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Temperature-dependent quantum electron transport in 2D point contact
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We consider a transmission of electrons through a two-dimensional ballistic point contact in the
low-conductance regime below the 0.7-anomaly. The scattering of electrons by Friedel oscillations
of charge density results in a contribution to the conductance proportional to the temperature. The
sign of this linear term depends on the range of the electron-electron interaction and appears to be
negative for the relevant experimental parameters.

PACS numbers: 73.21.Hb, 73.23.-b, 73.50.Lw

I. INTRODUCTION

In recent years, the effects of electron-electron inter-
action on the conductance of low-dimensional ballistic
contacts have attracted a considerable interest. This
is mainly due to the attempts to explain the conduc-
tance plateaus at 0.7(2e2/h) in quantum point contacts1

and 0.5(2e2/h) in quantum wires2. Usually these effects
are explained by an existence of a localized state in the
contact3,4. The mechanism of localization is not fully
understood, and different scenarios of formation of such
a state5–7 were proposed. One of them involves electron
backscattering from the oscillations of the electron den-
sity in quantum point contacts8. This mechanism is in-
herent to any constriction, and the oscillations of electron
density are actually observed in experiments9.

The formation of the plateaus in the gate-voltage de-
pendence of the conductance is not the only possible ef-
fect of electron scattering by the Friedel oscillations in
2D systems. Recently, it was shown that scattering by
Friedel oscillations in a two-dimensional conductor with
impurities results in a strong temperature dependence of
the conductivity10,11. It was also predicted that this scat-
tering may give rise to a zero-bias anomaly of tunneling
into the edge of a 2D electron gas12.

Most of theoretical papers3,5–8 dealt with interaction
effects in the narrowest part of quantum point con-
tacts (Fig. 1) by considering them as 1D channels and
took into account only a few lowest transverse quantum
modes. Therefore it is not clear how the transition to
the continuum of quantum modes in the electrodes takes
place and whether the interaction effects in the transition
region outside the constriction play a role. Meanwhile it
is well known that Friedel oscillations in a 2D electron gas
fall down with distance x from a planar barrier accord-
ing to the law x−3/2, i.e. they penetrate deep into the
electrodes. Hence their contribution to the conductance
may be significant.

Recently, we considered contacts much wider than
the Fermi wavelength and obtained the temperature-
dependent contribution to the conductance13, positive
weak-field magnetoresistance14, and the shot noise15 due
to electron-electron interaction in the semiclassical ap-
proximation. The theoretically predicted G(T ) and

FIG. 1: Sketch of a realistic quantum point contact. The blue
triangles show the gates that form the constriction, and the
red arrows show the direction of motion of electrons.

G(H) dependencies13,14 are in a good agreement with
the experiments16,17. However the linear in temperature
contribution to the conductance persists even for con-
tacts of the width approaching the Fermi wavelength17,
where the scattering by quantum oscillations of electron
density should be considerable. Therefore it is of inter-
est to compare the contribution from this quantum effect
with the semiclassical one. To this end, we calculate the
temperature-dependent correction to the conductance for
the case of small contact size a ≪ λF and consider the
interplay between the single-slit diffraction and the inter-
action. As we assume the interaction to be weak, the for-
mation of a localized state in the contact is irrelevant to
our problem. We do not address here the physics related
with the 0.7-anomaly and focus on the low-conductance
regime.
The electron scattering by the Friedel oscillations re-

sults in a cusp in the probability of transmission through
the contact at the Fermi surface, which leads to a lin-
ear temperature dependence of the conductance similarly
to the semiclassical case. However the sign of this lin-
ear correction depends on the the competition between
a negative contribution from the direct interaction and a
positive contribution from the exchange interaction. The
dependence of the absolute and relative corrections to the
conductance on the contact size is also different from the
semiclassical one.
The paper is organized as follows. In Section II, we

present the model and describe our general formalism.
Section III addresses the case of noninteracting electrons,

http://arxiv.org/abs/1206.1150v2
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and Section IV describes the perturbation theory. Sec-
tions V and VI present the results for a point-like inter-
action and a generalization for an interaction of a finite
range, and Section VII contains the discussion of the re-
sults.

