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We calculate the conductance of a quantum wire with two occupied subbands in a presence of
a scatterer taking into account the interaction between electrons. We extend the renormalization-
group equation for the scattering matrix of the obstacle to the case of intersubband interactions,
find its fixed points, and investigate their stability. Depending on the interaction parameters, the
conductance may be equal to 0, e2/h, or 2e2/h per spin projection. In some parameter ranges, two
stable fixed points may coexist, so the ultimate conductance depends on the properties of the bare
scatterer. For spinful electrons, the conductance of the wire may nonmonotonically depend on the
Fermi level and temperature.

PACS numbers: 72.25.-b, 73.23.-b, 73.63.Rt

I. INTRODUCTION

Transport properties of one-dimensional (1D) quantum
conductors are of significant interest because they repre-
sent strongly correlated systems even for a weak electron
- electron interaction1. Despite this, the conductance
of a uniform 1D wire smoothly connected to the leads
is not changed by the interaction and equals 2e2/h2,3.
Things are different if the wire contains an inhomogene-
ity that can backscatter electrons. In the case of repul-
sive interaction, even a weak backscattering results in a
power-law temperature dependence of conductance and
its complete suppression at zero temperature4,5. Quali-
tatively, this behaviour may be explained as follows. The
scattering off the inhomogeneity results in Friedel oscil-
lations of electron density with a period (2kF )

−1 and the
corresponding oscillations of potential energy of electrons
in the wire. As the interaction with potential oscillations
couples the electron states with +kF and −kF , it would
lead to a formation of the gap at the Fermi level and
a completely insulating state if the oscillations were of
constant amplitude. However the amplitude falls off in-
versely proportionally to the distance from the inhomo-
geneity, and this results only in a power-law suppression
of the conductance6 in long quantum wires at low tem-
peratures. This suppression was observed in Refs. 7 and
8. On the other hand, the attractive interaction must
result in a perfect transmission of the barrier4.
The properties of quantum wires with two populated

transverse-quantization levels are even more complicated
because of interaction between electrons in the differ-
ent subbands. There are theoretical predictions9–11 that
these electron systems may exhibit zigzag ordering sim-
ilar to a Wigner crystal and several gapped phases may
exist in them under different conditions. These phases
result in different low-temperature behaviour of conduc-
tance of a wire with an impurity9,12.
The above theoretical considerations are based on the

Luttinger-liquid model13, which allows one to exactly
take into account the electron-electron forward scatter-
ing in the homogeneous wire. The elementary excitations

in this model are of bosonic rather than fermionic type
(plasmons and spinons). However the electron scattering
off an inhomogeneity cannot be treated exactly in this
model. In addition, it assumes a perfectly linear electron
spectrum and cannot be used if the distance from the
Fermi level to the bottom of the subband is comparable
with the interaction energy. The goal of this paper is to
use an approach similar to Refs. 14–17 and consider the
scattering off an inhomogeneity in a two-subband wire
in the fermionic representation. We start from the ex-
act scattering states of noninteracting electrons in a wire
with the impurity and derive the renormalization-group
(RG) equations for its scattering matrix in the real space
to one-loop order by assuming the interaction to be weak.
Then we find the stationary points of these equations and
investigate their stability. In the most general case, the
interaction is described by three parameters, which corre-
spond to the coupling in each of the two subbands and the
intersubband coupling. For any set of parameter values,
there is at least one stable stationary point. Depending
on these values, it corresponds to 0, 1, or 2 conductance
quanta, so each of the two conducting channels is either
fully open or fully closed at this point. In certain ranges
of parameters, two different stable fixed points may co-
exist. This indicates that the ultimate conductance de-
pends on the scattering matrix of the bare impurity. If
one of the channels tends to become fully transmitting,
and the other - fully reflecting, a nonmonotonic tempera-
ture dependence of the conductance may take place. Our
results differ from those of Refs. 9 and 12.

