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We study theoretically helical edge states of 2D and 3D topological insulators (TI) tunnel-coupled
to metal leads and show that their transport properties are strongly affected by contacts as the latter
play a role of a heat bath and induce damping and relaxation of electrons in the helical states of
TI. A simple structure that produces a pure spin current in the external circuit is proposed. The
current and spin current delivered to the external circuit depend on relation between characteristic
lengths: damping length due to tunneling, contact length and, in case of 3D TI, mean free path and
spin relaxation length caused by momentum scattering. If the damping length due to tunneling is
the smallest one, then the electric and spin currents are proportional to the conductance quantum
in 2D TI, and to the conductance quantum multiplied by the ratio of the contact width to the Fermi
wavelength in 3D TI.

PACS numbers: 72.25.Hg, 73.40.Ns, 73.40.Gk, 75.76.+j

Spin properties of edge and surface states of topological insulators (TI) are of great interest both for fundamental
physics and for potential applications in spintronics1. The spin of electrons is strongly coupled to their momentum
giving an idea of generating spin polarized currents in TI2–4. However, it would be interesting and of practical
importance to generate not only spin polarized currents but pure spin currents as well. The general idea for generating
pure spin current was suggested in Ref. 5: a Y-shaped two-dimensional conductor forming a three-terminal junction
with intrinsic spin-orbit interaction was proposed, where one of the terminals is a voltage probe which draws no
electric current, but the polarizations of incoming and outcoming electrons are opposite to each other, causing a pure
spin current. However, the particular realization of this system does not relate to TI. An example of a multiterminal
system involving the edge state of TI, in which a pure spin current in the external circuit may occur is given in Ref. 6.
However, the decoherence and damping induced by contacts were out of consideration, while we find that damping
and relaxation induced by coupling to a metallic contact are very important. The systems for generating a pure spin
current suggested in Refs. 5,6 were mesoscopic and ballistic. It is interesting to study a possibility to produce a pure
spin current also in a 3D TI where the spin current can be larger as it is proportional to geometrical dimensions of
the sample. In the helical surface state of 3D TI the physics is more complicated because a finite angle impurity
scattering is not prohibited by momentum-spin locking and strongly affects transport properties.

In this paper we study an edge state in a 2D TI and a surface state in 3D TI coupled to metallic leads by tunnel
contacts, take into account decoherence due to exchange of electrons with the lead and due to impurity scattering in
3D TI, and calculate charge and spin currents in the external circuit. A distinctive feature of our approach is that we
take into account the decoherence induced by the contacts and show that it determines the electric and spin currents
in the TI with contacts. We find that the currents strongly depend on relations between the characteristic lengths:
the damping length due to tunneling, the length of the contact and the mean free path.

Below we set e, h̄ and kB to unity, restoring dimensional units in final expressions when necessary.
We consider a TI with a conducting helical state coupled by tunnel contacts to bulky leads (Fig. 1) made of normal

metal. The effects we study can be observed in various realizations but we consider the simplest three-terminal version
when one of the leads is grounded, and the voltage V is symmetrically applied to the two other leads. We examine a
2D TI with the helical edge state (Fig. 1a) and a 3D TI cylinder with a conducting surface state (Fig. 1b). We denote
the length of the tunnel contact to the grounded lead by l0, while l1 and l2 stand for the lengths of the contacts to
the leads with potentials V± = ±V/2.

The total Hamiltonian reads

Ĥ = ĤTI +
∑

i=1,2,3

Ĥlead,i + Ĥtun,i. (1)

Here Ĥlead,i is the Hamiltonian of the i-th lead, ĤTI is the Hamiltonian of the conducting state in TI. For the edge
state7–9

Ĥ
(edge)
TI =

∫
dxΨ̂†(x) (−iσzvF∂x − εF ) Ψ̂(x), (2)

where vF is the velocity of the excitations, Ψ̂ is a two-component spinor and σ are the Pauli matrices. We do not
take into account impurity scattering in the 2D case, since spin-momentum locking prohibits such a scattering. For
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FIG. 1: (a) Helical edge state of 2D TI coupled to the leads (b) Helical surface state of 3D TI coupled to the leads

the surface state the Hamiltonian reads in the simplest case8,9

Ĥ
(surf)
TI =

∫
d2r Ψ̂†(r) [(−ivF∂r × ez · σ)− εF + Vimp(r)] Ψ̂(r), (3)

where ez is a unit vector perpendicular to the surface, Vimp is a random potential of impurities, and we assume that

it is delta-correlated V (r)V (r′) = u0δ(r− r′).