II. GENERAL APPROACH

We consider the effects of electron-electron interaction
on the conductance of a narrow short contact at non-zero
temperature. We assume that electron-electron interac-
tion is weak so that it can be treated perturbatively.
As the Friedel oscillations die out at a large distance

vF /T from an obstacle, we are mainly interested in scat-
tering processes that occur in the regions outside the con-
tact in the leads and do not focus on the exact dynam-
ics of an electron in the narrowest part of the constric-
tion. Therefore we consider an extremely short contact,
namely, we use typical single-slit diffraction model - a
gap of width 2a≪ λF in an one-dimensional barrier sep-
arating two half-planes of 2DEG (Fig. 2)18. This model
geometry allows us to avoid dealing with an infinite num-
ber of discrete transverse modes and to use instead the
continuous representation.
Note that Friedel oscillations far from the barrier do

not depend on the exact shape of the confinement poten-
tial because they are formed by electrons near the Fermi
level with almost normal incidence on the barrier. Hence
a smooth barrier potential should result only in a shift
of their phase, which would not essentially change the
correction to the conductance (see Appendix B).
We obtain the conductance by using a classical Lan-

dauer approach19 and write the conductance as a sum of
transmission coefficients

G = gs
e2

~

∫

dε

2π

(

−
∂f

∂ε

)

∑

k,q

|t(k,q)|2. (1)

Here gs is a spin degeneracy and t(k,q) is the transmis-
sion amplitude from mode with the wave-vector k in the
left half-plane to the mode with the wave-vector q to the
right half-plane.
First of all we calculate t = t0 and G = G0 for nonin-

teracting electrons. A weak electron-electron interaction
results in a scattering of electrons by the Friedel oscilla-
tions caused by the contact boundaries. We consider the
oscillations arising from the barrier as one-dimensional
and neglect their distortion by the gap because this ef-
fect is of higher order in the contact size. The incident
electron is scattered by the Friedel oscillations before
and after passing through the contact, which results in a
correction to the transmission coefficient of the contact
t(k,q) = t0(k,q)+ δt(k,q). The correction to the trans-
mission coefficient may be obtained by expanding the
perturbation of the wave function δψ in plane waves. To
calculate this perturbation, we solve a Schrödinger-type
equation

FIG. 2: The model of quantum point contact used in our
calculations. Red line shows a process of electron scattering
by the Friedel oscillations that affects the conductance.

[

−
~
2

2m
∇2 + Veff (r)

]

ψ(r) = ε ψ(r) (2)

in an iterative way20 and obtain δψ(r) in the lowest order
in the interaction.
Now we discuss the interaction potential induced by

the Friedel oscillations. It is a sum of a direct term and
an exchange one21 Veff (r) = VH(r)− VF (r), where

VH(r) = gs

∫

dr1 Uee(r− r1)n(r1, r1), (3)

VF (r)ψ(r) =

∫

dr1 Uee(r− r1)n(r, r1)ψ(r1), (4)

where n(r, r1) = 〈ψ̂+(r1) ψ̂(r)〉, ψ̂
+ and ψ̂ are electron

creation and annihilation operators, and Uee(r − r1) is
the potential of the electron-electron interaction. Typi-
cally, it is the Coulomb interaction screened by the two-
dimensional electrons and by the gate. The coefficient of
spin degeneracy gs appears only in the direct term be-
cause it involves interactions between electrons with both
spin directions while the exchange interaction is possible
only for electrons with the same spin.
Equations (3) and (4) result in a correction to the wave

function in the form δψ = δψH − δψF and, accordingly,
in a correction to the conductance

δG = δGH − δGF . (5)

The negative sign in the exchange term is explicitly
shown here.

III. NON-INTERACTING ELECTRONS

In the absence of electron-electron interaction the con-
ductance calculation reduces to the standard problem of
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diffraction by a narrow gap of width a ≪ λF . For the
three-dimensional case it was considered many times22

and the conductance of a small three-dimensional ballis-
tic contact23 was found to be proportional to the sixth
power of the contact size G ∝ (kF a)

6.
To the best of our knowledge, the two-dimensional

problem in the limit of a ≪ λF was considered only
once for a specifically designed model of the contact24.
In the limit of kF a ≪ 1, these authors obtained G ∝
1/ ln2(kF a), which is unphysical. Therefore we recalcu-
late this quantity using the solution of the problem of
diffraction from a narrow slit obtained many decades ago
in optics25.
We use an approach similar to Sommerfeld25 and re-

duce the solution of the Schrödinger equation (2) with
Veff = 0 to a boundary-value problem. The total wave
function may be presented in the form

{

ψ(r′) = ψ0(r
′) + ψt(r

′), x′ < 0

ψ(r′) = ψt(r
′), x′ > 0,

(6)

where ψ0 is the wave function in the absence of the gap
and ψt is the lowest-order correction in the gap size. The
zero-order wave function ψ0 obeys zero boundary condi-
tions both at the barrier and the gap, while the correction
ψt obeys the zero boundary condition at the barrier and
a nonzero boundary condition at the gap