The paper is organized as follows. In Section II, we
present the derivation of RG equations for the scattering
matrix of the inhomogeneity for arbitrary number of con-
ducting channel and arbitrary parameters of intra- and
interchannel interaction. In Section III, we consider the
particular case of a quantum wire with two conducting
channels and find the fixed points of the RG flow. We in-
vestigate the behaviour of this flow near the fixed points
and draw the diagram of their stability in the interaction-
parameter plane. In Section IV, we consider the inter-
action parameters for realistic systems with spinful elec-
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trons. In Section V, the temperature dependence of the
conductance is discussed, and Section VI presents the
conclusion.

II. RG EQUATIONS

Consider a long wire of uniform cross-section with a
local inhomogeneity. The wire has N transverse quan-
tum channels corresponding to transverse energiesEi and
transverse wave functions φi(y), so that the total energy
of an electron is the sum of transverse and longitudinal
energies E = Ei + ~

2k2i /2m. The inhomogeneity is lo-
cated at x = 0 and described by the scattering matrix S,
which relates the incoming and outgoing waves in differ-
ent quantum channels. This matrix is unitary because of
current conservation, and we assume both time-reversal
symmetry and a symmetric obstacle, so

S =

(

r t
t r

)

, (1)

where the r and t are symmetric N×N matrices of reflec-
tion and transmission amplitudes. The scattering state
with the electron incident in channel i from the left is
described by the wave function

ΨL
i (r, E) =

∑

j

Θ(E − Ej)
√

2π~vj
ψL
ij(x,E)φj(y), (2)

where

ψL
ij(x,E) =

{

δij e
ikix + rji e

−ikjx, x < 0

tji e
ikjx, x > 0

. (3)

and vj = ~
−1 ∂E/∂kj . The scattering state with the

electron incident from the right ΨR
i (r, E) is given by a

similar expression with ψR
ij(x,E) = ψL

ij(−x,E). These
states obey the normalization condition

∫

drΨα∗
m (r, E)Ψβ

n(r, E
′) = δαβ δmn δ(E − E′) (4)

with α, β = L,R and form a full orthogonal basis for
single-particle wave functions.
A weak electron-electron interaction results in a scat-

tering of electrons by the Friedel oscillations caused by
the inhomogeneity. To take it into account, we solve a
Schrödinger-type equation

[

− ~
2

2m
∇2 + Veff (r)

]

Ψ(r) = E ψ(r) (5)

and obtain δΨ(r) in the lowest order in the interaction.
The interaction potential induced by the Friedel oscil-

lations is a sum of a direct and exchange terms Veff (r) =
VH(r) − Vex(r), where

VH(r) = gs

∫

dr1 V (r− r1)n(r1, r1), (6)

Vex(r)ψ(r) =

∫

dr1 V (r− r1)n(r, r1)ψ(r1), (7)

n(r, r1) = 〈Ψ̂+(r1) Ψ̂(r)〉 is the electron density matrix,
and V (r − r1) is the potential of the electron-electron
interaction. Typically, it is the Coulomb interaction
screened by the gate. The coefficient of spin degeneracy
gs appears only in the direct term because it involves
interactions between electrons with both spin directions
while the exchange interaction is possible only for elec-
trons with the same spin projection.
If the electron–electron interaction is considered as a

perturbation, Eqs. (6) and (7) result in a correction to
the wave function (2) in the form δΨα

i = δΨα
i,H − δΨα

i,ex,
where

δΨα
i,H(ex)(r) =

∫

dr′G(r, r′)VH(ex)(r
′)Ψα

i (r
′), (8)

and G(r, r′) is the Green’s function of the single-particle
Schrödinger equation. The density matrix n(r, r1) is con-
veniently expressed in terms of the scattering states ΨL

i

and ΨR
i . At zero temperature, it is given by

n(r, r1) =
∑

i,α

∫ EF

−∞

dEΨα
i (r, E) [Ψα

i (r1, E)]∗. (9)

If Ψα
i are unperturbed by the interaction and given by

Eqs. (2) - (3), the electron density far from the inhomo-
geneity may be presented in the form

n(r, r) = n0 +
∑

ij

δnij(x)φi(y)φj(y), (10)

δnij(x) = |rij |

×
√
viF vjF

viF + vjF

sin[(kiF + kjF )|x|+ arg rij ]

π|x| . (11)

