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RESONANT CONVERSION OF THE POINT-SOURCE FIELD TO MULTIPOLE
RADIATION USING RING LAYER OF THE OVERCRITICAL PLASMA

A.P.Anyutin,1 I. P.Korshunov,2 ∗ and
A.D. Shatrov2 UDC 538.566.2+621.372.8

We study numerically the two-dimensional problem of excitation of a hollow round cylinder,
which is made of a nonmagnetic material with μ = 1 and the negative dielectric permittivity
ε < 0, by a filamentary source. It is found that when the relative dielectric permittivity is close
to −1, high-Q resonances exist in hollow cylinders having electrically small diameters. We show
that when the source of a cylindrical wave is located within the cavity, undirected radiation is
converted at the resonance frequency into multipole radiation with a great number of identical
lobes in the radiation pattern. The patterns of the near and far fields are calculated. The influence
of the loss on the resonance properties is studied.

1. INTRODUCTION

In [1], we studied the two-dimensional problem of
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Fig. 1. Geometry of the problem.

diffraction of a cylindrical wave by a hollow cylinder of a
metamaterial with the dielectric permittivity ε < 0 and
the magnetic permeability μ < 0. High-Q resonances,
which occur in cylinders with electrically small diameters
for dielectric permittivities close to −1, were discovered
and studied for the case of the TM polarization. It was
shown that such a structure can be considered as a high-
Q ring-shaped resonator cavity with a very slow surface
wave of the cylindrical layer.

2. PROBLEM FORMULATION

This paper considers the problem about excitation
of a ring-shaped layer of overdense plasma or a metama-
terial with ε < 0 and μ = 1 by a filamentary source. The

case of the TM polarization is considered, and it is assumed that the source is located within the ring-shaped
layer (see Fig. 1).

The formulated problem is reduced to finding the scalar function U(r, ϕ) = Hz(r, ϕ), which should
satisfy the inhomogeneous Helmholtz equation
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U(r, ϕ) = −4i

r
δ(r − r0) δ(ϕ), (1)
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where δ(x) is a delta function, k is the wave number in free space, and the function ε(r) is determined by
the formula

ε(r) =

⎧
⎪⎨
⎪⎩

1, 0 < r < a;

ε, a < r < b;

1, r > b.

(2)

At the boundaries of the layer, at r = a and r = b, the following conditions should be fulfilled:

U(a− 0, ϕ) = U(a+ 0, ϕ), U(b− 0, ϕ) = U(b+ 0, ϕ),
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. (3)

The field U(r, ϕ) should also satisfy the radiation conditions, i.e., at kr → ∞ it should have the form

U(r, ϕ) = Φ(ϕ)
√

2/(πkr) exp(−ikr + iπ/4), (4)

where Φ(ϕ) is the radiation pattern.

The field of the diverging cylindrical wave is the solution of Eq. (1) at ε = 1 and is determined by
the formula

U0(r, ϕ) = H
(2)
0

(√
r2 + r20 − 2rr0 cosϕ

)
, (5)

where H
(2)
0 is the Hankel function. The field radiation pattern U0(r, ϕ) has the form

Φ0(ϕ) = exp(ikr0 cosϕ). (6)

3. SOLUTION METHOD

Equation (1) allows an analytical solution by the method separation of variables (Rayleigh series [2]).
We present a formula for the field outside the cylinder, i.e., at r > b:

U(r, ϕ) =
2i

πεk2ab

∞∑
m=0

δmJm(kr0)H
(2)
m (kr) cos(mϕ)

Am(ka)Dm(kb)−Bm(ka)Cm(kb)
, (7)

where

δm =

{
1, m = 0;

2, m ≥ 1,
(8)

Am(ka) = J ′
m(ka)Im(kna)− n

ε
Jm(ka)I ′m(kna),

Bm(ka) = J ′
m(ka)Km(kna)− n

ε
Jm(ka)K ′

m(kna),

Cm(kb) = H(2)′
m (kb)Jm(knb)− n

ε
H(2)

m (kb)I ′m(knb), (9)

Dm(kb) = H(2)′
m (kb)Km(knb)− n

ε
H(2)

m (kb)K ′
m(knb),

n =
√

|ε|, (10)

Jm is the Bessel function, Im and Km stands for modified Bessel functions of the 1st and 2nd kind, respec-
tively, and the prime subscript means differentiation with respect to the argument.
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The radiation pattern is expressed by the formula

Φ(ϕ) =
2i

πεk2ab

∞∑
m=0

δmJm(kr0)i
m cos(mϕ)

