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We show that the breakdown of the Wiedemann-Franz law due to electron–electron scattering in
diffusive spin valves may result in a strong suppression of the Fano factor that describes the ratio
between shot noise and average current. In the parallel configuration of magnetizations, we find the
universal value

√
3/4 in the absence of a normal-metal spacer layer, but including the spacer leads

to a non-monotonous suppression of this value before reaching back to the universal value for large
spacer lengths. On the other hand, in the case of an antiparallel configuration with a negligibly small
spacer, the Fano factor is

√
3(1− P 2)/4, where P denotes the polarization of the conductivities.

For P → ±1, the current through the system is almost noiseless.

PACS numbers: 75.60.Jk, 72.15.Jf, 75.30.Sg, 85.75.d

I. INTRODUCTION

Shot noise is often used as a tool for characterizing
the magnitude of energy relaxation for example due to
electron-phonon scattering in small electron systems (for
a recent example, see Ref. 1). This method relies on the
fact that the noise power SI(ω), defined as the Fourier
transform of the current-current correlator, through a
given conductor is quite generally proportional to the
average of the electron temperature in this sample. Bi-
asing the system with a voltage V induces Joule heating,
and the static electron temperature follows from a bal-
ance between this heating and the energy relaxation out
of the system. This way the strength of energy relaxation
can be read off from the noise.

At low temperatures in metals the main energy relax-
ation mechanism is due to the direct diffusion of elec-
trons to the electrodes. This heat conduction is typi-
cally characterized by the Wiedemann-Franz (WF) law,2

according to which the heat conductivity κ = L0σT is
directly proportional to the charge conductivity σ and
the local electron temperature T . The proportionality
factor L0 = π2k2

B/(3e
2) is known as the Lorenz num-

ber. In the limit of a large voltage compared to the
temperature T0 of the electrodes, |eV | � kBT0, the
WF law results into shot noise which is proportional
to the average current 〈I〉, with a universal Fano factor

F ≡ SI/(2e|〈I〉|) =
√

3/4.3,4 This Fano factor is inde-
pendent of the sample geometry and applies even in the
presence of a non-uniform electron conductivity or a non-
uniform cross-section of the sample. The only require-
ments are the validity of the WF law and the quasiequi-
librium limit,5 where the electron–electron scattering is
strong enough, so that the electron distribution function
can everywhere be described via a Fermi-Dirac distri-
bution function with a well-defined position-dependent
electron temperature. This value has been demonstrated
experimentally6 more than a decade ago and it is now
well-established.

Recently a lot of interest has been devoted to the prob-

FIG. 1: Spin valve considered in this Letter: two ferromag-
netic wires with length LF are connected to each other via a
normal-metal spacer of length LN and to electrodes held at
different potentials µL and µR = µL − eV and at a tempera-
ture T0 � |eV |/kB .

lem of heat transfer in magnetic systems.7 One of the key
findings is that as internal energy relaxation of the elec-
trons couples the energies in the two spin systems with-
out relaxing their charges, the WF law breaks down.8,9

In this paper we show how the breakdown of the WF law
leads to a shot noise with a Fano factor deviating from
the universal value in these devices. In particular, we
find that in a spin valve with antiparallel orientation of
magnetizations (Fig. 1), the Fano factor is strongly sup-
pressed implying an almost noiseless transmission of cur-
rent through the device. This is counterintuitive, as the
antiparallel magnetization orientation can be envisaged
as a reduced overall transmission of electrons through
the spin valve — compared to the parallel orientation —
and typically such a reduction of transmission leads to
an increased Fano factor rather than a reduced one.10

This behavior also sharply contrasts with the results for
spin valves with spin-flip scattering in the paramagnetic
metal,11 where the maximum Fano factor corresponds to
the maximum resistance.

If there were no spin-flip and electron-electron scat-
tering, a diffusive spin valve could be considered as two
isolated parallel conducting channels with spin-up and
spin-down electrons connecting the same reservoirs. Each
channel would separately give a Fano factor 1/3, yield-
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FIG. 2: (Color online): The would-be distribution of temper-
ature along the spin valve for spin-up and spin-down electrons
in the absence of interaction between them for the antiparallel
magnetizations of the electrodes in the extreme case LN = 0.
As the higher temperature corresponds to the lower conduc-
tance, the would-be temperature profiles are highly asymmet-
ric, and switching on the interaction results in a heat exchange
whose direction is shown by orange arrows.

ing the same overall Fano factor characteristic of diffu-
sive wires out of equilibrium. This value would be inde-
pendent of electrode magnetizations or the details of the
sample.12,13

If each spin subsystem were in local equilibrium but
there were no heat exchange between electrons with op-
posite spins, this quantity would change to