The tunnel Hamiltonian Ĥtun reads

Ĥtun =

∫
d3RdDr ψ̂†(R)T (R, r)Ψ̂(r) + h.c. (4)

where dimension D = 1 for the edge state and D = 2 for the surface state; ψ̂(R) is the field operator in a lead, the
matrix element T (R, r) describes tunneling between the lead and TI. We assume a site-to-site tunnelling which does
not conserve momentum, T (R, r) = td(3−D)/2δ(R‖ − r)δ(R⊥), where t is real and does not depend on r, and δ(R⊥)
selects an average value of a function at a distance d of the order of inter-atomic scale near the surface.

First, we focus on the helical edge state coupled by tunnel contacts to the leads (Fig. 1a). We start from the
Hamiltonian (1), (2), (4), and then derive equations for Keldysh matrices10

Ǧ =

(
GR GK

0 GA

)
, Σ̌tun =

(
ΣR ΣK

0 ΣA

)
,

where GR,K,A are Green functions of the edge state, Σtun is a self energy describing tunneling from a lead to the
edge state. Deriving an expression for self energy we follow Kopnin and Melnikov11. For details one can also refer
to Ref. 12, where the self energy was derived for helical states tunnel-coupled to a superconductor. Finally, we obtain
Σtun(x, x′) = Σδ(x− x′), where

Σ̌ = iΓ

(
−1 −2 tanh

ε

2T
0 1

)
. (5)

Here we introduce the tunnelling rate Γ ' πν3d
3t2 ∼ t2/εF , ν3 = mpF /(2π

2h̄3) is the 3D density of states.
The Dyson equation for the Green functions Ǧ reads(

ε+ εF + iσzvF∂x − Σ̌
)
Ǧ(x, x′) = δ(x− x′) (6)

The left-right subtracted Dyson equation for GK(x, x) can be reduced to a kinetic equation for distribution function
f by ansatz GK = (GR −GA)(1− 2f)

σzvF∂xf = −γ(x)(f − fi), (7)

where γ = 2Γ/vF is the inverse damping length due to tunneling, fi = f0(ε − Vi) is the equilibrium distribution
function in the i-th lead.
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Solving (6) for retarded and advanced components we obtain

GR(x, x)−GA(x, x) = − i

vF

sinh γl/2

cosh γl/2− cos (kFL+ εL/vF )
(8)

where l = l0 + l1 + l2 and L is the circumference of the edge state. The solution of (7) can be represented as a sum
of equilibrium and non-equilibrium terms f = f0 + δf . Non-equilibrium term at the region 0 < x < l0 coupled to the
grounded lead reads

δf =
δf2 + [δf1 − δf2] e−γσzl2 − δf1e

−γσz(l1+l2)

(1− e−γσzl) eγσzx
, (9)

where δfi = f0(ε − Vi) − f0(ε). The charge current flowing through the edge state is related to the non-equilibrium
part of the Keldysh Green function GKne by Ie = i

2evFTr σzG
K
ne. Spin current reads Js = vF ρ, where ρ is a linear

density of electrons related to the Keldysh Green function and a local shift of a chemical potential µ by equation
ρ = eµ/(πvF )− i

2Tr GKne. The local shift of a chemical potential µ is due to variation of electron density and obeys the