Am(ka)Dm(kb)−Bm(ka)Cm(kb)
. (11)

Note that series (7) and (11) contain the resonance denominator

Am(ka)Dm(kb)−Bm(ka)Cm(kb). (12)

We introduce the coefficient α in accordance with the formula

a = αb, α < 1. (13)

Denominator (12) is a complex function of the parameter kb. At kb � 1 and nkb � 1, the imaginary part of
Eq. (12) exceeds its real component significantly. The imaginary part of resonance denominator (12) turns to
zero at the points kbm, which are dimensionless spatial resonance frequencies. The corresponding equation
for resonance frequencies is a special case of a more general equation (29) from [1], which corresponds to
μ = 1 and can be written as

[
(kbm)2

m2 − 1
+ ε+ 1

] [
α2 (kbm)2

m2 − 1
+ ε+ 1

]
− 4α2m = 0, m ≥ 2. (14)

Solution of quadratic equation (14) has the form

(kbm)2 =
m2 − 1

2α2

[
−(1 + α2) (ε + 1)±

√
(1− α2)2 (ε+ 1)2 + 16α2m+2

]
. (15)

The condition of applicability of this formula is smallness of the values of ε+ 1 and αm.
As an example, consider the cylinder with

ε = −1.01, α = 0.3. (16)

It is evident that in order to achieve the lowest value of the dimensionless frequency kbm in Eq. (15), it is
necessary to choose the minus sign. As a result, we obtain

kb5 = 0.423. (17)

The index m = 5 becomes the lowest possible one, since at m = 4 the right-hand part of Eq. (15) becomes
negative. As the azimuthal index m increases, the resonance frequencies kbm also increase.

Consider another case where
ε = −0.999, α = 0.3. (18)

Then, to ensure that the right-hand part of Eq. (15) is positive, one should choose the plus sign in front of
the radical in it. Specifically, we find that

kb6 = 0.183. (19)

In this case, a decrease in the index m leads to an increase in the resonance frequency kbm.
Thus, as the indexm increases, the resonance frequency can both increase and decrease. The character

of this dependence is determined by the sign of the value ε+ 1.
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4. NUMERICAL RESULTS

Let us study the amplitude-frequency characteris-
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Fig. 2. Amplitude-frequency characteristics of hol-
low cylinders. The solid curve corresponds to
ε = −1.01, α = 0.3, and r0 = 0.5a. The dashed
curve corresponds to ε = −0.999, α = 0.3, and
r0 = 0.5a. The numbers at the resonance peaks
correspond to the azimuthal index m.

tic of the cylinder understood as the dependence of the
field modulus at the point r = b, ϕ = π on the dimension-
less parameter kb, which is proportional to the frequency.
In all calculations, the source coordinate was assumed
equal to r0 = 0.5a.

Figure 2 shows the amplitude-frequency character-
istic of the cylinder for the two sets of problem param-
eters, which are determined by Eqs. (16) and (18). The
calculations were performed in accordance with Eq. (7).
In the presented range of dimensionless frequencies 0.1–
0.9, the amplitude-frequency characteristics have several
resonance peaks. The numbering of resonance frequencies
is such that at the resonance frequencies kbm the radia-
tion pattern and the fields on the surfaces r = a and
r = b are described by one azimuthal harmonic cos(mϕ)
with great accuracy. Note that the dimensionless values
of the resonance frequencies kb5 = 0.42136689988 and
kb6 = 0.1825302075244, which are found by rigorous nu-
merical calculations, agree well with values (17) and (18)
found by using approximate Eq. (15). Figure 2 also confirms the above-mentioned peculiarities of the
functional dependence of the dimensionless resonance frequencies kbm on the number m. Since this work
considers an idealized problem, which does not allow for the thermal loss in the medium, the Q-factors of
the resonances under consideration are determined only by the radiation loss. This loss turns to be rather
low, which requires calculating the resonance frequency with specified high accuracy. The influence of the
thermal loss on the resonance characteristics will be considered at the end of this section.

Radiation patterns at the lowest dimensionless resonance frequencies kb5 and kb6 are shown in Figs. 3
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Fig. 3. Radiation pattern for the field of the hol-
low cylinder with ε = −1.01, α = 0.3, and
r0 = 0.5a at the dimensionless resonance fre-
quency kb5 = 0.42136 . . . (curve 1) and the di-
mensionless nonresonance frequency kb = 0.52
(curve 2, the scale is increased by 500 times).