The subscript F shows that the corresponding quantity
is evaluated at the Fermi level. Apart from the uniform
background n0, n(r, r) also contains rapidly oscillating
components with wave vectors kiF + kjF , which slowly
decay with the distance from the inhomogeneity as 1/|x|.
The presence of these components results in both inter-
channel and intrachannel backward scattering. Note that
components with wave vectors kiF − kjF vanish because
of the unitarity condition r+t+ t+r = 0.
The Green’s function is conveniently expanded in

transverse wave functions as

G(r, r′) =
∑

i,j

gij(x, x
′)φi(y)φj(y

′), (12)

where

gij(x, x
′) =

1

i~
√
vivj

×
{

tij e
i|kix−kjx

′|, xx′ < 0

δij e
iki|x−x′| + rij e

i|kix+kjx
′|, xx′ > 0

(13)

To obtain the corrections to the entries of the S matrix,
one has to substitute Eqs. (9) - (13) into (8) and then
to expand the resulting δΨα

i in transverse wave functions
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φj(y). The presence of terms like (11) in the integrand
gives rise to terms that slowly decay as 1/|x| with the
distance from the obstacle and a logarithmic divergency
of the integral at E → EF . Meanwhile it is precisely
these values of energy that determine the conductance of
the wire. To cure this divergency, we have to introduce
a long-distance cutoff Lc and a short-distance cutoff d,
which is of the order of the characteristic scale of the
interaction potential V (r) (e.g of the distance from the
conducting channel to the screening gate). As a result,
one obtains the corrections to the reflection and trans-
mission amplitudes in the form

δrij =
1

2

[

αijrij −
∑

kl

αkl (rikr
∗
klrlj + tikr

∗
kltlj)

]

ln
Lc

d
,

(14)

δtij = −1

2

∑

kl

αkl (rikr
∗
kltlj + tikr

∗
klrlj) ln

Lc

d
, (15)

where different interactions are characterized by dimen-
sionless parameters

αij = (2 − δij)
Vijij(0)− gsVijij(kiF + kjF )

π~(viF + vjF )
, (16)

which are expressed in terms of Fourier transforms of the
interaction potential

Vklij(x− x′) =

∫

dy

∫

dy′ φ∗k(y)φ
∗
i (y

′)

× V (x− x′, y − y′)φj(y
′)φl(y). (17)

In what follows, we neglect the renormalization of the
interaction parameters by backward scattering obtained
in Ref. 1 for spinful electrons because it plays no role in
RG equations written to first order in the interaction.
The three terms in Eq. (14) are illustrated by the dia-

grams in Fig. 1. The first term is presented by diagram
a and corresponds simply to backward scattering from
channel i to channel j by Friedel oscillations. The sec-
ond term is presented by diagram b and corresponds to
reflection from state j to state l with subsequent back-
ward scattering by Friedel oscillations from channel l to
channel k and reflection from channel k to channel i. The
third term is presented by diagram c and corresponds to a
transmission from channel j to channel k, backscattering
by Friedel oscillations from l to k, and then transmis-
sion from k to i. Similar processes for δtij are shown by
diagrams d and e.
As the first-order correction to the transmission and re-

flection amplitudes logarithmically diverges, one has to
sum up the perturbative series to infinite order. The
summation of most divergent contributions may be per-
formed using the renormalization procedure suggested by
Yue et al.14. The idea is to choose the length Lc in such a
way that the corrections δrij and δtij are still small and
to treat the inhomogeneity together with Friedel oscilla-
tion within this distance as a new composite scatterer.

FIG. 1. Diagrams for the corrections to the reflection and
transmission amplitudes. The vertices with wavy lines show
scattering by Friedel oscillations, and the black dots show the
scattering at the obstacle

Then the procedure is repeated again and again until S
becomes independent of L. By treating the ratio L/d as
a continuous variable14,15 and using Eqs. (14) and (15),
one obtains a differential equation for the scattering ma-
trix in the form

dS

dl
= SF+S − F, (18)

where l = ln(L/d) and the block-diagonal matrix

F =

(

f 0
0 f

)

(19)

is formed of two identical N ×N matrices with elements
fij = −αijrij/2. This equation is similar to the RG
equation obtained by Lal et al.15 for a junction of several
weakly interacting wires, but F contains now both diag-
onal and off-diagonal elements. It is easily verified that
the RG flow preserves the unitarity and symmetry of S.