{

(∇2 + k2)ψt(x, y) = 0

ψt(x, y)|x=0, y∈(−a,a) = χ(0, y),
(7)

where k2 = 2mε.
We assume that the incoming plane wave ψi(r) =

√

m/kx e
i(kxx+kyy) with k2x+k

2
y = k2 falls on the contact

from the left in the x direction and find the boundary
condition χ(y) self-consistently using the continuity of
the derivative of the total wave function at the gap (see
Appendix A). Expanding the transmitted wave function
in plane waves allows us to obtain transmission coefficient
for noninteracting electrons

t0(k,q) = −
iπ

2
a2
√

kxqx. (8)

We substitute it in Eq.(1) and obtain

G0 = gs
e2

~

π

128
k4F a

4 +O

(

T 2

E2
F

)

. (9)

This contact-size dependence is more physically plausi-
ble than that of Ref. 24 because it corresponds to the
two-dimensional analog of the Rayleigh scattering of light
by small particles22. Indeed, the conductance is propor-
tional to the square of the two-dimensional particle vol-
ume.

IV. PERTURBATION THEORY

Now we take into account a weak electron-electron in-
teraction. This interaction leads to a scattering of elec-

trons by the Friedel oscillations induced by the barrier
and results in a correction δt(k,q) to the transmission
coefficient. We substitute it in Landauer formula (1) and
obtain the correction to the conductance in the case of
weak interaction

δG = −2gs
e2

~

∫

dε

2π

(

−
∂f

∂ε

)

×
∑

k,q

|t0(k,q)| Im δt(k,q). (10)

Here we take into account the fact that t0 (8) is an imag-
inary quantity. The correction to the transmission coeffi-
cient is conveniently expressed in terms of the correction
to the wave function by expanding it in plane waves.
The wave function is found by solving the Schrödinger
equation (2) in the lowest order in the interaction. To
this end, we isolate the term with Veff in the right-hand
side and substitute the unperturbed wave function into
it. The solution is given by

δψ(r) =

∫

dr′ g(r, r′)Veff (r
′)ψ(r′). (11)

Here Veff (r
′) is the scattering potential produced by

the Friedel oscillations, g(r, r′) and ψ(r′) are the single-
electron Green function and the total wave function for
noninteracting electrons. We assume that the electrons
are incident on the contact from the left and we measure
the total current on the right, where x > 0. We are in-
terested in the entire range of values of x′ ∈ (−∞,∞)
because we consider the scattering by the Friedel oscil-
lations on both sides of the contact. Similarly to the
wave function (6), the one-electron Green function may
be written in the form

{

g(r, r′) = gt(r, r
′), x′ < 0

g(r, r′) = g0(r, r
′) + gt(r, r

′), x′ > 0,
(12)

where g0 is the Green function in the absence of the gap,
and gt ∝ a2 is the second-order correction in the gap
size. We calculate gt similarly to ψt (see Appendix A) by
solving the system







~
2

2m
(∇2 + k2) g(r, r′) = δ(r− r′)

g(r, r′)|x=0, y∈(−a,a) = χ(0, y, x′, y′).

(13)

We substitute (6) and (12) into (11) and obtain in the
lowest order in the contact size

δψ(r) =

∫

x′<0

dr′ gt(r, r
′)Veff (r

′)ψ0(r
′)

+

∫

x′>0

dr′ g0(r, r
′)Veff (r

′)ψt(r
′). (14)

The first term corresponds to electron scattering by
Friedel oscillations in front of the contact, and the second
one - behind it.
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We substitute the expressions for the interaction po-
tential in the Hartree-Fock approximation (3) and (4)
into (14) and obtain the conductance as a sum of direct
and exchange terms δG = δGH − δGF . Then we substi-
tute ψ0, ψt, g0, and gt into the resulting expression and
after some simplifications obtain the conductance for an
arbitrary interaction potential in the form

δGH = −g2s
e2

~

m

~2

1

16
a4
∫

dε

(

−
∂f

∂ε

)

k2
∞
∫

−∞

dy1

∞
∫

0

dx1

×

∞
∫

0

dx′ Uee(x
′ − x1,−y1)n(x1)

∞
∫

−∞

dqy sin(2qxx
′)

(15)

δGF = −gs
e2

~

m

~2

1

8
a4
∫

dε

(

−
∂f

∂ε

)

k2
∞
∫

−∞

dy1

×

∞
∫

0

dx1

∞
∫

0

dx′ Uee(x
′ − x1,−y1)n(r

′, x1, y1 + y′)

×

∞
∫

−∞

dqy sin(qxx
′) cos(qyy1) cos(qxx1) (16)

We use the coordinate transform y1 → y1 + y′ to make
the interaction potential independent of y′ and then inte-
grate over y′. This transform results in the independence
of the Friedel oscillations of density on y′ because we ob-
tain the corrections in the lowest approximation in the
contact size and use the unperturbed wave functions in
the absence of the gap to calculate n (see Appendix B).

