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INTRODUCTION

In study [1], high�Q near�field resonances are found
in thin metamaterial plates with negative relative per�
mittivity ε and negative relative permeability μ. The
purpose of the present study is to investigate low�fre�
quency resonances in a hollow metamaterial cylinder
that, in contrast to a solid cylinder, contains two cylin�
drical boundaries. The interaction of the corresponding
surface waves results in qualitatively new effects that are
not observed in solid cylinders.

1. FORMULATION OF THE PROBLEM

The 2D problem of excitation of a hollow cylinder
by a filament source is considered. The case of the TM
polarization is studied with the use of cylindrical coor�
dinates ( ). It is assumed that the source is situated
beyond the cylinder on the ray  at the point 
(Fig. 1).

The diffraction problem is reduced to determina�
tion of scalar function  =  that satisfies
the inhomogeneous Helmholtz equation

(1)

where k is the wave number in free space and functions
ε(r) and μ(r) are specified as follows:
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The conditions
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are fulfilled on the boundaries  and . In
addition, field U(r, ϕ) satisfies the radiation conditions
at infinity.

The field in the exterior of the cylinder ( ) can
be represented as the sum of two terms (the incident
and scattered fields)
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Fig. 1. Geometry of the problem.
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It follows from Eq. (1) that the field of the incident
cylindrical wave is determined from the formula

(5)

where  is the Hankel function.

Scattered field Us in the far zone ( ) has the
form

(6)

where  is the scattering pattern. The pattern of

incident field  is expressed by the formula

(7)

2. STATIC RESONANCES

When the dimensions of a scatterer are small com�
pared to the wavelength ( ), wave field  in
the region   approximately satisfies the
homogeneous Laplace equation

(8)

Constitutive parameters (CPs) ε and μ do not enter
this equation; however, boundary conditions (3) con�
tain quantity ε.

Let us show that, for certain discrete values of neg�
ative permittivity εm, homogeneous boundary value
problem (8), (3) has solutions that rather rapidly
decrease as . These eigenmodes can be obtained
by means of the method of separation of variables:

(9)

Here, radial functions  satisfy one of the follow�
ing two conditions:  =  or  = 
By analogy with a plane layer, we will conventionally
call these functions even or odd solutions to the prob�
lem on a ring layer.

Let us introduce the notation

(10)

Then, even solutions are associated with the following
eigenvalues of the permittivity:
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The even radial functions have the form

 (12)

These functions have the property  =  = 1.
Inside the ring ( ), they reach minimum val�

ues at the point  and  = 

Odd solutions are associated with the following
eigenvalues of the permittivity:

(13)

The odd radial functions are described by the formulas

 (14)

Functions (14) have the property  =  = –1,

and they vanish at the point :  = 0.
It follows from formulas (11) and (13) that

 as  Therefore, when azimuthal
index  is large, the eigenvalues of the permittivity
approach the point  Note that, for a solid cyl�
inder (  ), the formulas
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are valid.
The existence of nontrivial solutions to homoge�

neous Laplace equation (8) means that, in the case of
small values of parameter kb, a solution to inhomoge�
neous Helmholtz equation (1) rapidly increases as the
permittivity approaches eigenvalues εm. In this situa�
tion, the single harmonic  dominates in the
Fourier decomposition of the field.
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3. QUASI�STATIC RESONANCES

The diffraction problem formulated in Section 1,
can be analytically solved by means of the method of
separation of variables (Rayleigh series [2]). Let us
present the basic formulas of the Rayleigh method.

We introduce the following notation

(17)

 (18)

 (19)

(20)

where

(21)

Jm is the Bessel function, and the prime denotes differ�
entiation with respect to an argument.