In general, the symmetric S matrix has N2 + N dif-
ferent complex entries, which are reduced to the same
number of independent real quantities because of the uni-
tarity condition. Note that the form of Eq. (18) remains
unchanged by the transformation

S′ = USU, (20)

where U is a diagonal 2N × 2N matrix with elements
Uij = δij exp(iϕj) and the real phases ϕj are indepen-
dent of l and obey the condition ϕj+N = ϕj . Therefore
the matrices related by Eq. (20) belong to the same fam-
ily and evolve precisely in the same way. This suggests
that the phases of N elements of matrices t and r with
different indices may be chosen arbitrarily when studying
the RG flow.
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G/G0 No |r11|
2 |r12|

2 |r22|
2 |t11|

2 |t12|
2 |t22|

2 λ1 λ2 λ3 λ4 λ5 λ6

0
I 0 1 0 0 0 0 1

2
(α11 + α22)− α12

1

2
(α11 + α22)− α12 −α12 −α12 −α12 0

II 1 0 1 0 0 0 − 1

2
(α11 + α22) α12 −

1

2
(α11 + α22) −α11 −α22 0 0

1
III 0 0 1 1 0 0 1

2
(α12 − α22)

1

2
(α12 − α22) α11 −α22 0 0

IV 1 0 0 0 0 1 1

2
(α12 − α11)

1

2
(α12 − α11) −α11 α22 0 0

2
V 0 0 0 0 1 0 1

2
(α11 + α22)

1

2
(α11 + α22) α12 0 0 0

VI 0 0 0 1 0 1 α11 α22 α12 0 0 0

TABLE I. Interaction-independent fixed points of RG. The number of conductance quanta per spin direction, the number of
the fixed point, the scattering amplitudes, and the eigenvalues describing the behaviour of small deviations from these points.

III. FIXED POINTS

Now we study the fixed points of RG flow Eq. (18) by
considering the interaction parameters as formal quanti-
ties of arbitrary sign. The RG equation for the single-
channel wire with a scatterer has only two fixed points,
which correspond to r = 1 and t = 1. The former is sta-
ble and the latter is unstable for the repulsive interaction
while for the attractive one, they just exchange places.
In the case of two channels, the analysis is much more

complicated because it involves six different entries of S
matrix and three different interaction constants α11, α22,
and α12. According to Eq. (18), the fixed points of RG
should be determined from the condition

SF+ = FS+, (21)

which results in four quadratic equations for rij and tij .
They should be supplemented by six equations that fol-
low from the unitarity of S matrix. Fortunately, all the
fixed points can be found analytically even for this case.
It is easily shown (see Appendix) that all the three reflec-
tion amplitudes at the fixed points can be chosen as real
numbers without a loss of generality. Any fixed point
can be obtained from one with real rij by means of the
transform (20), which involves two independent phases
ϕ1 and ϕ2.
Our analysis revealed three types of fixed points. First

of all, there are four isolated universal points that do
not depend on the interaction parameters and correspond
to an integer number of conductance quanta (points I -
IV in Table I). The second type includes several one-
parametric families of fixed points that correspond to
smooth transitions between the points of the first type
(see Appendix, Table II). One of these families with
|r11| = |r12| = |r22| = 0 and |t11|2 = |t22|2 = 1−|t12|2 cor-
responds to a transition between the point with |t12| = 1
and the point with |t11| = |t22| = 1 (points V and VI
in Table I) and exists for any values of the interaction
parameters. The rest of one-parameter families emerge
only for definite relations between αij . Note the asymme-
try between the transmission and reflection amplitudes.
There is also a third type of fixed points. These points

are isolated, but the corresponding scattering amplitudes
depend on the interaction parameters (see Appendix).
To investigate the stability of fixed points, we linearize

