0:7� 2e2=h conductance anom-
aly observed at finite temperature, and other nonuniversal plateaus
of the conductance arising at a finite voltage bias [1,4]. Their nature
remains a mystery whose solution lies in unclarified so far physics of
interacting electrons in these systems [5]. Nevertheless, it is clear that
the origin of the anomalies is closely related to the spin-charge
structure of the quantum contact.

In the present paper we have found an unusual feature of the
interacting electron behavior that could be a reason of the above
anomalies. This feature arises when the phase transition with

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physe

Physica E

1386-9477/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physe.2013.12.021

n Corresponding author. Tel.: +7 4965652680.
E-mail address: sablikov@gmail.com (V.A. Sablikov).

Physica E 59 (2014) 75–82



Author's personal copy

spontaneous breaking the spin symmetry occurs in the case where
the e–e interaction is highly nonuniform, namely the interaction is
concentrated in a small region of space that is not separated by any
barrier from the surrounded gas of non-interacting electrons.

The problem is the following. The electrons in the quantum
point contact are often considered as a one-dimensional (1D)
system. However a rigorous theorem due to Lieb and Mattis [6]
shows that the ground state of a 1D system is unmagnetized. In
reality, the 1D part of the quantum point contact is continuously
transformed at its ends into surrounding system of higher dimen-
sionality. Therefore this theorem is not applicable and the 1D
segment can have a magnetic momentum. We draw attention to
two facts. First, the e–e interaction in the narrow constriction is
effectively much more strong than in the surrounding electron gas.
Second, there is no physical reason to divide the system under
consideration into a two coupled systems: a small system in which
the e–e interaction is present, and a large system where electrons
do not interact. The interaction region and the surrounding gas
should be considered non-perturbatively as a single system. It is
also important that under the equilibrium the charge and spin
densities are formed in the constriction and the surrounding
electron gas. Therefore, following questions arise: what spin and
charge textures are formed in the equilibrium, whether the system
can be spontaneously magnetized and under what conditions a
magnetic momentum arises in the interaction region, what effec-
tive potential landscape is ultimately formed.

In this paper we consider a minimal model that allows one to
answer qualitatively these questions and to reveal non-trivial features
of the spin-polarized state formation. The problem is solved within the
self-consistent field approach by the way of minimizing the grand
potential of the whole system. We come to an unexpected conclusion
that the formation of a spin-polarized state strongly differs from Bloch
or Stoner transition in homogeneous systems [7,8]. It turns out that a
metastable state appears in the critical point in addition to the globally
stable state, and only one of these states is polarized.

The outline of the paper is the following. In Section 2 we present
the model and the approaches used in the calculations of the grand
potential and the electron densities. Section 3 contains the analysis of
a 1D model including the effect of an additional scatterer on the
metastable state. In Section 4, a 2D system with the localized e–e
interaction is considered. In Section 5 we discuss main results and
possible applications. In Appendices we prove the existence of the
branching in the critical point and analyze the stability of solutions.

2. The model

Consider 2D or 1D electron system in which the pair interaction
potential Veeðr; r¼ r0Þ is nonzero only in a finite region and
vanishes outside it. Inhomogeneous interaction of this kind can
actually be realized because of two reasons: (i) due to the screen-
ing of the Coulomb interaction by nearby conductors and (ii) as a
result of the confinement of electrons by lateral gates in 2D
systems. The latter is realized in quantum point contacts, where
the e–e interaction is effectively the strongest in the most narrow
part of the constriction which is effectively one-dimensional. The
effective interaction potential is estimated as [9]

½Veeðx; x0Þ�nn0 ¼
e2

ε

ZZ
dy dy0

χn;xðyÞj2jχn0 ;x0 ðy0Þj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr�r0j2þd2z

q ; ð1Þ

where χn;xðyÞ is the transverse wave function of n-th subband, dz is
the thickness of 2D layer, ε is the dielectric constant. The effective
1D pair interaction potential as a function of the longitudinal
coordinates x and x0 of interacting electrons is illustrated in Fig. 1.

Since the inhomogeneous interaction is caused by nearby gates,
we include for generality into the model also a single-particle
potential UðrÞ created in the interaction region by external charges,
such as a background charge and charges on the gates.