√
3/4 and

remain sample-independent because of the direct pro-
portionality between the electric and heat conductivities.
However if the heat exchange between spin subsystems
is switched on, it results in a heat transfer between the
channels, which is not accompanied by any charge trans-
fer and hence may violate the Wiedemann - Franz law.
This increases the effective κ/σ ratio and decreases the

Fano factor below
√

3/4.
In the case of parallel magnetizations of the electrodes

and a vanishing normal region, the spatial dependence
of the electron temperature in both spin-up and spin-
down channels would have the same symmetric shape and
therefore would not be affected by heat exchange between
the channels. However in the case of antiparallel magne-
tization, the distribution of temperature in thermally iso-
lated channels would be strongly asymmetric (see Fig.2).
The regions where the electrons with given spin direction
are minority carriers would have a much lower conductiv-
ity and a much higher temperature than the ones where
they are in the majority. Therefore it is the minority-
carrier regions that would be the dominant sources of
noise. As the heat exchange between the spin subsys-
tems is switched on, the hotter minority-carrier regions
appear to be in direct thermal contact with much colder
majority carriers in the opposite-spin channel. As the
majority carriers have much larger electric and thermal
conductivity, they represent almost perfect heat sinks for
the minority carriers and strongly suppress their effective

temperature together with the Fano factor.

II. MODEL AND BASIC EQUATIONS

We describe the ferromagnet–normal-metal–
ferromagnet (FNF) system shown schematically in
Fig. 1, where the ferromagnets of equal length LF are
connected to a normal-metal spacer with length LN
and conductivity σN . For simplicity we only consider
the collinear orientation of magnetizations. In the case
of parallel magnetizations, the majority (minority)
spin “up” (“down”) electrons in both electrodes have
conductivity σM (σm) with σm ≤ σM , whereas in
the case of antiparallel magnetization orientation the
conductivities of the spin-up and spin-down channels are
interchanged in the right ferromagnet. An alternative
way to describe the spin-dependent conductivities is to
define the average conductivity σF ≡ (σM + σm)/2 and
spin polarization P = (σM − σm)/(2σF ).

In the diffusive limit, where all length scales in the
problem are large compared to the elastic mean free path
`el, the electron distribution function fs(x,E) for spin
s ∈ {↑, ↓} electrons satisfies14

Ds∂
2
xfs = Ise−e[fs, fs̄] + Ise−ph[fs, nph], (1)

where Ds is the diffusion constant for spin s, s̄ denotes
the spin opposite to s, Ie−e and Ie−ph are the collision
integrals for electron–electron (e-e) and electron–phonon
scattering. In what follows, we concentrate on low tem-
peratures where the latter can be disregarded.15 The role
of e-e scattering is to equilibrate the electron system
into a common local temperature without any transfer of
electron energy to non-electronic excitations. However,
whereas in the absence of spin-flip scattering the spin-
dependent potentials are unaffected by e-e scattering, the
energies of the two spin ensembles are coupled9,16–18 and
therefore in the limit of strong e-e scattering spin-up and
spin-down electrons can be described with the same tem-
perature T (x).

In the quasiequilibrium limit the distribution hence
reads fs(x,E) = f0(E;µs(x), T (x)), where f0(E;µ, T ) =
{exp[(E − µ)/(kBT )] + 1}−1 is the Fermi function. The
spin-dependent potentials satisfy the continuity equation

∂x[σs∂xµs(x)] = 0, (2)

which is obtained by integrating Eq. (1) over the en-
ergy. We assume a position-dependent conductivity σs =
e2DsNs, where Ns is the density of states for spin s. The
vanishing energy flux out of the electron system due to
e-e scattering requires that

∑
sNs

∫
dEEIse−e(E) = 0.

With the help of this equality we obtain the heat diffusion
equation for temperature T (x) by multiplying Eq. (1) by
Ns times energy, summing over spin and integrating over
the energy. This yields

L0∂x

[(∑
s

σs

)
T∂xT

]
= − 1

e2

∑
s

σs (∂xµs)
2
. (3)



3

This equation describes the diffusion of the thermal en-
ergy (left hand side) in response to Joule heating (right
hand side) generated throughout the sample for both
spins.

As we assume the interface resistances to be negligible
as compared with those of the wires, the boundary con-
ditions for Eqs. (2) and (3) consist in continuity of the
potentials and the temperature and in conservation of the
heat current and spin-resolved charge currents (terms in
square brackets on the left-hand-sides of Eqs. (2) and (3))
across the interfaces.

