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1 Introduction Topological insulators (TIs) are of 
great interest due to amazing physical properties of the 
electronic system caused by the presence of topological or-
der [1, 2]. The most attention is paid to the topologically 
protected surface and edge states that exist at the bounda-
ries of the topologically non-equivalent crystals because of 
strong spin–orbit interaction. They are protected by the 
time-reversal symmetry against weak non-magnetic impuri-
ties or disorders. Owing to the presence of the protected 
states the TIs are expected to have good surface conductiv-
ity and large bulk resistivity. However, the TI samples 
available nowadays are always poorly insulating in the bulk, 
owing to a large amount of structure imperfections (defects) 
[2]. The questions of what is the electronic and topological 
structure of the defects and how they affect the properties of 
the TIs attract increasing interest in recent years [3, 4].  

In this Letter, we focus on the non-magnetic defects. 
The investigations of the electronic structure of the defects 
on the surface of three-dimensional (3D) TIs reveal a rich 
interference pattern and non-trivial spin texture arising 
around the defects due to quasiparticle scattering [5–8]. 
Non-magnetic impurities and vacancies in surface, subsur-

face, and bulk positions in 3D TIs modify the energy spec-
trum of the surface states: they may disrupt the Dirac cone 
and create in-gap resonances [9, 10]. The theoretical stud-
ies of an Anderson impurity in the bulk of TIs have shown 
that a Kondo resonant peak appears simultaneously with an 
in-gap bound state in the case where the band-dispersion 
has a Mexican hat form [11, 12].  

The formation of in-gap bound states in two-dimen-
sional (2D) TIs was demonstrated by considering a hole in 
which the wave function is zero [13]. The bound states 
have the same origin as the edge states circulating around 
the hole with quantized angular momentum. The edge 
states appear in pairs propagating in opposite directions 
with opposite spins. A point defect in the crystal essen-
tially differs from the blowhole since the wave function is 
not zero there, but should be found taking into account the 
potential of the defect. This is a rather complicated prob-
lem because of multiband structure of the Hamiltonian. 
The bound states induced by the Gaussian potential were 
numerically investigated by Shen et al. [14, 15] for a num-
ber of material parameters. It was found that the bound 
states appear under certain conditions but, no general con-

We found that non-magnetic defects in two-dimensional
topological insulators induce bound states of two kinds for
each spin orientation: electron- and hole-like states. Depend-
ing on the sign of the defect potential these states can be also
of two kinds with different distribution of the electron den-
sity. The density has a maximum or minimum in the center. A
surprising effect caused by the topological order is a singular
dependence of the bound-state energy on the defect potential.
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clusions were done about their spectra, electronic structure 
and the conditions under which they exist.  

We have found a way to solve this problem thoroughly 
in the physically interesting case where the defect potential 
is strongly enough localized. In this paper, we study ana-
lytically the bound states induced by a non-magnetic defect 
in 2D TIs and clarify their general properties: the classifi-
cation of the states, the conditions under which they exist, 
their electronic and current structure. Particularly, we find 
that two kinds of the states exist near the defect for each 
spin direction, in contrast to the edge states on a smooth 
boundary and the states on the hole.  

 
2 Model and methods Our consideration is based 

on the model of the 2D TIs proposed by Bernevig, Hughes 
and Zhang for HgTe/CdTe quantum wells [16]. The Hamil-
tonian has the form  

( ) 0
0 *( )
h

H
h

Ê ˆ= ,Á ˜Ë ¯-
k

k
 (1) 

where k is momentum operator and  
2

2

( ) ( )
( )

( ) ( )
x y

x y

M B D k A k ik
h

A k ik M B D k

Ê ˆ
Á ˜
Á ˜
Á ˜
Ë ¯

- + +
= ,

- - + -
k  (2) 

where M, A, B and D are model parameters. In the topo-
logical phase 0.MB >  In the case of HgTe/CdTe wells 

0,M B D, , <  0.A >  The basis set of wave functions is 
composed of the electron and heavy-hole sub-band states 
with opposite spins: 1 1 1 1{| | | | }.E H E H≠Ò, ≠Ò, ØÒ, ØÒ   

The defect is described by the potential ( )V r  localized 
in a small region near 0.r =  Since the defect is non-
magnetic, the Hamiltonian (1) is separated into spin blocks 
for each of which the Schrödinger equation has the form  

[ ]2 2( ) ( ) ( ) ( )E h VΨ Ψ- = ,I k r I r r  (3) 

where 2I  is a 2 2¥  unit matrix, ( )rΨ  is a two-component 
spinor 1 2( ( ) ( )) .Tψ ψ,r r  The wave functions are supposed to 
vanish at infinity.  