n(r′, x1, y1 + y′) =
1

2π

∞
∫

0

dp

(

−
∂f(p)

∂p

)

p

×

[

J1(p
√

(x′ − x1)2 + y21)
√

(x′ − x1)2 + y21
−
J1(p

√

(x′ + x1)2 + y21)
√

(x′ + x1)2 + y21

]

(17)

By setting x′ = x1 and y1 = 0 in this expression, it
is easy to obtain the electron density n(x1) = n(r1, r1) ,
which is responsible for the direct interaction term and
depends only on one coordinate

n(x1) =
k2F
4π

−
1

2π

∞
∫

0

dp

(

−
∂f

∂p

)

p
J1(2px1)

2x1
. (18)

The first term here presents a uniform charge density,
and the second one describes its oscillations with a pe-
riod (2kF )

−1 at large distances from the barrier that de-
cay according to the law x−3/2 at zero temperature. At
nonzero temperature, they exponentially decay at a char-
acteristic length vF /T .

0

FIG. 3: Cusp in the transmission coefficient.

V. POINT-LIKE INTERACTION POTENTIAL

Consider now the case of a point-like interaction poten-
tial Uee(x

′−x1,−y1) = Up δ(x
′−x1) δ(y1). A comparison

of Eqs. (15) and (16) shows that δGH = gs δGF . There-
fore δG = (gs − 1) δGF . Upon an integration over x1, y1
and qy, one obtains the correction in the form

δG = [1− gs] gs
e2

~

m

~2

π

16
a4Up

×

∫

dε

(

−
∂f

∂ε

)

k3
∞
∫

0

dx′ n(x′)J1(2kx
′). (19)

With n(x′) from (18) substituted into this expression, it
is easily seen that the main contribution to it is given by
values x′ ∼ vF /T , i. e. by the ”tail” of the Friedel oscil-
lations far from the barrier. We integrate over x′ and p
and calculate the total transmission coefficient δT (ε). It
is a sum of two parts δTconst(ε)+ δTosc(ε) formed by the
constant and the oscillating part of the electron density
(18), respectively. The term δTconst(ε) is a smooth func-
tion without singularities, whereas δTosc(ε) has a cusp at
the Fermi surface of the form

δTosc(ε) ∝
ε

EF

[

ε

EF
−

T

EF
ln
(

1 + e
ε−EF

T

)

]

. (20)

At T/EF ≪ 1, the derivative of the last term with respect
to ε/EF tends to 2 at ε = EF −0 and to 1 at ε = EF +0.
This cusp (see Fig. 3) results in a linear temperature
dependence of conductance

δG =
[1− gs] gs

128

e2

~

m

~2
k4F a

4Up
T

EF
. (21)

Alternatively, this temperature dependence may be at-
tributed to the temperature-dependent cut-off length of
the Friedel oscillations (see Fig. 1).

VI. ARBITRARY INTERACTION POTENTIAL

A. Direct interaction

An isotropic finite-range interaction potential is conve-
niently described by its Fourier components Up(p), which
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depend only on the absolute value of p. Similarly to the
case of a point interaction potential, the substitution of
the two terms in (18) that correspond to the constant
and the oscillating parts of the charge density into (15)
results in a sum of two terms δGH = δGH,const+δGH,osc.
The first term is easily calculated and equals

δGH,const = −g2s
e2

~

m

~2

1

128
k4Fa

4Up(0)

+O
(

e−EF /T
)

(22)

Here Up(0) is the Fourier transform of the interaction
potential. After some simplifications, the second term
may be brought to the form

δGH,osc = g2s
e2

~

m

~2

1

128π
a4
∫

dk

(

−
∂f

∂k

)

k3

×

∞
∫

0

dp

(

−
∂f

∂p

)

p

∫

dp1 Up(p1) I1(k, p, p1), (23)

where we have introduced the notation

I1(p > k) =
θ(−p1 + 2k)

4kp

[

√

4p2 − p21 +
p21

√

4k2 − p21

]

−
θ(−p1 + 2p) θ(p1 − 2k)

p1 +
√

p21 − 4k2
k

p

√

4p2 − p21
p21 − 4k2

, (24)

I1(p < k) =
θ(−p1 + 2p)

4kp

[

√

4p2 − p21 +
p21

√

4k2 − p21

]

+
θ(p1 − 2p) θ(−p1 + 2k)

k
√

4k2 − p21

p p1

p1 +
√

p21 − 4p2
. (25)