Eq. (18) in δrij and δtij near them and eliminate the
extra increments of these quantities using the unitarity
condition. The evolution of the remaining six increments
is determined by a 6 × 6 matrix, and the fixed point is
stable if all the corresponding eigenvalues λi are not pos-
itive. The eigenvalues describing the behaviour of small
deviations of S matrix from the isolated fixed points are
listed in Table I. In general, this matrix has six eigenval-
ues, but some of them are zero because they correspond
to the rotations of S matrix (20), which involve two in-
dependent phases ϕ1 and ϕ2 and leave Eq. (18) invari-
ant. As S at points II - IV has two nonzero entries, there
are two independent phase transformations and only four
nonzero λ’s. At point I, S has only one nonzero entry,
so there is only one independent phase rotation and five
nonzero eigenvalues. Points V and VI belong to the one-
parametric continuous family of fixed points with zero
reflectance and different |t11| = |t22|, and the three zero
eigenvalues at any point of this family correspond to vari-
ations of |tij | and two phase rotations. The three nonzero
eigenvalues for this family are given by equations

λ1 =
1

2
(α11 + α22) (1 − |t12|) + α12 |t12|, (22a)

λ2,3 =
1

4

{

α11 + α22 + 2α12 + (α11 + α22 − 2α12) |t12|

±
[

(α11 + α22) (1 + |t12|) + 2α12 (1− |t12|)
]2

− 8
[

α12 (α11 + α22)

+ |t12 |(2α11α22 − α11α12 − α22α12)
]1/2}

. (22b)

It is easily seen that fixed points of this family may be
stable only if α12 < 0. If one goes from larger to smaller
values of α11 and α22, the first stable point with |t12| = 1
(point V in Table I) appears at α11 + α22 = 0. The
range of stability broadens as these quantities decrease
and finally includes the extreme point with |t11| = |t22| =
1 (point VI in Table I) as both the conditions α11 < 0
and α22 < 0 are fulfilled.



5

FIG. 2. The diagram of stability of isolated fixed points from Table I for negative and positive α12 in the α11 - α22 plane.

The regions of stability of the isolated fixed points from
Table I for different values of αij are shown in Fig. 2. The
darker areas correspond to lower conductance and the
lighter areas, to higher conductance. It is easily seen that
the diagram of stability in the α11 - α22 plane essentially
depends on the sign of α12. For α12 < 0, the conductance
per spin projection varies from 0 to 2e2/h as α11 and α22

decrease from ∞ to −∞. If only one of these quantities
tends to −∞ and the other is positive, two stable fixed
points are possible. One of them is point III or IV with
a conductance e2/h, and the other is point V with a
conductance 2e2/h. Hence the actual conductance, i. e.
the final point of RG flow in these regions depends on
where it starts, i. e. on the scattering properties of the
bare inhomogeneity.
The diagram in α11 and α22 looks very different for

α12 > 0. Surprisingly, the conductance is zero not only if
α11 and α22 are both positive, but also if they are both
negative. However it may equal e2/h if these quantities
have opposite signs, so changing the sign of one of the
interaction parameters from negative to positive may in-

crease the conductance. There are also regions where
stable points with G = 0 and G = e2/h coexist.
To conclude this section, the stationary points of RG

for the two-subband wire are essentially the same as for
two independent 1D quantum wires, but the diagram of
their stability is radically different from the latter case,
especially for positive α12.

IV. INTERACTION PARAMETERS FOR

SPINFUL ELECTRONS

So far we considered the interaction parameters αij as
arbitrary independent quantities. For actual physical in-
teractions, this is not the case and the three parameters
are related with each other. Consider a typical case of
a quantum wire patterned in a two-dimensional electron

FIG. 3. The stability regions of fixed points II and IV in the
EF - d plane for the harmonic confining potential. The Fermi
energy EF is normalized to the band separation ~ω, and the
distance to the gates d is normalized to the effective width of
the wire aeff =

√

2~/mω.

gas by means of electrostatic gates. The Coulomb inter-
action between the electrons is screened by the gates and
has the standard form