Once the potential profile has been found, the position-
independent average current is easily calculated as

〈I〉 = A
∑
s

σs

∫
dE∂xfs(x,E) = A

∑
s

σs∂xµs, (4)

where A is the cross-section of the sample and the sum
goes over the two spin directions. The Langevin equation
for the current fluctuation4 may be written in the form

δI =
∑
s

[
Aσs∂xδµs + δIexts (x)

]
, (5)

where the correlation function of Langevin sources is
given by

〈δIexts (x) δIexts′ (x′)〉 = 4Aσs δss′ δ(x− x′) Λs(x), (6)

and Λs(x) =
∫
dEfs(x,E)(1 − fs(x,E)). In the

quasiequilibrium limit Λs(x) = kBT (x) is independent
of spin. As δI is independent of x in the low-frequency
limit19, the zero-frequency current noise power can be
easily obtained from Eq. (5) in the form

SI = 4A
∑
s

∫
dxΛs(x)/σs(x)

[
∫
dxσ−1

s ]2
. (7)

The solution of the quasiequilibrium equations,
Eqs. (2) and (3) is straigthforward but somewhat lengthy.
The obtained potential and temperature profiles are plot-
ted for a few example cases in Fig. 3.

With the knowledge of the temperature, the shot
noise is obtained from Eq. (7). The expressions for the
Fano factor for an arbitrary range of parameters are too
lengthy to be presented here, but in the following we con-
sider some simpler limits and present the more general
results in Figs. 4 and 5. In general, the Fano factor de-
pends on the magnetization configurations (parallel or
antiparallel), spin polarization P , and the ratio of the
spin-averaged conductances of the ferromagnets and the
normal-metal spacer, i.e., α ≡ σFLN/(σNLF ). Alterna-
tively, we can describe this dependence with the param-
eters αM/m = σM/mLN/(σNLF ) = (1± P )α.

III. PARALLEL ORIENTATION

In the absence of spin heat accumulation, the validity
of the Wiedemann-Franz law depends on the presence
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FIG. 3: (Color online): Potential (top) and temperature (bot-
tom) profiles in spin valves with different magnetization con-
figurations. The shaded regions refer to the ferromagnets,
where the magnetization directions are denoted by the ar-
rows. In the top figures, the blue curves (upper on the left
part of the figure) are for µ↑, whereas the red (lower on the
left) are for µ↓. The three sets of curves are for σF /σN = 0.2
(solid lines), σF = σN (dashed lines) and σF = 50σN (dash-
dotted lines). We have chosen LN = LF and P = 0.8.

or absence of spin accumulation. The latter vanishes if
σM = σm, i.e., P = 0, and both in the limit where major-
ity of the resistance comes from the normal-metal spacer,
i.e., α � 1 or in the opposite limit α � 1. In the lat-
ter case the absence of spin accumulation results from the
symmetry of the setup. The temperature distributions in
the thermally uncoupled spin-up and spin-down channels
would be identical and therefore would not be affected by
the heat exchange. In those limits we hence obtain the
universal result FP =

√
3/4 for the Fano factor. The

intermediate case is plotted in Fig. 4. We find that F
obtains a minimum when αm ≈ 1 and this minimum be-
comes wider and deeper as the polarization increases. For
αM → ∞ the curve approaches its limiting shape given
by

FP
αM�αm,1−→

√
3

4

(α2
m + 2αm + 2)3/2

(αm + 1)(αm + 2)2
. (8)

Hence F ≈
√

6/8 in a wide range αm � 1 � αM . The

minimal value F = 9
√

71− 173/2/32 ≈ 0.27 is obtained

at αm = (
√

17− 1)/4. Note that this limit requires quite
a strong polarization of the ferromagnets (see Fig. 4).

IV. ANTIPARALLEL ORIENTATION

In the antiparallel configuration of the magnetizations,
the spin accumulation is non-zero even in the case of
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FIG. 4: (Color online): Fano factor of the spin valve for par-
allel magnetizations as a function of the ratio of minority
electron conductance σmA/LF to the normal-metal conduc-
tance σNA/LN for different ratios σM/σm. Note the log-scale
in the horizontal axis. For σNA/LN → 0 the normal metal
dominates the resistance, and the Fano factor tends to the
value

√
3/4 ≈ 0.433. In the opposite limit σN/LN � σM/LF

a symmetric spin valve does not maintain any spin accumu-
lation, and the same Fano factor

√
3/4 is retained.

a negligible resistance of the normal-metal spacer (i.e.,
α� 1). In this case

FAP
α�1→

√
3σMσm

2(σM + σm)
=

√
3

4

√
1− P 2. (9)

The shot noise power is therefore suppressed by inter-
spin relaxation due to e-e scattering. The quasiequilib-
rium Fano factor tends below the nonequilibrium limit
FAP = 1/3 when P >

√
11/27 ≈ 0.64 and the shot noise

(almost) vanishes in the half-metal limit P → 1 (note
that also the average current vanishes there, but the noise
vanishes faster). The reason is that the distribution of
temperature in the case of a thermally uncoupled spin-up
and spin-down channels would be strongly asymmetric in
this case. The electron-electron scattering balances these
temperatures, resulting in a strongly suppressed average
temperature together with a suppressed Fano factor.