The quantity I1(k, p, p1) has singularities at p1 = 2k and
p1 = 2p, and the derivatives of the distribution function
in (23) cut out narrow intervals of k and p of width ∼
kFT/EF near kF . As we assume the potential Up to be a
smooth function of p at the scale T/vF , we can isolate the
singular part of the integrand and substitute Up(p1) =
Up(2kF ) in it, while setting I1(k, p, p1) = I1(k = kF , p =
kF , p1) in its regular part

Up(p1) I1(k, p, p1) ≈ Up(2kF ) I1(k, p, p1) +

+[Up(p1)− Up(2kF )] I1(k = kF , p = kF , p1). (26)

We calculate both terms and obtain the correction due
to the direct interaction in the form

δGH = −g2s
e2

~

m

~2

1

128
k4F a

4 Up(2kF )
T

EF

+g2s
e2

~

m

~2

1

64π
k4Fa

4

2kF
∫

0

dp1
Up(p1)− Up(0)
√

4k2F − p21
. (27)

The first term here presents the contribution linear in
temperature and is proportional to the Fourier compo-
nent of the interaction potential at 2kF while the second
one presents the temperature-independent contribution
and vanishes if Up(p) is a constant.

B. Exchange interaction

The substitution of the two terms of (17) into (16)
gives the exchange contribution to the conductance in a
form δGF = δGF,const + δGF,osc in analogy with δGH .
The first term is easily calculated and equals

δGF,const = −gs
e2

~

m

~2

1

64π
k2Fa

4

×

2kF
∫

0

dp1 Up(p1) p1 arccos

(

p1
2kF

)

+O
(

e−EF/T
)

.

(28)

After a simple rearrangement, the second term may be
brought to the form

δGF,osc = gs
e2

~

m

~2

1

32π2
a4
∫

dk

(

−
∂f

∂k

)

k2

×

∞
∫

0

dp

(

−
∂f

∂p

)

p
∫

0

dpy

k
∫

0

dqy Up(py − qy) ln

∣

∣

∣

∣

qx + px
qx − px

∣

∣

∣

∣

.

(29)

This term has a singularity at px = qx because the
backscattering of electrons is most efficient if the x com-
ponent of the electron momentum qx coincides with the
wave vector px of the Friedel oscillations. We write the
integrand as a sum of two terms, one of which has a
singularity at px = qx and the second one is a regular
function, so that one may set k = p = kF in it to obtain

Up(py − qy) ln

∣

∣

∣

∣

qx + px
qx − px

∣

∣

∣

∣

≈ Up(0) ln

∣

∣

∣

∣

qx + px
qx − px

∣

∣

∣

∣

+ [Up(py − qy)− Up(0)] ln

∣

∣

∣

∣

qx + px
qx − px

∣

∣

∣

∣

∣

∣

∣

∣

p=k=kF

. (30)

We perform the integration in (29), sum the result with
(28) and obtain the correction due to an exchange inter-
action in the form

δGF = −gs
e2

~

m

~2

1

128
k4F a

4Up(0)
T

EF
+ δGF,T=0, (31)

where δGF,T=0 is a temperature-independent quantity
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given by an integral

δGF,T=0 = gs
e2

~

m

~2

1

32π2
k3F a

4

2kF
∫

0

dp1 Uee(p1)

×

[

K

(
√

1−
p21
4k2F

)

− E

(
√

1−
p21
4k2F

)

− π
p1
2kF

arccos

(

p1
2kF

)

]

(32)

where K and E are full elliptic integrals of the first
and second kind. The temperature-dependent correc-
tion to the conductance in (31) is determined by the
long-wavelength component of the interaction potential,
which is typical for the exchange interaction10,27. How-
ever δGF,T=0 is determined by all components of Up from
0 to 2kF . Long-wavelength components contribute to
(32) with a positive sign and short-wavelength compo-
nents contribute to it with negative sign, so that the in-
tegral is zero if Up is constant.

VII. DISCUSSION

The summation of (9), (27) and (31) gives the full con-
ductance G = G0 + δGH − δGF in the form

G = gs
e2

~

π

128
k4F a

4 + δGT=0

+gs
e2

~

m

~2

1

128
k4Fa

4 [Up(0)− gsUp(2kF )]
T

EF
. (33)

Here δGT=0 is the temperature-independent contribution
that results from a small interaction-induced change in
the Fermi level. To calculate the relative correction from
the interaction, δGH − δGF should be divided by (9) (we
are interested only in the temperature-dependent term
and gs = 2) to give

δGT

G0
= ν2 [Up(0)− 2Up(2kF )]