The field in the interior of the cavity ( ) can
be represented in the form

 (22)

where

(23)

(24)

The scattered field outside the cylinder ( ) has the form

(25)

The scattering pattern is determined from the formula

(26)

The field inside the ring ( ) is

(27)

The Rayleigh series contain resonance denomina�
tors  determined from formula (23). Let us
investigate the frequency dependence of these denom�
inators assuming that

(28)

Expression (23) is a complex function of param�
eter kb and does not vanish at real values of kb. Note
that, under conditions (28), the real part of (23)
substantially exceeds the imaginary part. The real
part of a resonance denominator vanishes at the
point kbm, which is a resonance frequency. In order
to determine the resonance frequencies, we apply
known asymptotical decompositions of cylindrical
functions for small arguments. We use two terms of
the decomposition in positive powers of the argu�
ment for Bessel functions and two terms of the
decomposition in negative powers of the argument
for Hankel functions. Taking into account condi�

tions (28), we obtain the following quadratic equa�

tion for quantities :
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the CPs
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obtained from the above formulas with the help of the
replacements  →   and 
Therefore, in the case of TE polarization, low�fre�
quency resonances arise at permeability values close to
minus one.

4. NUMERICAL RESULTS

The numerical results presented below are obtained
with the help of both the modified discrete source
method (see, e.g., [3]) and summation of the Rayleigh
series. The results of calculation are in agreement.

Let us investigate the amplitude–frequency char�
acteristic (AFC) of the cylinder. We consider the AFC
to mean the dependence of the absolute value of the
field at the point   (or at the point 

) on the parameter kb. In the calculation, the

source coordinate is assumed to be 

Figure 2 depicts AFCs for two sets of the CPs of the
problem that are specified by formulas (30) and (32).
Within the presented frequency intervals, the AFCs
have two resonance peaks that correspond to the fre�
quencies kb4 and kb5. The resonance frequencies are
enumerated so that, at the resonance frequency kbm,
the scattering patterns and fields on the surfaces 
and  are described by the single azimuthal har�
monic  with a high accuracy. Note that the
values of resonance frequencies  and

, which are found by means of rigorous
numerous calculation, well match quantities (31) and
(33), which are found from Eq. (29). The resonance Q
factors calculated from the data of Fig. 2 are

 and  at the points kb4 =
0.444828 and  (CP (30)) and

 and Q5 ≈ 2.3 × 103 at the points
 and  (CP (32)).

For cylinders with CPs (30) and (32), the scattering
patterns at lower resonance frequencies kb4 are practi�
cally identical, each consisting of eight identical lobes.
Figure 3 displays the scattering pattern corresponding
to CPs (30). Note that, for the dimensions of a scat�
terer , these lobes have rather small angular
dimensions. This means that the superdirectivity
effect is observed under the resonance conditions. In
addition, under the resonance conditions, the scatter�
ing pattern amplitudes substantially exceed the ampli�

tude of the incident field pattern: 

Figure 4 shows the scattering patterns at the non�
resonance frequencies  and 
located between the resonance frequencies kb4 and
kb5. It follows from the figure that, in this case, the
scattered radiation is practically omnidirectional and
that the scattering pattern amplitudes are smaller than
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the corresponding resonance values by three orders of
magnitude.

In Fig. 5, the dashed curve shows the total field on
the exterior ( ) surface of the cylinder with CPs
(32) at the resonance frequency  It
turns out that the field on the interior surface of the
cylinder  approximately coincides with the field
on the exterior  and that the aforementioned
fields are described by the function  with the
graphical accuracy. The pattern of near field  at
the nonresonance frequency  is depicted in
Fig. 5 with a solid line. It is seen that the field is smaller
than the corresponding resonance value at kb4 by three
orders of magnitude. The near fields of the cylinder
with CPs (32) at the resonance frequency

 behave in a similar manner.

For the cylinders with CPs (30) and (32), the
dependences of the resonance oscillation fields at kb4

on radial coordinate r are depicted in Figs. 6 and 7,
respectively. These dependences correspond to differ�
ent values of the permittivity (  and

) and are fundamentally different. This
result is in agreement with the properties of the static
resonance fields described in Section 2 (even and odd
oscillations of a ring layer). Note that the positions of
characteristic points inside the layer that correspond
to field minima are rather accurately described by the

relationship  obtained in Section 2.