Poisson equation
(
∂2
x + ∂2

⊥
)
µ = −4πeρδ (r⊥). Finally, we obtain Js(x) ∼ vF

(
− i

2Tr GKne
)
/(1 + α), α = ae2/(εh̄vF ),

where a ∼ 1 depends on the specific geometry, and ε is an ambient dielectric constant.
The spin current flowing through the grounded lead can be calculated as the difference of the spin currents in the

edge state of TI at the endings of the contact Js = Js(x = 0)− Js(x = l0). Its derivative with respect to the applied
voltage at low temperatures T � h̄vF /L reads

dJs
dV

=
G0

e

2 sinh γl0
2 sinh γl1

2 sinh γl2
2

1 + α

 1

cosh γl/2− cos
(
kFL+ eV L

2h̄vF

) +
1

cosh γl/2− cos
(
kFL− eV L

2h̄vF

)
 , (10)

where G0 = e2/h is the conductance quantum. Here and below a spin current is measured in units of h̄/2. In the
limit of high temperatures T > h̄vF /L the oscillations are washed out, and the term in the square brackets should be
substituted by 2/(sinh γl/2)

The electric current flowing through the grounded lead I = Ie(x = 0)− Ie(x = l0) in case of symmetrical geometry
l1 = l2, is determined by conductance

dI

dV
= G0

sinh γl0
2 sinh γl1 sin kFL sin eV L

2h̄vF[
cosh γl/2− cos

(
kFL+ eV L

2h̄vF

)] [
cosh γl/2− cos

(
kFL− eV L

2h̄vF

)]
that oscillates with the voltage and the Fermi level position, which can be varied by the gate voltage. At high
temperatures T > h̄vF /L and in the limit of large damping, γli � 1, this term vanishes resulting in a pure spin
current through the grounded lead.

It is instructive to consider an incoherent case γli � 1 in more details. In this case the non-equilibrium part of the
electronic distribution at the region coupled to the grounded lead is reduced to

δf =

(
δf2e

−γx 0
0 δf1e

γ(l0−x)

)
(11)

Thus, due to the spin-momentum locking, the distribution of spin-up electrons at x = 0 is determined by the heat
bath coupled to the region x < 0, and the distribution of spin-down electrons at x = l0 is determined by the heat
bath coupled to the region x > l0. The spin current reads Js = [1 + α]

−1 G0

e V and the electric current equals zero,
independent on the lengths of the contacts.

It is interesting that the electric current between the leads connected to a voltage source in the considered three-
terminal structure equals I = 3

2G0V , and is different from the current in a two-terminal setup. In the latter case
we find for the system with two tunneling contacts the same result I = 2G0V as in case of ballistic quantum wire
attached to ideal adiabatic contacts.

Now we consider a surface state of a 3D TI tunnel-coupled to the leads (Fig. 1b). The Hamiltonian is given
by (1), (3), (4). We assume that the contacts are placed on the (111) plane – in this case Pauli matrices in the
Hamiltonian (3) coincide with the electron’s spin operator13. The Dyson equation reads[

i∂t + εF + ivF (∂yσx − ∂xσy)− Σ̌tun − Σ̌imp
]
Ǧ(r, r′) = δ(r− r′). (12)

The self-energy for impurities Σ̌imp = −iτ−1〈ǧ〉, where τ−1 = πν2u
2, ν2 = pF /(2πh̄

2vF ) is the single-particle
density of states at the Fermi energy and 〈ǧ〉 is the average over the momentum direction of the quasiclassical Green
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function given by definition ǧ = i
π

∫
Ǧdξ. Similarly to the case of tunneling into the edge state, the self-energy

Σ̌(r, r′) = Σ̌(r)δ(r − r′), and Σ̌(r) is given by (5). The electron transport is determined by an interplay between
three characteristic scales: the lengths of tunnel contact li, the damping length due to tunnel contacts vF /Γ, and the
momentum and spin relaxation length vF τ due to impurity scattering. We focus on the case when the dimensions of
the sample are larger than the mean free path and the dimensional quantization can be ignored. We follow Ref. 14
and obtain the kinetic equation for the distribution function f