T

EF
, (34)

where ν2 = m/(π~2) is the spinful density of states. The
relative correction linearly depends on temperature and
is much larger than the standard Fermi-liquid T 2 correc-
tions. It is a consequence of the cusp in a transmission
coefficient (Fig. 3). This is essentially the same temper-
ature dependence that was obtained previously for the
correction to the conductance of wide ballistic contacts
and was due to the collisions of the injected and incident
electrons in the leads13.
The absolute value of the temperature-dependent cor-

rection to the conductance is proportional to the fourth
power of the contact size δG ∝ (kFa)

4 and the relative
one δG/G0 does not depend on a. This is in contrast
with the correction for wide contacts δGsemi, which is
proportional to (kFa)

2 ln(lc/a), where lc ≫ a is a large

FIG. 4: The sign of the correction resulting from Friedel os-
cillations vs. kF d and κ2d. The grey region corresponds to
positive sign, and the blue, to negative.

cutoff length due to a scattering by impurities or a finite
size of the sample, so that δG/G0|semi is roughly pro-
portional to G0. Should this correction be extrapolated
to narrow contacts, it would be proportional to G2

0 be-
cause both the number of injected and incident electrons
is proportional to G0. Hence the correction from Friedel
oscillations must dominate at small contact widths.
The quantum correction from the Friedel oscillations

is more sensitive to the shape of interaction potential
than the semiclassical one. In particular, its sign is deter-
mined by the factor [Up(0)−2Up(2kF )], which is due to a
competition between a positive contribution from the ex-
change interaction and a negative contribution from the
direct interaction. This factor arises in several theories
of scattering by Friedel oscillations8,10,11 and is positive
for long-range and negative for short-range interactions.
Consider the most typical case of the Coulomb poten-

tial statically screened by a metallic gate parallel to the
2D electron gas and the electrons in the gas itself. If the
distance between the gate is d and the dielectric constant
of environment is εd, the interaction potential between
the electrons in the gas is given by (see Appendix C)

U(q) =
4πe2

εd(coth |qd|+ 1)|q|+ 4πe2ν2
, (35)

which leads to the correction of the form

δGT

G0
=

T

EF

[

2κ2d

1 + 2κ2d

−
2κ2

kF [coth(2kFd) + 1] + κ2

]

, (36)

where κ2 is the inverse screening length. Figure 4 shows
the regions in the (kFd, κ2d) plane where the correction
is positive or negative.
Unfortunately, we are unaware of detailed measure-

ments of the temperature dependence of the contact con-
ductance near pinch-off. The estimation for realistic val-
ues of distance to the gate d = 100 nm, the inverse screen-
ing length κ2 = 2πe2ν2/εd = 1.93 × 106 cm−1 and elec-
tron density ns = 10−10 cm−2 for T = 1K results in
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δGT /G0 = −15%. Measurements of conductance in the
region of the 0.7-anomaly, indeed, reveal a negative slope
of G(T ) dependence28. However a quantitative compari-
son with our predictions is not possible.

In the multichannel regime, this negative correction
should be suppressed by the positive one from the scat-
tering of oppositely moving electrons13, and one should
observe a change in the sign of the slope of its temper-
ature dependence. However if the actual κ2 is smaller
due to the low electron concentration, the sign of the
correction from the electron-electron interaction may re-
main positive for all contact sizes. Therefore one may
estimate the actual screening length from the sign and
slope of the temperature dependence of conductance for
narrow contacts.

Though our results were obtained for a sharp potential
in a form of an infinitely narrow and very high barrier,
they should also survive for reasonably smooth poten-
tials. It is easily seen that the smoothness of potential
results only in a phase shift of the Friedel oscillations
and preserves the x−3/2 dependence of their amplitude
far from the barrier (see Appendix B). That’s why the lin-
ear temperature dependence and change of sign of slope
of G(T ) should be robust with respect to the exact shape
of the barrier.

In summary, we calculated the conductance of a narrow
and short quantum point contact at nonzero tempera-
ture taking into account the electron-electron interaction.
The conductance linearly depends on temperature and is
proportional to the fourth power of the contact size, and
the relative correction does not depend on the contact
size. The sign of the linear temperature-dependent term
depends on the competition between direct and exchange
interaction. Measurements of the slope of its tempera-
ture dependence allow one to determine the parameters
of electron-electron interaction.
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Appendix A: Calculation of transmitted wave

function

We use the approach described by Sommerfeld25 for
the problem of two-dimensional diffraction and solve the
system (7) assuming a continuity of the derivative of the
wave function ψ = ψ0+ψt at x = 0, where ψ0 is the wave
function in the absence of the gap and ψt is the correction
in the lowest order in a contact size. We expand the

unknown function into a Fourier integral

ψt(x, y) =

∞
∫

−∞

dky
2π

e−ikyy ψt(x, ky) (A1)

and then search a solution in the form of outgoing waves
ψt(x, ky) = c1 × e−ikxx. The constant c1 is easily ex-
pressed from the boundary condition

c1 =

∞
∫

−∞

dy′ eikyy
′

χ(0, y′).