V (r) =
e2

ǫr
− e2

ǫ
√
r2 + 4d2

, (23)

where ǫ is the dielectric constant of the material and d
is the distance between the wire and the gates, which
determines the characteristic interaction length. It is ev-
ident that for spinless electrons with gs = 1, all the three
interaction parameters (16) are positive because Vijij is
a monotonically decreasing function of momentum trans-
fer. In this case, fixed point II with zero conductance is
the only stable one.
The case of spinful electrons with gs = 2 appears to be

more interesting. If the Fermi level crosses the upper sub-
band not far from its bottom, k2F may be much smaller
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than 1/d, so V2222(2k2F ) ≈ V2222(0) and α22 may be neg-
ative while α11 is positive. This is just the case where
fixed point IV is stable, so there is a full reflection of elec-
trons in the lower subband and full transmission in the
upper subband at zero temperature. We determined the
region of stability of this fixed point by calculating the
interaction parameters for a quantum wire with parabolic
confinement and band separation ω. The curve separat-
ing the regions of stability of fixed points IV and II in the
EF - d plane obtained by numerical calculations is shown
in Fig. 3. The Fermi energy is normalized to the separa-
tion between the energy levels in the transverse harmonic
potential ~ω, and d is normalized to the effective width
of the quantum wire aeff =

√

2~/mω. At small d, the
separation curve follows the law EF /~ω ∝ (aeff/d)

2.
The transition from fixed point IV to II may be ob-

served by changing the Fermi level in the system by
means of the gate voltage. If α11 is positive for EF . ω,
the transmission of electrons in the lower subband is fully
suppressed. Crossing the bottom of the upper subband
by the Fermi level will bring the wire to the fixed point
IV with a conductance 2e2/h, and further increase of EF

will result in crossing the separation line between points
IV and II and returning to zero conductance. Therefore
the electron - electron interaction may lead to a spike in
the dependence of conductance on EF .

V. TEMPERATURE DEPENDENCE OF THE

CONDUCTANCE

The interaction effects in two-channel quantum wires
may manifest themselves as a nontrivial temperature de-
pendence of the conductance. At a finite temperature
the RG flow (18) must be stopped when the cutoff length
reaches the distance at which the Friedel oscillations are
smeared out by thermal broadening of the Fermi step. In
the case of a multichannel wire, there is a set of lengths
LT
ij = ~(viF + vjF )/T at which the interaction parame-

ters αij turn into zero. As L increases, Eq. (18) must
be solved separately in each interval between the consec-
utive LT

ij . The interaction parameters corresponding to

smaller LT
ij must be set equal to zero and the value of S

in the end of previous interval must be used as the initial
condition for the RG equation. The procedure must be
stopped as L reaches LT

max ≡ max(LT
ij), and S(LT

max)
gives the conductance at temperature T .
If the RG flow tends to point IV, the conductance of

the lower subband tends to zero, and the conductance of
the upper subband tends to unity. In the vicinity of this
point, the deviations from these quantities decrease with
increasing cutoff length L according to power laws with
exponents λi from Table I. As the exponents for lower
and upper subbands are different, a nonmonotonic tem-
perature dependence of the conductance may be observed
if the initial scattering amplitudes are chosen appropri-
ately.
The results of numerical simulations for the parameters

FIG. 4. The temperature dependence of dimensionless con-
ductance for a quantum wire with ~ω/EF = 0.98 and
d/aeff = 1.5. The initial transmission amplitudes are r12 =

t12 = 0, t11 = 0.65i, r22 = 0.6i, r11 =
√

1− |t11|2, and

t22 =
√

1− |r22|2.

typical of GaAs heterostructures are shown in Fig. 4. The
Fermi energy is EF = 14 meV, the subband separation
is ~ω = 0.98EF , and the distance to the gate is d =
1.5 aeff . A substitution of these values into Eqs. (17)
and (16) gives the interaction parameters α11 = 0.106,
α12 = −0.01, and α22 = −0.28. Assume that the bare
inhomogeneity is described by the scattering matrix with
r12 = t12 = 0, t11 = 0.65i, r22 = 0.6i, r11 =

√

1− |t11|2,
and t22 =

√

1− |r22|2. A solution of Eq. (18) with these
initial conditions leads to a maximum in the conductance
at T ∼ 0.4 K.