In terms of the momentum-space wave functions  
2( ) d ( ) e ,iΦ Ψ -= ÚÚ krk r r  (4) 

the Schrödinger equation reads  
2

2 2[ ( )] ( ) d ( ) ( ) e iE h VΦ Ψ -- = .ÚÚ krI k k I r r r  (5) 

The key point is to treat the integral in the right-hand 
side. One can naively suppose that ( )V r  is a δ-function, but 
in this case the problem has no solution. This is a well-
known property of 2D and 3D systems [17, 18] which was 
recently confirmed for TIs [11]. However, in reality the po-
tential is not strictly δ-function. One of effective ways  
allowing one to overcome this difficulty is to introduce the 
cut-off into the integration over k at large k and subse-
quently regularize the problem in the momentum space 
[18]. Alternatively, one can simplify the integration using 
the fact that ( )V r  has a sharp maximum in the point 0.r =  

In our case both approaches give close results, but the ap-
proximation of ( )V r  by a sharp regular function is more 
justified from the standpoint of the experimental realiza-
tion of 2D TIs in quantum well heterostructures, especially 
in the case of charged defects.  

If the potential ( )V r  is localized in a region small com-
pared to characteristic lengths of the wave-function varia-
tion, the integral in the right-hand side of Eq. (5) can be 
simplified by expanding ( )rΨ  in r. Such an expansion is 
justified when 2| (0)/ (0)| 1,-¢¢Ψ Ψ Λ  where 1-Λ  is the size 
of the potential localization region.  

Using this simplification and supposing that the poten-
tial is axially symmetric, we arrive at the following equa-
tions for the Fourier components 1( )kΦ  and 2 ( )kΦ  of the 
wave-function spinor:  

2
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where 1 2 1 2 (0), kV, ,∫ψ ψ  is the Hankel transform of ( ),V r   
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Using Eq. (6) one can easily find the wave functions  
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where φ  is the azimuthal angle of the vector r and 
2 2 2 2 2 2Δ( , ) ( ) ( ) .E k E Dk M Bk A k= + - - -   

By writing these equations at 0,r =  where 
1 2 1 2( 0) ,r, ,= =ψ ψ  we obtain a set of equations which de-

termine the eigenenergy and 1,2 .ψ  Because 1( 0) 0,J kr = =  
the system is decoupled into two independent equations:  
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The equations show that there are two kinds of eigenstates: 
(i) the states in which 1 0πψ  and 2 0,=ψ  (ii) the states in 
which 1 0=ψ  and 2 0.πψ   

Taking into account the arrangement of the wave func-
tions in the basis set one can conditionally say that the first 
state is electron-like in the center, and second one is hole-
like. Their eigenenergies are determined by zeros of the 
expression in the square brackets in Eq. (9), where the up-
per and lower signs relate to the electron-like bound states 
|eÒ and hole-like bound states |h .Ò   

Equation (9) clearly show that no bound states exist 
when the potential ( )V r  is the δ-function. In this case 

constkV =  and the integrals diverge logarithmically show-
ing that ( ) 0.r =Ψ  However, if the potential, even of zero 
radius, has a singularity more weak than the δ-function, its 
Hankel transform kV  decreases with k  and the integrals 
converge. Therefore, bound states can exist. Physically re-
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alistic potential has of course a finite radius, 1.-Λ  In this 
case Eq. (9) can be solved for specific ( ).V r   

 
3 Results and discussion Below the detail results 

are presented for the Gaussian potential: ( )V r  
2 2 2/πexp [ ].v r= -Λ Λ  Its Hankel transform is kV  

2 2/(2π) exp [ /(4 )] .v k= - Λ  With this kV  the integrals in 
Eq. (9) are calculated analytically.  