The problem is to find the equilibrium densities of electrons
with spin up and spin down in the interaction region and around
it. To this end we will calculate the grand potential of the system
and find the wave functions which minimize it. In this way there is
a difficulty associated with taking into account the electron
correlations which are strongest in the interaction region. The
problem is simplified if one suppose that the size of the interaction
region is small compared to the average distance between elec-
trons. In this case we use the self-consistent field approximation
without restrictions imposed by spin and spatial symmetry of the
wave functions. Using this approximation for inhomogeneous
systems has a decisive advantage since it is non-perturbative
and goes far beyond the first-order expansion in the interaction
[10]. Ultimately, this approach allows us to solve a highly non-
linear problem of self-consistent finding the wave functions with
account of the charge and spin densities in the interaction region.

Our study is based on the analysis of the grand potential using
the method developed by Memrin [11]. Calculations are carried
out as follows. First, the self-consistent equations for the wave
functions are obtained by minimizing the grand potentialΩ over a
restricted class of trial density matrices, which are chosen in the
form of the equilibrium density matrix for non-interacting parti-
cles in an effective field. Stationary points of the grand potential
yield self-consistent equations for the single-particle wave func-
tions. Next, we show that these equations have several solutions
and investigate their stability by analyzing the second variation of
the grand potential. Finally, we compare the grand potentials of
the stable solutions and study their dependence on the interaction
strength and other parameters of the system.

The self-consistent equations for single-particle wave functions
Ψ ksðrÞ have form of the Hartree–Fock equations in which the
electron density matrix contains the Fermi distribution function.
In what follows we consider a simplified case of short-range e–e
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Fig. 1. (a) Schematics of quantum point contact. (b) The effective 1D interaction
potential Veeðx; x0Þ in the parabolic constriction dðxÞ ¼ d0þx2=a, for d0=a¼ 0:2 and
n¼ n0 ¼ 1.
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interaction where

Veeðr; r0Þ � vðrÞδðr�r0Þ: ð2Þ
In this case the self-consistent equations for single-particle wave-
functions are

p2

2me
þUðrÞþvðrÞns ðrÞ

� �
Ψ ks ¼ ɛksΨ ks; ð3Þ

where k is an orbital quantum number, s is the spin, s ¼ �s, ns is
the electron density with the spin opposite to s,

ns ðrÞ ¼∑
k0
jΨ k0s ðrÞj2ρF

k0s ; ð4Þ

and ρF
ks ¼ 1=ð1þexp½ɛks=T �Þ is the Fermi distribution function.

The grand potential Ω in the stationary points, where δΩ¼ 0,
is easily found in the form:

Ω¼ �T∑
k;s
ln 1þexp

μ�ɛk;s
T

h i� �
�

Z
drvðrÞn↑ðrÞn↓ðrÞ: ð5Þ

Here, the last term is directly caused by the interaction energy. The
first term also contains an interaction dependent part arising
because of a change in the density of states due to the interaction.
Physically this part originates from the electron cloud that is
formed around the interaction region. The rest of the first term
is the thermodynamic potential of the non-interacting electrons.
Thus, the grand potential can be presented in the form:

Ω¼ΩresþΩint ; ð6Þ
where Ωres is the grand potential of non-interacting electrons and
Ωint is the interaction-dependent part of Ω, which is only
important in what follows.

To separate Ωint from Ωres we proceed as follows. First, we
consider a finite system with a discrete spectrum, and then make
the transition to infinite system by the way of the asymptotic
expansion ofΩ in powers of the system size. In this expansion, the
term, which changes proportionally to the volume of the system, is
Ωres. The term, which is finite when the volume goes to infinity,
represents Ωint.

3. One-dimensional model

Main features of the phase transition with the spin symmetry
breaking in systems with inhomogeneous interaction can be easily
seen from the 1D model, which is simpler for calculations and the
results remain qualitatively in the 2D model. We assume that the
size of the interaction region (as well as the size of the region
where the built-in potential U(x) is localized) is small compared
with the electron wavelength, so that the wave function is nearly
constant therein. Averaging over the interaction region in Eq. (3)
results in the following Hartree–Fock equation with an effective
delta-like term:

d2

dx2
�2QsδðxÞþk2

" #
ψ ks ¼ 0; ð7Þ

where the wave number k¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2meɛ

p
=ℏ,

Qs ¼
mea
ℏ2 ½ uþvnsð0Þ�: ð8Þ

Here a is the size of the interaction region; u ¼U�vnb is the
average single-particle potential, which is the sum of the potential
U induced by external gates and the potential vnb originating from
a background charge density nb in the interaction region; v is the
average of the pair interaction amplitude defined in Eq. (2); nsð0Þ is
the electron density in the interaction region, which is determined

by the occupied states with spin s:

nsð0Þ ¼∑
k
jψ ksð0Þj2ρF

k : ð9Þ

Eq. (7) is easy to solve. If the system has a finite length L, the
wave function in the interaction region with zero boundary
conditions at the ends reads as