VI. CONCLUSION

In summary, we have considered the effects of elec-
tron - electron interaction on the conductance of a quan-
tum wire with an obstacle. The obstacle gives rise to
Friedel oscillations of electron density, which cause back-
ward scattering of electrons both within the transverse
subbands and from one subband to another. In the case
of two populated transverse subbands, the conductance
of the wire is determined by two intraband and one inter-
band interaction parameter. Each subband is either in a
fully insulating or fully conducting state as in the case of
zero interaction between them, but which of these states
will be realized depends on all the three interaction pa-
rameters. The wire has zero conductance if all the three
parameters are positive and maximum possible conduc-
tance 2e2/h per spin direction if all of them are negative.
However the conductance is zero if the interband param-
eter is positive and both intraband parameters are nega-
tive. Changing the sign of one of them from negative to
positive results in an increase in the conductance from 0
to e2/h per spin direction.
For spinful electrons with Coulomb interaction, the in-

teraction parameters may change their signs depending
on the filling of the subbands. This may result in a non-
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monotonic dependence of the conductance on the posi-
tion of the Fermi level in the wire. The temperature
dependence of the conductance may be also nonmono-
tonic if the intraband interaction parameters have oppo-
site signs.
Our results differ from those obtained in the Luttinger-

liquid model because the limiting transitions are made in
a different sequence. In the Luttinger-liquid papers, the
length of the wire was assumed to be infinite from the
very beginning, and therefore the gaps in the spectrum
developed even for a weak interaction, though they were
exponentially small in this case. Nevertheless these gaps
were essential because the low-energy limit was consid-
ered there. In contrast to this, we perform calculations
for a wire of a finite length in the limit of weak inter-
actions and only then let this length to infinity. This is
why the gaps are washed out by a finite dwell time of
an electron in the wire. Similar results can be obtained
by starting with an infinite wire if the temperature is
assumed to be much higher than the gap width.
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Appendix A: Interaction-dependent fixed points of

RG

If the obstacle is symmetric and the number of channels
is N = 2, the scattering matrix has the general form

S =











r11 r12 t11 t12
r12 r22 t12 t22
t11 t12 r11 r12
t12 t22 r12 r22











. (A1)

The unitarity condition SS+ = 1 leads to a system of six
independent equations

|r11|2 + |r12|2 + |t11|2 + |t12|2 = 1 (A2a)

|r12|2 + |r22|2 + |t12|2 + |t22|2 = 1 (A2b)

r11r
∗
12 + r12r

∗
22 + t11t

∗
12 + t12t

∗
22 = 0 (A2c)

r11t
∗
11 + r12t

∗
12 + t11r

∗
11 + t12r

∗
12 = 0 (A2d)

r11t
∗
12 + r12t

∗
22 + t11r

∗
12 + t12r

∗
22 = 0 (A2e)

r12t
∗
12 + r22t

∗
22 + t12r

∗
12 + t22r

∗
22 = 0. (A2f)

Matrix F in Eq. (18) is of the form

F =
1

2











−α11r11 −α12r12 0 0

−α12r12 −α22r22 0 0

0 0 −α11r11 −α12r12
0 0 −α12r12 −α22r22











.(A3)

Hence the condition Eq. (21) for the existence of a fixed
point leads to a system of another four independent equa-
tions

α11 r11r
∗
12 + α12 r12r

∗
22 = α12 r11r

∗
12 + α22 r12r

∗
22 (A4a)

α11 r11t
∗
11 + α12 r12t

∗
12 = α11 t11r

∗
11 + α12 t12r

∗
12 (A4b)

α11 r11t
∗
12 + α12 r12t

∗
22 = α12 t11r

∗
12 + α22 t12r

∗
22 (A4c)

α12 r12t
∗
12 + α22 r22t

∗
22 = α12 t12r

∗
12 + α22 t22r

∗
22 (A4d)

Equation (18) is invariant with respect to the transform
(20), where

U =











eiϕ1 0 0 0

0 eiϕ2 0 0

0 0 eiϕ1 0

0 0 0 eiϕ2











(A5)

The reflection and transmission amplitudes are changed
by this transform as follows:

r′11 = r11 e
2iϕ1 , t′11 = t11 e

2iϕ1

r′22 = r22 e
2iϕ2 , t′22 = t22 e

2iϕ2

r′12 = r12 e
iϕ1+iϕ2 , t′12 = t12 e

iϕ1+iϕ2 .