For simplicity and without loss of generality, we put 
0.D =  In this case the problem contains important param- 

eters 2 /(2 )a A MB=  and /v B  that essentially determine the 
spectrum of the band states. If 0 1,a< <  the band disper-
sion has a Mexican hat form and the bulk energy gap is 
smaller than 2| |.M  When 1a >  the dispersion is quadratic 
and the gap equals 2| |.M  At 1a =  the band dispersion is 
flat in the vicinity of the point 0.k =   

The analysis of Eq. (9) shows that each equation has 
only one root at a given / ,v B  namely eE  for the electron-
like states and hE  for the hole-like states. Both roots are 
connected by the relation e h( / ) ( / ),E v B E v B= - -  so it is 
enough to consider one of them. We will consider e .E  It is 
interesting that each eigenenergy has a quite different de-
pendence on /v B  for positive and negative / .v B  This is be-
cause the bound states |e ,Ò  which are formed at / 0v B <  and 

/ 0,v B >  have different electronic structure. Therefore we 
denote e1 e ( / 0)E E v B= <  and e2 e ( / 0)E E v B= >  and simi-
larly for the hole-like states.  

The dependence of the eigenenergies on /v B  is illus-
trated in Fig. 1a. This picture is qualitatively similar for all 
parameters, where the topological phase exists.  

If / 0,v B >  the electron-like bound state |e1Ò  arises 
when /v B  exceeds a threshold value th /v B  which depends 
on the potential-localization parameter /B M=λ Λ  and 
the parameter a. The threshold value th / 0v B =  when 1.a <  
For 1,a >  the following estimation is obtained:  

{ }th /| | 4π/ ln (4 e ) ln [2( 1)]v B aγλ -ª - - , (10) 

where γ  is the Euler constant. Here we have taken into ac-
count that the potential is strongly localized and 1.λ  
 

 
Figure 1 (a) Energy of the electron- and hole-like bound states as 
a function of the defect potential. Lines e1,E  e2E  and h1,E  h2E  cor-
respond to two kinds of the electron- and hole-like states (see 
text). Dashed lines show the limiting energies. The calculations 
were carried out for 1,a =  5λ =  and 0.B <  (b) The bound-state 
energies e2E  and h1E  versus the potential for a variety of .λ  Lines 
1, 2, 3, 4, 5 correspond to 5 7 10 15 20.λ = , , , ,  For clarifying, the 
vertical scale of e2E  lines is increased by 5 times. 

At the threshold the energy of the state |e1Ò  lies at the 
top of the bulk gap. With increasing /v B  the energy e1E  
goes down to a limiting value e ,E  which is reached asymp-
totically. eE  also depends on the parameters λ  and a. Par-
ticularly, for 1,a >  eE  is estimated as  

( ) ( 1)
e /| | 1 2 ( 1) / 4 e aa aE M a --ª - + - .γλ  (11) 

When / 0,v B <  the bound state |e2Ò  exists in the entire 
region / 0v B <  and its energy increases from the bottom of 
the gap at / 0v B = -  up to eE  at / .v BÆ -•   

In the case where 0 1,a< <  the energy gap is less than 
2| |,M  but the bound-state energy depends on /v B  similarly 
so that the limiting energies always lie in the gap.  

Energy of the bound states and their very existence de-
pend not only on the defect potential, but also on the local-
ization parameter ,λ  though this dependence is logarithmi-
cally weak. With increasing λ  the graphs of the bound-
state energy dependence on | |v  are pressed to the edges of 
the gap and to the vertical line 0,v =  as Fig. 1b shows. It is 
worth noting that in the limit Æ•λ  the bound states dis-
appear since ( )v r  becomes the δ-function.  

The presence of two kinds of states, |e1Ò  and |e2 ,Ò  and 
the limiting energy dividing them is the most remarkable 
feature that exists only in the topological phase. Direct cal-
culations for two-band model of normal insulator ( 0)MB <  
show that only one bound state exists at a given :v  electron-
like state for / 0v B <  and hole-like state for / 0.v B >  It is 
evident that two kinds of states originate from the topo-
logical properties of the crystal.  

To clarify their nature we consider the electronic and 
current structure of |h1Ò  and |e2Ò  states at a given / 0v B <  
using the wave functions (8).  