ψ ksð0Þ ¼
ffiffiffi
2
L

r
k

kþ iQs
: ð10Þ

In the asymptotic limit kL-1, the electron density in the inter-
action region is

nsð0ÞC
2
L

Z 1

0
dkDsðkÞ

k2

k2þQ2
s

ρF
k ; ð11Þ

where Ds(k) is the density of states:

DsðkÞC L
2π

þ1
π

Qs

k2þQ2
s

: ð12Þ

Combining Eqs. (8), (11) and (12) we come to the following
system of equations for Qs:

Qs ¼
mea
ℏ2 uþv

Z 1

0

dk
π

k2

k2þQ2
s

ρF
k

" #
; ð13Þ

where s¼ ↑; ↓. These equations determine the possible values of Qs

at which the grand potential has an extremum.
Our finding is that Eq. (13) can have several solutions and this

property is rather general for systems with spatially localized
interaction. For each solution Qs, one can find the corresponding
electron density ns ðxÞ with the use of Eq. (11).

3.1. Electron densities

Let us find possible solutions of Eq. (13) and their correspond-
ing electron densities ns(x). It is convenient to use dimensionless
quantities:

ys ¼
Qs

kF
; A¼ mea

ℏ2kF
u; B¼meL

πℏ2v; M¼ μ
T
: ð14Þ

Here B is the interaction parameter, A represents the built-in
potential, M represents the chemical potential and the tempera-
ture, kF is the Fermi wave vector. In these notations Eq. (13) takes
the form:

ys ¼ AþB
Z 1

0

dξ ξ2

ξ2þy2s
ρðξÞ; ð15Þ

with ρðξÞ ¼ 1=ð1þexp½Mðξ2�1Þ�Þ.
It is convenient to solve the system of equations (15) by

reducing it to a single equation. Introduce an auxiliary function:

Fðy;BÞ ¼ AþB
Z 1

0

dξ ξ2

ξ2þy2
ρðξÞ: ð16Þ

In terms of this function, Eq. (15) reads as

y¼ FðFðy;BÞ;BÞ: ð17Þ
One of the roots of Eq. (17) is easy to find. It coincides with the

root of a more simple equation:

y0 ¼ Fðy0;BÞ; ð18Þ
as one can verify by the direct substitution of Eq. (18) into Eq. (17).
Eq. (18) has a single positive root y0 ¼ y0ðBÞ, if AþB40. This is easy
to see by taking into account Eq. (16), which shows that the RHS of
Eq. (18) decreases monotonically with y0 and equals AþB at y0 ¼ 0.
The LHS of Eq. (18) increases as y0. Hence, Eq. (18) has a single root.
This root corresponds to an unpolarized state of the system.
Indeed, in this case ys ¼ ys ¼ y0ðBÞ. Thus, the system has the

V.A. Sablikov, B.S. Shchamkhalova / Physica E 59 (2014) 75–82 77



Author's personal copy

unpolarized state which exists at AþB40 for any interaction
parameter.1

We have found that Eq. (17) has another two roots in addition
to y0ðBÞ. They arise when the interaction parameter exceeds a
critical value Bc. The proof of this statement is given in Appendix A
where we show that the function y(B) defined by Eq. (17) has a
branching point at B¼ Bc in which two roots, ys(B) and ys ðBÞ, arise
in addition to y0ðBÞ, and study their dependence on B. The
additional roots correspond to the polarized state, since ysays
and consequently the electron densities with opposite spins are
different. In the vicinity of the branching point, ys(B) changes as
ys�y0psðB�BcÞ1=2 with s¼ 71.