We sequentially substitute these formulas into (A1) and
obtain

ψt(x, y) =

∞
∫

−∞

dy′ χ(0, y′)K(x, y, y′), (A2)

where the kernel is given by

K(x, y, y′) = −
i

2
kx

H
(1)
1 (k

√

x2 + (y − y′)2)
√

x2 + (y − y′)2
. (A3)

The condition of continuity of the derivative of total
wave function at the gap may be written as

∂ψ0(x, y)

∂x

∣

∣

x=−0
+
∂ψt(x, y)

∂x

∣

∣

x=−0
=
∂ψt(x, y)

∂x

∣

∣

x=+0
,

(A4)

where

ψ0(x, y) =

√

m

kx
eikyy (eikxx − e−ikxx).

We substitute the kernel (A3) into (A4) and obtain an
integral equation

a
∫

−a

dy′ χ(0, y′)
kH

(1)
1 (k|y − y′|)

|y − y′|
= 2

√

m

kx
kx e

ikyy (A5)

This integral equation appears in a problem of a two-
dimensional diffraction by a narrow slit25. We are in-
teresting in the case of k ≈ kF , so the limit kF a ≪ 1
is equivalent to ka ≪ 1. The solution of the integral
equation in the limit of ka≪ 1 is given by26

χ(0, y′) = −i kx

√

m

kx

√

a2 − y′2 (A6)

We substitute (A6) and (A3) into (A2) and obtain

ψt(x, y) =
π

4
kxka

2 |x|

√

m

kx

H
(1)
1 (kr)

r
. (A7)

It is conveniently presented in the form

ψt(x, y) = −
iπ

2

√

m

kx
a2kx

∞
∫

−∞

dqy
2π

ei(qxx+qyy). (A8)
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In a similar way we solve the system (13) for the
Green’s function of the Schrödinger equation gt and ob-
tain

gt =
π

8

m

~2
k2a2 |x||x′|

H
(1)
1 (kr)H

(1)
1 (kr′)

rr′
. (A9)

Appendix B: Friedel oscillations of electron density

The oscillating electron density is given by

n(r, r1) = 〈ψ̂+(r1) ψ̂(r)〉 =
∑

α

f(εα)ψ
∗
α(r1)ψα(r),

(B1)

where ψα are the eigenfunctions of the non-interacting
Hamiltonian. In the lowest approximation in the contact
size we neglect the distortion of the Friedel oscillations
of electron density due to the gap and consider them as
arising from a solid barrier. Because of the translational
symmetry in the direction parallel to the barrier we may
use instead of α momentum p and the eigenfunctions

ψp(r) = eipyy[eipxx + r(px)e
−ipxx] (B2)

With the help of distribution function f(p), Eq. (B1)
may be rewritten in the form

n(r, r1) =

∫

d2p

(2π)2
f(p)ψ∗

p(r1)ψp(r). (B3)

In the case of a sharp infinitely high barrier, the reflection
coefficient r(px) = −1 for any px and the substitution of
ψp(x, y) into (B3) gives us after simple rearrangements

n(r, r1) = 4

∫

d2p

(2π)2
cos[py(y − y1)]

× sin(pxx) sin(pxx1) (B4)

Then we go to cylindrical coordinates (p, ϕ), expand the
product of trigonometric functions into a sum of four
terms and perform the integration over ϕ. The remaining
integral over ϕ is a sum of four integrals of the form

π/2
∫

−π/2

dϕ cos(a cosϕ+ b sinϕ) = π J0(
√

a2 + b2). (B5)

Calculations give the electron density in the form

n(r, r1) =

∞
∫

0

dp

2π
f(p) p

[

J0(p
√

(x− x1)2 + (y − y1)2)

−J0(p
√

(x+ x1)2 + (y − y1)2)
]

.

Upon integrating by parts, one arrives at

n(r, r1) =
1

2π

∞
∫

0

dp

(

−
∂f

∂p

)

× p

[

J1(p
√

(x− x1)2 + (y − y1)2)
√

(x − x1)2 + (y − y1)2

−
J1(p

√

(x+ x1)2 + (y − y1)2)
√

(x+ x1)2 + (y − y1)2

]

. (B6)

In the case of r1 = r the Friedel oscillations of density
depend only on x, so

n(r, r) = n(x) =
1

2π

∞
∫

0

dp

(

−
∂f

∂p

)

×

[

p2

2
−
pJ1(2px)

2x

]

. (B7)