The radial distribution of the densities † ( ) ( )r rΨ Ψ  in 
both states are shown in Fig. 2 together with partial densi-
ties of the spinor components 2

1| ( )|rψ  and 2
2| ( )| .rψ  It is 

seen that the distribution of the electron density in the 
states of the first and second kind differs qualitatively. In 
the first-kind states, |e1Ò  and |h1 ,Ò  the density has a maxi-
mum in the center. With increasing the radius the density 
varies, generally speaking, non-monotonically. At high po-
tentials | |v  it can reach a maximum at a certain distance 
from the center. In contrast, the density in the second-kind  

 

 
Figure 2 (a) Radial distribution of the density †Ψ Ψ  in the bound 
states |h1Ò  and |e2 .Ò  (b) Densities of the spinor components. 

1 2|h1 , Ò  and 1 2|e2 , Ò  denote the components 1ψ  and 2ψ  in the states 
|h1Ò  and |e2 .Ò  For convenience the scale of the |e2Ò  densities is 
increased 5 times. The calculations were done for 4,v =  1a =  and 

6.λ =  
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states, |e2Ò  and |h2 ,Ò  has a minimum at the center, and 
reaches a maximum at some distance from it. 

The current densities are calculated using the current 
operator, which is easily obtained from the continuity 
equation and the Hamiltonian (2). In our case the angular 
component is only important:  

1 2
1 2

2 * *Im ( ) ( )j B D B D∂ ∂È ˘= - + - -Í ˙∂ ∂Î ˚φ
ψ ψψ ψ
φ φ

 

 1 2
2 *Im eiA φ ψ ψ

È ˘
Í ˙
Í ˙Î ˚

- .  (12) 

Here the non-trivial second term not containing the spatial 
derivatives is caused by the non-diagonal elements of the 
Hamiltonian (2), quite similarly to the electron systems 
with spin–orbit interaction [19].  

Using the wave functions (8) we have found that in 
both states, |h1Ò  and |e2Ò  at a given / 0,v B <  the electron 
current flows around the defect in the same direction for a 
given spin that coincides with the direction of the edge cur-
rents near the smooth boundary. An essential difference 
with the edge states is that the bound state on the defect 
can be occupied by only one electron with a certain spin. 
The probability of finding a second electron on the defect 
is small because of electron–electron repulsion. In contrast, 
the edge state near a smooth boundary can be occupied by 
two counter-moving electrons with opposite spins so that 
the electron current is absent.  

These properties of the bound states can be understood 
as follows. In normal insulators the only reason of the 
bound state formation is an attractive potential for elec-
trons or holes. In TIs there is another reason caused by  
the boundary condition for the wave function. This mecha-
nism is realized when there is a hole in the crystal [13]. If 
the defect potential is finite and localized in a small region, 
both above mechanisms work. The states of the first  
kind originate mostly from the potential attracting the elec-
trons or holes. The second-kind states originate from the 
edge states. Of course, in both states there is a circulat- 
ing current and the electron density is not zero in the cen- 
ter.  

The singularity of the dependence of the bound-state 
energies on the defect potential at the levels e,hE  can have 
an interesting consequence. Due to this feature, the bound-
state energies very weakly depend on v when | | 1v  and 
are located very close to the limiting energies. Since in re-
ality the crystal contains a large number of various defects, 
their potentials are distributed in a wide range. The typical 
potentials ( )V r  are of the order of 1 10 eV.-  The estima-
tion of | / |v B  for Hg/CdTe well parameters gives 
| / | 3 30.v B -∼  Therefore the bound-state energies of the 
different defects lie in narrow intervals near e,h .E  Since this 
energy is close to the bands the spatial size of the bound 
states is very large, 510 cm.-∼  Hence, the bound states  
can overlap even at relatively small density of defects, 

10 210 cm ,-∼  and form a hopping or collective state which 
can manifest itself in transport.  

4 Summary We have investigated the bound states 
induced by non-magnetic defects with short-ranged poten-
tial in the bulk of 2D TIs. We have found that the electron- 
and hole-like states exist for each spin orientation. These 
states, in turn, can be of two kinds depending on the sign 
of the defect potential. The first-kind states originate 
mostly from the potential attracting electrons or holes. The 
states of the second kind arise from the edge states of TIs. 
In both states there is an electron current. The most re-
markable feature of the bound-state spectrum is the singu-
larity of the dependence of the bound-state energy on the 
defect potential due to which the bound states can overlap 
even at relatively small density of defects.  
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