In the case of zero temperature, Eq. (17) is explicitly solved in a
wide range of B since the integral in Eq. (16) is calculated
analytically and the resulting transcendental equation is easily
solved numerically. The results are illustrated in Fig. 2 where the
roots of Eq. (17) and the electron densities in the interaction region
are shown as functions of the interaction parameter. Here and
henceforth the electron density is normalized by nN ¼ kF=π. It is
seen that at the critical point both graphs, ys(B) and ns(B), split into
polarized and unpolarized branches which coexist if B4Bc . Thus,
above the critical point the system can be in two states: the
unpolarized state with n↑ ¼ n↓ ¼ n0 and the polarized state with
n↑an↓. The effective potentials of the interaction region in these
states are different and depend on the spin. The electrons with
spin up feel the potential produced by the spin-down electrons
and vice versa. Near the critical point, when B�Bc5Bc , the
densities n↑ and n↓ deviate symmetrically from the unpolarized
branch n0, as Eq. (A.6) shows, so that n↑þn↓C2n0. However, far
from the critical point this symmetry is violated because of the
nonlinear dependence of the effective potentials on the interaction
strength.

In the surrounding electron gas, the electron density is also
perturbed due to the interaction, and spin-polarized electron
cloud is formed. The electron densities with opposite spin outside
the interaction region read as

nsðxÞ ¼
Z 1

0

dk
π

1� Qsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þQ2

s

q cos 2kxþarctan
k
Qs

� �2
64

3
75ρF

k : ð19Þ

The spatial dependence of ns(x) is illustrated in Fig. 3 for both
polarized and unpolarized states. In the polarized state, the
densities of electrons with opposite spin oscillate with different
periods and amplitudes while in the unpolarized state usual
Friedel oscillations are formed.

Above calculations were carried out supposing that AþB40. In
reality AþB can be negative when single-particle potential
u ¼U�vnb is negative. In this case a bound state arises for that
spin component s, which feels the attracting effective potential
(Qs o0). It is easy to generalize the results by adding the bound
state with the wave function:

ψκss ¼
ffiffiffiffiffiffiffiffiffiffiffi
�Qs

p
½eQs xθðxÞþe�Qs xθð�xÞ�θð�Qs Þ; ð20Þ

where κs ¼
ffiffiffiffiffiffiffiffiffiffiffi
�Qs

p
. However, direct calculations show that the

presence of the bound state does not qualitatively change the
dependence of ns on B.

The critical value of the interaction parameter Bc depends on
the parameters of the system: A and M. The dependence of Bc on A
is interesting because it simulates the effect of the gate voltage in
the experiments on the quantum point contacts. The dependence

of Bc on A is shown in Fig. 4a for zero temperature. Bc is seen to
increase with A. The line Bc(A) divides the plane (A;B) into two
regions. Below this line, there is only the unpolarized state. Above
the line, both polarized and unpolarized states exist.

The effect of temperature was studied in the case where T⪡ɛF
(see Fig. 4b). On a qualitative level, the temperature effect is the
following. With increasing temperature, Bc strongly increases for
positive A and slightly decreases when A is negative. When A is
close to zero, the variation of Bc is more complicated, but generally
Bc slightly increases with the temperature. It is interesting that the
critical point exists at any values of the parameters for which the
model we used is physically reasonable.

In the case where two states are available to the system, we
need to compare their grand potentials.

3.2. Grand potential

The grand potential of each state can be found from the general
Eq. (5). In the case of 1D model with small interaction region, the
grand potential has the form:

Ω¼ � TL
2π

Z 1

0
dk lnð1þeðμ� ɛkÞ=T Þ

�T
π
∑
s
Qs

Z 1

0

dk

k2þQ2
s

lnð1þeðμ� ɛkÞ=T Þ�van↑ð0Þn↓ð0Þ: ð21Þ

Here the first term proportional to L is Ωres, the second and third
terms are Ωint. By excluding nsð0Þ with the use of Eq. (13) we get
Ωint in terms of ys:

π
μ
Ωint ¼ � 1

M
∑
s
ys

Z 1

0

dξ

ξ2þy2s
ln
�
1þeMð1�ξ2Þ

�

�2
B
ðy↑�AÞðy↓�AÞ: ð22Þ

Direct calculation ofΩint using the roots of Eq. (17) leads to the
results shown in Fig. 5.

The grand potential of the polarized state ΩP is seen to be
lower than the grand potential of the unpolarized state Ω0 for
all A. Near the critical point the difference of the grand potentials
of the polarized and unpolarized states varies with B as follows:
ΔΩ�ΩP�Ω0p�ðB�BcÞ2.