Fig. 4. Radiation pattern for the field of the hol-
low cylinder with ε = −0.999, α = 0.3, and
r0 = 0.5a at the dimensionless resonance fre-
quency kb6 = 0.18253 . . . (curve 1) and the di-
mensionless nonresonance frequency kb = 0.35
(curve 2, the scale is increased by 7000 times).
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Fig. 5. Distribution of the field modulus over the
radius of the hollow cylinder with ε = −1.01, ν =
10−5, α = 0.3, and r0 = 0.5a at the dimensionless
resonance frequency kb5 = 0.42136 . . . .

Fig. 6. Distribution of the field modulus over the
radius of the hollow cylinder with ε = −0.999, ν =
10−8, α = 0.3, and r0 = 0.5a at the dimensionless
resonance frequency kb6 = 0.18253 . . . .
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Fig. 7. Isolines of the field modulus |U(r, ϕ)| in the
hollow cylinder with ε = −1.01, ν = 10−8, α =
0.3, and r0 = 0.5a at the dimensionless resonance
frequency kb5 = 0.42136 . . . . The circles stand for
the contours of the surfaces with r = a and r = b.

Fig. 8. Amplitude-frequency characteristics of the
hollow cylinders with ε = −1.01, α = 0.3, and
r0 = 0.5a near the dimensionless resonance fre-
quency kb5 = 0.42136 . . . for various dielectric
losses: curves 1, 2, and 3 correspond to ν = 10−7,
10−5, and 10−4, respectively.

and 4. The patterns consist of 10 and 12 identical lobes, respectively. Figures 3 and 4 also show the radiation
patterns at nonresonant frequencies. With high accuracy, they are described by the function |Φ(ϕ)| = 1,
which coincides with the radiation pattern of the primary field U0(r, ϕ) (see Eq. (6)). Thus, the ring-shaped
layer is transparent everywhere except for the narrow resonance bands. Therefore, Figs. 3 and 4 demonstrate
vividly the effect of conversion of the undirected radiation (curves 2) in the multipole radiation (curves 1)
with a great number of azimuthal harmonics. Note that the amplitudes of the radiation patterns at the
dimensionless resonance frequencies kb5 and kb6 are estimated as 6.3 · 102 and 7.5 · 103, respectively. In
this case, the field distribution over the external surface of the cylinder at r = b is described with graphical
accuracy by the only harmonic Am cos(mϕ), where A5 is of the order of 107 and A6, of 10

11.

The modified method of discrete sources [3, 4] was used to calculate the spatial structure of the wave
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fields and study the influence of the thermal loss on the Q-factor of the resonances. The parameter ν = −Im ε
was used to characterize the absorbing properties of the medium.

Figures 5 and 6 show the dependences of the fields of resonant oscillations with kb5 = 0.42136 . . .
and kb6 = 0.18253 . . . on the radial component r. These dependences correspond to different values of the
dielectric permittivity, ε = −1.01 and ε = −0.999, and differ from each other by the field behavior inside
the layer. They correspond to the anti-phase and in-phase field distributions at the boundaries of r = a and
r = b [1].

The spatial distribution of the field at the dimensionless resonance frequency kb5 = 0.42136 . . . is
presented in Fig. 7, which shows the isolines of the function |U(r, ϕ)|. The field structure consists of the
surface waves, which are standing with respect to the azimuthal coordinate and localized near the cylindrical
boundaries. Such waves were observed in the case of diffraction of the electromagnetic field by large bodies
of a metamaterial [5, 6].

The influence of the thermal loss on the resonance properties kb5 is illustrated in Fig. 8. An increase
in the thermal loss leads to a decrease in the Q-factor of the resonance. It can be seen that even at ν = 10−5

the thermal loss is much higher than the radiation loss. At ν = 10−4, the resonance Q-factor Q is of the
order of 104.

5. CONCLUSIONS

Thus, a ring-shaped layer, which is made of a nonmagnetic material with dielectric permittivity close
to −1, has resonance properties in the low-frequency range. In this case, the azimuthal dependence of the
fields at the resonance frequency is described by the single harmonic cos(mϕ). The studied resonances take
place only when strict requirements for the value of ε and the layer dimensions are fulfilled. Depending on
the sign of the formula ε + 1, the resonance frequencies of the oscillations can either increase or decrease
with increasing the azimuthal index m. These oscillations differ also in the character of the dependence of
the field inside the layer on the radial coordinate. At the resonance frequency, the undirected radiation of
the filamentary source surrounded with a ring-shaped layer is converted into multipole radiation with the
radiation pattern containing 2m identical lobes.

This work was supported in part by the Russian Foundation for Basic Research (Project No. 12–02–
00062-a).
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