∂tf + vF (n,∇) f = −f − 〈f〉 − (n, 〈fn〉)
τ

− 2Γ(x)(f − fi) (13)

The distribution function f yields the quasiclassical Keldysh Green function by relation

gK = (gR − gA)(1− 2f) = (1 + nyσx − nxσy) (1− 2f),

We represent the distribution function as a sum of isotropic and anisotropic terms, expanding angular dependence to
the first harmonics f ≈ 〈f〉 + fxnx + fyny, and the term with ny vanishes due to translational symmetry along the
y-axis. The electron and current density read

ρ =
ν2

2

∫
〈f〉dε+ ν2µ, j =

vF ν2

2

∫
fxdε, (14)

Following Ref. 14 and taking into account a local shift of a chemical potential one can obtain the continuity equation
with the source describing tunneling, and the expression for the electric current

∂tρ+ ∂xj = 2Γ(x) [ρ− ν2(µ− Vi)] (15)

j = σE +D∂xρ (16)

where Vi is a potential applied to the lead, D = v2
F τ/(1 + 4Γτ), σ = e2vF pF /[2π(τ−1 + 4Γ− 2iω)]. The spin current

density in the TI reads

js = vF
ρ

2
(17)

However, spin relaxation due to scattering on impurities results in non-conservation of the spin current, and unlike
the case of the edge state we cannot calculate the spin current flowing through the lead as the difference of the spin
currents in the surface state of TI at the endings of the contact unless the contact length l0 is shorter than the mean
free path τvF . Thus, in order to calculate the spin current through the lead we use the continuity equation in the
lead14

∂tρ
(lead)
s (x, y) + divj(lead)

s (x, y) = Γ′(x)δ(z)ρ(lead)
s (x, y) + 2v−1

F Γ(x)j(TI)
e (x, y)δ(z), (18)

where Γ′ = Γν2/ν3, ρs and js are spin and spin current densities in the lead, j
(TI)
e is particle current density in the

TI. The term with ρs in the right-hand side vanishes in the leading approximation. Integrating (18) over space allows
us to relate the spin current in the lead with the electric current in the TI

Js =
1

vF

∫
2Γj(TI)

e dxdy (19)

Note that in the limiting case τ−1 � Γ according to (16)–(17) expression (19) is reduced to the difference of the spin
currents in the surface state of TI at the endings of the contact.

Now it is straightforward to calculate the spin current through the grounded lead using equations (15)–(16) and
demanding continuity of particle and current densities at the boundaries of the contacts. The result has especially
simple form when vF /Γ� li:

Js =
G0

e
kFLy

1

[4 + (Γτ)−1] (1 + slD)
eV.

where s is a spacing between contacts, lD =
√
D/(8Γ) is a diffusion length.

The electric current through the grounded lead equals zero. If the mean free path τvF is greater than the damping
length due to tunneling vF /Γ then impurity scattering and corresponding spin relaxation do not affect spin current.
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To summarize, we have proposed a system based on the 2D/3D TI which injects pure spin current into an external
circuit. We have found that charge and spin transport is strongly affected by contacts connecting the TI to bulky leads
which play a role of a heat bath. If the tunneling rate is large enough so that the exchange of electrons between the TI
and the lead is intensive enough, the distribution functions of the electrons that passed the contact are determined by
the Fermi distribution in the lead shifted by the applied voltage. This is somewhat similar to the case of quantum wire
connected to the leads by ideal contacts, and similarly to the quantum wires yields electric and spin currents through
a 1D channel being proportional to the conductance quantum. In case of 2D conducting region the current through
the width of the order of the Fermi wavelength is proportional to the conductance quantum. Thus the conductance
does not depend on the transmission of the contact if the tunnel coupling is not too weak, and the contact behaves
as if it is nearly ideal. Though formally our results are valid in the tunneling limit only, we believe that they provide
a qualitative description of the transport for any contacts.

The work was supported by Programs of Russian Academy of Sciences and by Fund of non-profit programs.
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