Consider now the stability of the solutions. The analysis of the
second variation ofΩ is carried out in Appendix B by expandingΩ
up to second order in the variation of the self-consistent field for a
finite system and then making the transition to the limit L-1. We
show that in this limit the matrix δ2Ω is positive for both
(polarized and unpolarized) states and therefore the stationary
points are local minima. The state with lower Ω corresponds to a
global minimum and the other state therefore is metastable.

3.3. Effect of a scatterer

The above calculations show that the grand potential of the
polarized state is lower than that of the non-polarized state. An
interesting question is whether this is a general property, or the
grand potential of the polarized state can be higher than that of the
unpolarized state? That would be interesting, since in this case one
can expect an unusual temperature dependence of the polarization.
Unfortunately we failed to come to an universal conclusion about the
sign of the grand potential difference ΔΩ in general case, but in this
section we show that ΔΩ can really be positive.

The important point is that the difference between the grand
potentials of the polarized and unpolarized states can be changed
due to factors affecting the energy of the electron cloud around the
interaction region. We study the effect produced by an additional
scatterer located at some distance from the interaction region in

1 The case where AþBo0 needs a separate consideration since in this case the
effective potential of the interaction region becomes negative and bound states
arise, which are not included in Eq. (10). The emergence and role of the localized
states is considered below in this section.
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the non-interacting electron gas. It turns out that in this case ΔΩ
changes dramatically.

Consider a 1D system containing a δ-like center located at a
distance l from the interaction region. In this case the Hartree–Fock
equation differs from Eq. (7) by the additional δ-like potential:

d2

dx2
�2QsδðxÞ�2u1δðx� lÞþk2

" #
ψ ks ¼ 0; ð23Þ

where Qs is defined by Eq. (13), u1 is the amplitude of the scatterer
potential. The problem is solved straightforwardly. After cumbersome
calculations we arrive at the following results.

The phase transition with the formation of a metastable state
persists in the presence of the δ-like scatterer. The system is
unpolarized when the interaction parameter B (defined as before
by Eq. (14)) is less than a critical value Bc, which however depends
on the amplitude u1 of the scatterer potential and its position.
When B4Bc, a polarized state arises in addition to the unpolarized
state. The dependence of the electron densities ns and ns in the
interaction region on B is qualitatively similar to that in the case of
the system without the scatterer.

The difference between the grand potentials of the polarized
and unpolarized states essentially depends on the position of the
scatterer and its potential. The effect of the scatterer potential u1 is
different depending on the distance l. If the distance is close to an
integer number of the Fermi wavelengths, the increase of u1
results in the growth of the grand potential of the polarized state,
so that ΔΩ becomes positive in some range of B near and above
the critical point. This means that the polarized state becomes
metastable in some range of B. However, with further increasing B
the grand potential difference again becomes negative. The spe-
cific results obtained for lkF ¼ 2π are presented in Fig. 6a.

If the distance l is close to half-integer number of Fermi
wavelengths, the critical value of the interaction parameter Bc
increases with the scatterer potential u1. Specific results for the
dependence of the grand potential difference on the interaction
parameter are given in Fig. 6b for a variety of l.

4. Two-dimensional system

The question of whether the metastable state is formed in 2D
systems is interesting because the configuration of the electron
cloud in this case strongly differs from that considered above.
Furthermore, in the realistic case of quantum contact the electron
cloud is formed in 2D electron gas.

Consider a 2D electron system in which the e–e interaction is
localized in a circle of radius a. In this case the Hartree–Fock
equation (Eq. (3)) reads as

∇2Ψ ksþ½k2�Q2
s ðrÞ�Ψ ks ¼ 0; ð24Þ

where

Q2
s ðrÞ ¼

2me

ℏ2 ½vðrÞnsðrÞþUðrÞ�: ð25Þ

Let us assume again that the radius a is small compared to the
wavelength, ak⪡1, and treat the interaction region as a boundary
condition for the wave function in the outer region. By integrating
Eq. (24) over the interaction region, one obtains the following
boundary condition:

a
∂Ψ ks

∂r

			
r ¼ aþ0

þa2

2
Q2

sΨ ksðr¼ aÞ ¼ 0; ð26Þ

where Qs
2 is the average of Q2

s over the interaction region:

Q2
s ¼

1
πa2

Z a

0
dr r

Z 2π

0
dφQ2

s ðrÞ: ð27Þ

In the outer region the wave function reads as

Ψ ks ¼
1
2π

eimφψ kmsðrÞχs; ð28Þ

where χs is the spin function, m is integer, φ is the angular
coordinate,

ψ kmsðrÞ ¼ Akms½ JmðkrÞþBkmsYmðkrÞ�; ð29Þ
where Jm(kr) and Ym(kr) are the Bessel functions of the first and the
second kind respectively. The coefficient Bkms is determined from
Eq. (26). In what follows, only the coefficient Bkms at m¼0 is
important, since all components of the wave function with ma0
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are small in the interaction region. They are of the order of ðakÞm.
For Bk0s we have

Bk0s � Bks ¼ � 2akJ00ðakÞþa2ðk2�Q2
s ÞJ0ðakÞ

2akY 0
0ðakÞþa2ðk2�Q2

s ÞY0ðakÞ
; ð30Þ

here and below the index m¼0 is dropped. Taking into account
that ak⪡1, this equation can be simplified to

Bks ¼ �π
2

a2Q2
s

2�a2Q2
s ðγþ lnðak=2Þ

; ð31Þ

where γ is Euler0s constant.
The normalization constant Aks is found assuming that the

system is infinite:

jAksj2 ¼
1

1þjBksj2
: ð32Þ

The electron densities n↑ð0Þ and n↓ð0Þ in the interaction region
are calculated using Eqs. (4), (28), (29), (31) and (32):

nsð0Þ ¼
1
2π

Z 1

0

dk k ρF
k

1�a2Q2
s

2
γþ ln

ak
2

� �" #2

þπ2

4
a4Q4

s

4

: ð33Þ

Now one can obtain a system of self-consistent equations for
the effective potentials of the interaction region Qs. Using Eqs. (25),
(27) and (33) we get

Qs

k2F
¼ AþB2D

k2F

Z 1

0

dk k ρF
k

1�a2Q2
s

2
γþ ln

ak
2

� �" #2

þπ2

4
a4Q4

s

4

; ð34Þ

where dimensionless parameters are introduced:

A2D ¼U
μ
; B2D ¼ mev

2πℏ2; ð35Þ

U and v respectively denote U(r) and v(r) averaged over the
interaction region. The value v can be roughly estimated as the
average of the pair interaction potential Vee using Eq. (2):
v � πa2V ee.

The equation system (34) for Qs and Qs is easily reduced to the
single equation which has the same form as Eq. (17), but now the
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function Fðy;BÞ is more complicated:

Fðys;B2DÞ ¼ A2DþB2D

Z 1

0

dξ ξ ρðξÞ

½1�2α2ysðγþ lnðαξÞÞ�2þπ2

4
α4y2s

; ð36Þ

where the dimensionless variables are used:

ys ¼
Q2

s

k2F
; ξ¼ k

kF
; α¼ akF

2
: ð37Þ

Eq. (17) with the function Fðy;B2DÞ defined by Eq. (36) admits an
analytical analysis similar to that given in Appendix A. As a result of
analytical and numerical calculations we have found that in the 2D
case the branching of solutions occurs similar to that described in
Section 3. If the interaction parameter B2D is less than the critical
value B2D;c , the system is unpolarized. When B2D4B2D;c there are
two states one of which is polarized and the other unpolarized.
Near the critical point, the effective potentials ys and the electron
densities nsð0Þ change with B�Bc similar to the above 1D model.

The grand potential is expressed in terms of ys using Eqs. (5), (33),
(34). The interaction dependent part of the grand potential reads as

Ωint

μ
¼ 2
M
∑
s

Z 1

0

dξ
ξ

ln½1þeMð1�ξ2Þ�

π2þ4
1

2α2ys
�γ� lnðαξÞ

� �2� α2

B2D
ðy↑�A2DÞðy↓�A2DÞ:

ð38Þ
The dependence of the electron densities in the interaction

region and the grand potential on the interaction parameter is
illustrated in Fig. 7. It is seen that both nsð0Þ and Ωint vary with
B quite similar to the 1D model.

5. Discussion and concluding remarks

We have found a non-trivial behavior of interacting electrons in
the inhomogeneous system where the e–e interaction is localized
in a finite region, which is not separated by any barriers from
surrounding non-interacting electron gas. Under this condition, no
states are localized in this region, unlike Kondo systems or
quantum dots connected to electronic reservoirs. It turns out that
in such a system, the phase transition with spontaneous breaking
the spin symmetry due to exchange interaction is very different
from the Bloch or Stoner transition in homogeneous systems.