Let us show that, as azimuthal index  grows, the
resonance frequencies of a hollow cylinder approach
the resonance frequencies of a solid cylinder. Figure 8
depicts the AFCs of a solid cylinder and a hollow cyl�
inder ( ) with CPs (30). It is seen that, begin�
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ning with the number m = 6, the corresponding reso�
nance frequencies practically coincide.

As m grows, the resonance field on the interior
boundary  relatively decreases compared to its
value on the exterior boundary  This is illustrated
in Fig. 9, which shows the normalized distributions of
the absolute value of the field inside the layer at reso�

r a=

.r b=

nance frequencies kb5 and kb6. Even at frequency kb7,
the field amplitude on the boundary  practically
vanishes. Note that, at frequency kb4, quantities |U(a,
0)| and |U(b, 0)| are commensurable (see Fig. 6).

The influence of the heat loss on the properties of
the resonance at the frequency  is
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Fig. 5. Distribution of the absolute value of the field on the
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  and α = 0.25: curve 1 is obtained at the
frequency  and curve 2 is obtained at the
frequency . The vertical scale is enlarged by a fac�
tor of 1000.

0.99,ε = − 2,µ = −

4kb = 0.581469;
0.82kb =

1.40 1.21.00.80.60.40.2

1 × 105

2 × 105

3 × 105

4 × 105

5 × 105

6 × 105

7 × 105

|U(r, π)|

kr

Fig. 6. Distribution of the absolute value of the field along
the radius of a hollow cylinder with the parameters

  and  at the resonance fre�
quency 

1.01,ε = − 0.91,µ = − 0 .2 5α =

4kb = 0.4448276.

0 1.00.80.60.40.2

2 × 104

kr

4 × 104

6 × 104

8 × 104

0.1 0.3 0.5 0.7 0.9 1.1 1.2

|U(r, π)|

Fig. 7. Distribution of the absolute value of the field along
the radius of a hollow cylinder with the parameters

  and  at the resonance fre�
quency 

0.99,ε = − 2.0,µ = − 0 .2 5α =

4 .kb = 0.581469

1.41.21.00.80.60.40.2
10–1

ka, kb
1.6 1.8

100

101

102

103

104

105

2 3 5

6
7

76
5

4

4

|U(b, 0)|, |U(a, 0)|

Fig. 8. Amplitude–frequency characteristics of metamate�
rial cylinders with the CPs  and 

dashed curve  corresponds to a hollow cylinder
( ) and solid curve  corresponds to a solid
cylinder. The numbers of resonances at both of the curves
correspond to azimuthal index m.

1.01ε = − 0.91 :µ = −

( , 0)U b

0 .2 5α = ( , 0)U a



932

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 58  No. 9  2013

ANYUTIN et al.

illustrated in Fig. 10. The parameter  is
applied to characterize the absorption properties of
the metamaterial. It is seen from the figure that, an
increase in the loss reduces the resonance Q factor,

curve 1 in this figure ( ) graphically coincides
with curve 1 from Fig. 2, which corresponds to the
absence of heat loss.

CONCLUSIONS

It has been shown that a hollow metamaterial cyl�
inder with CPs ε and μ close to minus unity exhibits
resonance properties in the low�frequency region. It
has been found that, depending on the sign of the
quantity  (for the case of the TM polarization),
resonance oscillations exhibit different behaviors
inside the ring region. In this region, even and odd
oscillations are formed. This result corresponds to the
in�phase and antiphase fields on the exterior and inte�
rior boundaries of the cylinder. Thus, the investigated

structure can be regarded as a high�Q ring resonator
operating on an extremely slow surface wave of a
cylindrical layer.
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