In the case of a smooth yet impenetrable barrier the
wave function ψp away from it still may be presented
in the form (B2) with a momentum-dependent reflection
coefficient r(px) = − exp[iδ(px)], where δ(px) presents
the phase shift of the reflected wave with respect to the
case of zero boundary conditions at x = 0. We substi-
tute (B2) into the Eq. (B3) and consider the coordinate-
dependent oscillating part of electron density. With the
help of cylindrical coordinates (p, ϕ) we can write it in
the form

nosc(r, r) = −
1

π2

∞
∫

0

dp f(p) p

π/2
∫

0

dϕ

× cos(2px cosϕ+ δ(p cosϕ)). (B8)

At large distances from the barrier 2px≫ 1 we can esti-
mate nosc(r, r) using the stationary phase method

nosc(r, r) = −
1

2π2

∞
∫

0

dp f(p) p

×

[
√

π

px
cos(2px− π/4 + δ(p)) +O

(

1

(2px)3/2

)]

(B9)

If ∂δ(p)/∂p≪ 2x, it is possible to integrate this equation
by parts and to obtain

nosc(r, r) =
1

4(πx)3/2

∞
∫

0

dp

(

−
∂f

∂p

)

× p1/2 cos(2px+ δ(p) + π/4). (B10)

It is easily seen that at low temperatures and far from
the contact, nosc exhibits the same asymptotic behavior
as the oscillating part of Eq. (B7) except for the phase
shift δ(pF ).
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FIG. 5: A model of experimental structure.

Elucidate now the conditions for validity of (B10). If
the screening in the system is two-dimensional and the
potential of the barrier falls off according to a power
law, ∂δ(p)/∂p ∼ x0(p), where x0(p) is the classical
turning point for the electrons at the barrier. Even if
the width of the barrier 2x0(pF ) is of the order of the
Fermi wavelength, there is a large interval of distances
p−1
F ≪ x ≪ vF /T where Eq. (B10) holds, and it is

precisely this interval that dominates the temperature-
dependent contribution from Friedel oscillations to the
conductance.

Appendix C: Screened Coulomb potential

We calculate Coulomb potential screened by a gate and
two-dimensional electrons. Consider the system shown
in Fig. 5 with a positively charged particle e0 at point
(0, 0, 0). The total potential induced by the charged par-
ticle, the two-dimensional electrons and the gate satisfies
the Poisson equation

−∇2φ(r||, z) =
4π

ε
[ρext + ρind], (C1)

where ρext = e0δ(r||)δ(z) is the density of the particle

charge and ρind = −e2ν2δ(z)φ(r) is the density of the
induced charge calculated in Thomas-Fermi approxima-
tion. We take a Fourier transform of (C1) with respect

to the in-plane coordinates and integrate it with respect
to z over a small vicinity of z = 0 to arrive at an equation

∂φ(q, z)

∂z

∣

∣

z=+0

z=−0
− 2κ2φ(q, 0) = −

4πe0
ε

. (C2)

Here κ2 = 2/aB is the inverse two-dimensional screening
length. We assume that the layer of 2DEG is thin and
the potential is continuous at z = 0, i.e.

φ(q, z = −0) = φ(q, z = +0). (C3)

We solve Eqs. (C2) and (C3) with boundary conditions

φ(q, d) = 0 (C4)

φ(q,−∞) = 0 (C5)
and write the potential in the form

φ(q, 0) =
4πe0
ε

1

[coth(qd) + 1]q + 2κ2
. (C6)

The potential in the coordinate space is obtained by in-
verse Fourier transform of Eq. (C6) and may be conve-
niently expressed in terms of a dimensionless coordinate
x = qr||

φ(r||, 0) =
2e0
εr||

∫

dx
J0(x)

coth(xd/r||) + 1 + 2κ2r||/x
. (C7)

In experiments16,17 the case of d ≫ κ−1
2 is realized. An

evaluation of the integral (C7) gives for different limiting
cases

φ(r||, 0) =































e0
2εκ22r

3
||

, r|| ≫ d≫ κ−1
2

e0
εκ22r

3
||

, d≫ r|| ≫ κ−1
2

e0
εr||

, d≫ κ−1
2 ≫ r||.

(C8)

1 K. J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996);
A. Kristensen et al., Phys. Rev. B 62, 10 950 (2000).

2 D. J. Reilly et al., Phys. Rev. B 63, 121311 (2001).
3 V.V. Flambaum and M.Y. Kuchiev, Phys. Rev. B 61,
R7869 (2000).

4 B. Spivak and F. Zhou, Phys. Rev. B 61, 16 730 (2000).
5 Kenji Hirose, Yigal Meir, and Ned S. Wingreen, Phys. Rev.
Lett. 90, 026804 (2003).

6 C.-K. Wang and K.-F. Berggren, Phys. Rev. B 57, 4552
(1998).
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