As shown in Fig. 5, the normal-metal spacer limits the
suppression of shot noise. For αM � 1 (or P → 1) we
obtain

FAP
αM�1−→

√
3

4

α2
m

(1 + αm)2
. (10)

This function thus interpolates between the full suppres-
sion of noise at αm � 1 and the normal quasiequilibrium
limit F =

√
3/4 for αm � 1.

V. DISCUSSION

Let us now estimate the parameter regime where our
discussion is valid. We have assumed that the length

FIG. 5: (Color online): Fano factor for antiparallel magne-
tizations as a function of the ratio of the conductance for
minority electrons to the conductance of the normal metal,
for different ratios σM/σm. Note the log-scale in the hori-
zontal axis. For σNA/LN → 0 the normal metal dominates
the resistance, and the Fano factor tends to

√
3/4. In the

opposite limit σN/LN � σM/LF the Fano factor tends to
FAP ≤

√
3/4 given by Eq. (9).

L = 2LF + LN is shorter than the spin diffusion length.
Spin-flip scattering would suppress the spin accumula-
tion, and therefore also the violation of the Wiedemann-
Franz law. The deviations of the Fano factor from

√
3/4

would therefore be smaller in systems with stronger spin-
flip scattering. On the other hand, the quasiequilibrium
limit generally requires `ee � LF , LN � `e−ph, where
`e−e is the electron-electron scattering length and `e−ph
is the electron-phonon scattering length. We may now
generalize the overall behavior of the Fano factor from
Ref. 6 to spin valves: for L � `e−e, the Fano factor
is 1/3, independent of the magnetization configuration
or the microscopic details. Increasing the voltage and
thereby decreasing `e−e, Fano factor tends to another
value, which now depends on both the magnetization
configuration and the relative sizes of the spacer and the
ferromagnets.

VI. SUMMARY

In summary, we showed that the breakdown of the
Wiedemann-Franz law via inter-spin energy relaxation
leads to a drastic change in the shot noise through a dif-
fusive spin valve. Unlike spin-flip scattering, the heat
exchange between the two spin subsystems leads to a
suppression of the noise for the antiparallel magnetiza-
tion of the electrodes when the resistance of the valve is
maximal. This effect may be used for determining the pa-
rameters of electron-electron scattering in ferromagnets.
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Appendix A: Full Fano factors

For reference, we write here the full analytic forms for the Fano factors. In the parallel case the Fano factor is of
the form

FP =

√
3

4π(αm + αM + αmαM )

A1 +
2A3

√
A2

(2 + αm)2(2 + αM )2(αm + αM )
arcsin

√ (αm + αM )A2

A3

 , (A1)

where A1, A2, and A3 are given by equations

A1 =
8 (αm + αmαM + αM ) 2√

(αm + αM ) [αmαM (αm + αM + 8) + 4(αm + αM )]
arcsin

(√
αmαM (αm + αM + 8) + 4(αm + αM )

2 (αm + 2) (αM + 2) (αm + αmαM + αM )

)
,

A2 =2α2
M + 2α2

m + αmαM (2αM + αmαM + 2αm),

A3 =α3
m (αM (αM + 2) + 2) + α2

m (αM (αM (αM + 12) + 22) + 16) + 2αm (αM (αM (αM + 11) + 16) + 8)

+ 2αM (αM (αM + 8) + 8)

In the antiparallel case, the Fano factor is of the form

FAP =

√
3 (N1 +N2)

D
, (A2)

where N1, N2, and D are given by equations

N1 = 4
√
αmαM (αm + αM )(αm + αM + αmαM )2 arcsin

(√
αm + αM

2(αm + αmαM + αM )

)
,

N2 = αmαM (αm + αM ) [αmαM (αm + αM + 8) + 4 (αm + αM )] arccot

(
2

√
(αm + 2αmαM + αM )

αmαM (αm + αM )

)
,

D = 2π (αm + αM ) 2 (αm + αmαM + αM ) 2.

1 A. Betz, et al., Phys. Rev. Lett. 109, 056805 (2012).
2 R. Franz and G. Wiedemann, Ann. Phys. Chem. 165, 497

(1853).
3 K.E. Nagaev, Phys. Rev. B 52, 4740 (1995).
4 E. V. Sukhorukov and D. Loss, Phys. Rev. B 59, 13054

(1999).
5 F. C. Wellstood, C. Urbina, and J. Clarke, Phys. Rev. B
49, 5942 (1994).

6 A. H. Steinbach, J. M. Martinis, and M. H. Devoret, Phys.
Rev. Lett. 76, 3806 (1996).

7 G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nature
Mater. 11, 391 (2012).

8 M. Hatami, G.E.W. Bauer, Q. Zhang, and P.J. Kelly, Phys.

Rev. Lett. 99, 066603 (2007).
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