(A6)

This allows us to make r11 and r22 real by appropriately
choosing ϕ1 and ϕ2. Therefore Eq. (A4a) is brought to
the form

(α11 − α12) r11 r
∗
12 + (α12 − α22) r22 r12 = 0, (A7)

which suggests that r12 is either purely real or purely
imaginary. We choose it to be purely real because in the
opposite case, it can be made such just by adding π either
to ϕ1 or ϕ2 in the transform (20).
If one or more of the scattering amplitudes is zero, Eqs.

(A2) and (A4) are easily solved, and the corresponding
interaction-independent solutions are listed in Table I. In
addition to them, there are fixed points that exist only
for the specific combinations of interaction parameters,
which are not considered here. Assume now that none of
the scattering amplitudes are zero. Express r22 in terms
of r11 by means of Eq. (A7), and the real and imagi-
nary parts of t12 and t11 by means of Eqs. (A2d), (A2f),
(A4b), and (A4d). Substituting these quantities into the
imaginary part of Eq. (A2c) results in the equation

{

α22

α12

[

1− α11 − α12

α22 − α12

]

−
[

1− α22(α11 − α12)

α11(α22 − α12)

]}

× Im t12 Re t12 = 0. (A8)

Hence for arbitrary interaction parameters, t22 has either
zero real or imaginary part. In the case of real t22, the
solution is

r12 = ∓t12 = ±
√

(α11 − α12)(α22 − α12)

α11 + α22 − 2α12
(A9a)

r11 = ±t22 =
α22 − α12

α11 + α22 − 2α12
(A9b)

t11 = ±r22 =
α11 − α12

α11 + α22 − 2α12
, (A9c)
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Path Condition |r11|
2 |r12|

2 |r22|
2 |t11|

2 |t12|
2 |t22|

2

5 ↔ 6 none 0 0 0 1− |t12|
2 0÷ 1 1− |t12|

2

2 ↔ 4 α11 = 0 0÷ 1 0 1 1− |r11|
2 0 0

3 ↔ 6 α11 = 0 0÷ 1 0 0 1− |r11|
2 0 1

1 ↔ 5 α12 = 0 0 0÷ 1 0 0 1− |r12|
2 0

1 ↔ 6 α12 = 0 0 0÷ 1 0 1− |r12|
2 0 1− |r12|

2

2 ↔ 3 α22 = 0 1 0 0÷ 1 0 0 1− |r22|
2

4 ↔ 6 α22 = 0 0 0 0÷ 1 1 0 1− |r22|
2

2 ↔ 5 α11 + α22 = 0 1− |t12|
2 0 1− |t12|

2 0 1÷ 0 0

1 ↔ 2 α11 + α22 = 2α12 1− |r12|
2 0÷ 1 1− |r12|

2 0 0 0

TABLE II. One-parametric families of fixed points of RG. The first column indicates the extreme points of the family according
to Table I, and the second column shows the condition for the existence of the family.

If t22 is imaginary, the scattering amplitudes are given
by equations

r11 =
α12 (α22 − α12)

α2
12 − α11α22

, (A10a)

r22 =
α12 (α11 − α12)

α2
12 − α11α22

, (A10b)

r12 = (−1)m

×
√

α11α22 (α11 − α12)(α22 − α12)

α2
12 − α11α22

, (A10c)

t11 = i(−1)n
α22 (α11 − α12)

α2
12 − α11α22

×
√

α12 (α22 + α11 − 2α12)

α11(α22 − α12) + α22(α11 − α12)
, (A10d)

t22 = i(−1)n
α11 (α22 − α12)

α2
12 − α11α22

×
√

α12 (α22 + α11 − 2α12)

α11(α22 − α12) + α22(α11 − α12)
, (A10e)

t12 = i(−1)n+m

√

α11α22(α11 − α12)(α22 − α12)

α2
12 − α11α22

×
√

α12 (α22 + α11 − 2α12)

α11(α22 − α12) + α22(α11 − α12)
, (A10f)

where n,m = 1, 2. Fixed points (A9) and (A10) are
unstable for any interaction parameters.
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