The main feature is that a metastable state emerges at the critical
point in addition to the globally stable state, so that both states exist
above the critical point and only one of them is spin polarized. In
other words, the metastable state can be either polarized or
unpolarized. This depends on the form of the interaction region, its
potential and the spatial configuration of the electron cloud around
the interaction region. Another feature is that above the critical point,
the spin polarization increases continuously with increasing interac-
tion parameter in contrast to the Bloch transition, where the
polarization rises abruptly. These properties do not qualitatively
depend on the dimensionality (they are similar for 1D and 2D
systems) and persist in the presence of additional scatterers.

An important factor determining the formation of the metastable
state is that the inhomogeneous system is not locally neutral. Excess
charge and spin densities arise in the interaction region, so that the
spin-dependent potential is formed self-consistently. This contrasts
to homogeneous systems which are naturally supposed to be locally
charge neutral [7]. The spin and charge densities arising in the
interaction region play a key role in our consideration. Their effect
has been taken into account within the self-consistent field approach
without restrictions imposed by symmetry of wave functions.
This approach is in line with recent studies of the spontaneously
broken-symmetry states of interacting electrons within unrestricted

Hartree–Fock approximation which reveal spin and charge structure
of the correlated state [12,13]. In our case this approach has
advantage of being non-perturbative, but it loses the effect of
dynamic correlations, which requires further study.

The metastable state can be realized in inhomogeneous electron
systems made on the basis of 2D gas with the use of gates, such as
quantum point contacts. Simple estimates show that the critical
condition for the metastable state to appear is really attainable in
such structures. The potential of pair interaction is approximated as

Vee � e2 ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þd2

q� �

, with d being the width of the con-

striction. In the constriction of length a, the average of the
interaction amplitude can be estimated as v � ð2e2=εÞlnð2a=dÞ,
and therefore B� ða=an

BÞlnð2a=dÞ, with an
B being the Bohr radius.

Thus, the critical condition Bc � 2 is achieved when a≳aB, which is
compatible with the restriction akFo1 supposed in our
calculations.

Direct comparison with the experiment is hindered because
actually the length of the constriction is comparable or even larger
than the wavelength, while the present calculations are strongly
restricted by the requirement akF⪡1. Calculations carried out within
a 1D model system with specific potential vðxÞpcosh�1ðx=aÞ for
small but finite akF show that the metastable state becomes polarized
with increasing length a [14]. The fact that the polarized state can be
metastable is interesting since in this case the existence of the
polarization does not contradict to the Lieb–Mattis theorem [6].

Nevertheless, simple qualitative arguments [14] show that the
metastable state can manifest itself in a decrease of the conduc-
tance with the temperature if the metastable state is polarized.
The effect occurs because the conductance in the polarized state is
less than in the unpolarized state. This mechanism could explain
the temperature dependence of the conductance observed experi-
mentally when the 0:7� 2e2=h anomaly is formed.
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Fig. 7. (a) Electron densities in the interaction region and (b) the grand potential of
the unpolarized and polarized states as functions of the interaction parameter.
Calculations were carried out for T¼0, A2D ¼ 0 and α¼ 0:3.
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The existence of a metastable state in quantum point contacts
was also seen in the numerical calculations of the conductance
within the density functional approach for zero temperature [15].
However, this state has not been identified and the grand potential
of the system has not been investigated.
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Appendix A. Branching of the solutions in 1D model

Here we show that Eq. (17) has two more roots, ys(B) and ys ðBÞ,
in addition to y0ðBÞ. They are branched from the function y0ðBÞ. Let
us seek the solutions of Eq. (17) in the vicinity of the function y0ðBÞ
by representing the sought function y(B) in the form:

yðBÞ ¼ y0ðBÞþδyðBÞ: ðA:1Þ
If δy⪡y0, the function Fðy;BÞ can be expanded in powers of δy:

Fðy;BÞ ¼ y0þF 0yδyþ1
2 F

00
yyδyþ1

6 F
00
yyyδyþ⋯: ðA:2Þ

As a result, Eq. (17) is transformed to

δy 1�F 02y �1
2 F

0
yF

00
yyð1þF 0yÞδy

n
�1

6 F
0
y½F‴yyyð1þF 02y Þþ3F″yy�δy2�⋯

o
¼ 0: ðA:3Þ

The trivial solution of this equation, δy¼ 0, corresponds to the
root y0ðBÞ. If δya0, additional infinitely small solutions can exist
when 1�F 02y is arbitrary small. Hence the point where F 02y ¼ 1 is a
branching point of y(B). Since according to Eq. (16) F 0yo0, the
necessary condition for the branching point to exist is

F 0yjy ¼ y0ðBÞ ¼ �1: ðA:4Þ
This is also an equation determining the critical value of the
interaction parameter B¼ Bc at which the function y(B) has the
branching point. In this point y¼ yc � y0ðBcÞ.

By expanding Fðy;BÞ in two variables in the vicinity of the
critical point (y¼ yc;B¼ Bc) one can show that

(i) Eq. (A.5) has always one solution,
(ii) near the critical point, the function y(B) has the form:

y�ycC7CðBcÞðB�BcÞ1=2; ðA:5Þ
where CðBcÞ is expressed in terms of derivatives of Fðy;BÞ at the
critical point:

CðBcÞ ¼ 6
�2F 00yB�F 00yyF

0
B

3F″2yyþ2F‴yyy

					
y ¼ yc ;B ¼ Bc

: ðA:6Þ

Appendix B. Stability of the solutions

In the self-consistent field approach [11], the grand potential is
minimized over the trial density matrices, which are chosen in the
form of the equilibrium density matrix for non-interacting parti-
cles with an effective Hamiltonian of the form:

Ĥeff ¼ ∑
k;s;k0 ;s0

γk;s;k0 ;s0 ĉ
†
k;sĉk0 ;s0 ; ðB:1Þ

where ĉ†k;s and ĉk;s are fermion creation and annihilation operators
respectively, γk;s;k0 ;s0 is a Hermitian matrix that is to be determined
by the way of minimizing the grand potential Ω with respect to
γk;s;k0 ;s0 . In the calculations, it is convenient to use the matrix ρ
associated with the matrix γ as follows:

ρk;s;k0 ;s0 ¼ 1=ð1þexp½γk;s;k0 ;s0 �Þ: ðB:2Þ

The requirement that the first variation of Ω is zero leads to the
equation for single-particle wave functions. The stability of these
states is investigated by analyzing the second variation δ2Ω.

First we assume that the system is finite. δ2Ω can be written as

δ2Ω¼ 1
2

∑
k;s;p;s

∑
k0 ;s0 ;p0 ;s0

δρps;ks〈ks;psjXjp0s0;k0s0〉δρp0s0 ;k0s0 ; ðB:3Þ

where δρps;ks is the variation of the matrix ρ and the matrix X is
defined as

〈ks;ps X p0s0;k0s0〉
				

¼ ɛk�ɛp
ρF
p�ρF

k

δkp0δpk0δss0δs0sþ 〈ks;k0s0 Vee ps;p0s0〉�〈ks;k0s0 Vee p0s0;ps〉:
								

ðB:4Þ
The second variation δ2Ω is positive if the matrix X is definite.

Since X is a Hermitian matrix, it is positively defined if and only if the
eigenvalues of X are positive. This means that δ2Ω40 if

∑
k0 ;s0 ;p0 ;s0

〈ks;psjXjp0s0;k0s0〉αp0s0 ;k0s0 ¼ λks;psαks;ps ðB:5Þ

and λks;ps40.
In the case of the 1D model, the matrix X has the form:

〈ks; psjXjp0s0; k0s0〉¼ ɛk�ɛp
ρF
p�ρF

k

δkp0δpk0δss0δs0s

þvaAn

ksA
n

k0s0ApsApsðδssδs0s�δss0δs0sÞ; ðB:6Þ

where Aks is the amplitude of the wave function at x¼0. According
to Eq. (10),

Aks ¼
ffiffiffi
2
L

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þQ2
s =k

2
q : ðB:7Þ

Since Aks decreases as L�1=2 with increasing L, the second term in
Eq. (A.6) vanishes in the limit L-1 and the matrix X becomes
diagonal. The eigenvalues of X are positive since ðɛk�ɛpÞ=
ðρF

p�ρF
kÞ40.

It is evident that this conclusion is generalized to the systems of
higher dimensionality.
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