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INTRODUCTION

The problem of diffraction (scattering) of electro�
magnetic waves by compact metamaterial (i.e., artifi�
cial�medium) bodies is one of the most intensely dis�
cussed problems in the modern scientific literature.
Note that, at present, the term metamaterial is
employed in several meanings. Initially, the term
metamaterial was introduced in 2004 [1] for a medium
whose permittivity ε and permeability μ are simulta�
neously negative, ε < 0, μ < 0. As is known, in earlier
study [2], such a medium was called a medium with
negative refraction. Later, in the studies devoted to cre�
ation of a medium with a negative permittivity (ε < 0)
and a negative permeability (μ < 0), the term metama�
terial was also used.

The problem of field focusing by a plane layer of a
medium with the permittivity and permeability that
are simultaneously negative is regarded as a special
one. Veselago showed [2] that a plane layer of a
medium with ε = –1, μ = –1 provides for ideal
(in terms of geometric optics (GO)) focusing of trans�
mitted and refracted GO rays. In the case of ideal
focusing, all of the transmitted (refracted) GO rays
merge at a single point. In other words, a plane layer of
such a medium transforms the divergent front of the
incident cylindrical wave into the convergent front of
the transmitted wave. In the modern scientific litera�
ture, this plane layer is called an ideal Veselago lens. In
Pendry’s study [1], it is stated that the Veselago lens
provides for an ideal image that is identical to the
source and contains details with dimensions smaller
than the wavelength.

Note that, in most theoretical studies, the model of
an electrically thick plane layer of an infinite length is
considered. The field of a cylindrical (spherical) wave

transmitted through such a lens is analyzed on the
basis of the field representation in the form of an inte�
gral over plane (cylindrical) waves and the subsequent
asymptotic calculation of this integral by means of the
stationary phase method. As is known, this analysis
yields results equivalent to those obtained by means of
the GO method. In addition, the researchers use the
ray description of the field in the small�angle approxi�
mation, the GO approximation taking into account
the transmission of GO rays through the layer without
their rereflection by the layer boundaries, and the
thin�layer or Kirchhoff approximation. Actually, this
means that various versions of approximate (asymp�
totic) methods are used. The use of rigorous numerical
methods for the solution of problems of electromag�
netic wave diffraction by compact metamaterial bodies
was restricted to the case when a body’s dimensions
were commensurable with the wavelength [3–5].

The first results of numerical calculation of the
field structure in the focus region of a finite Veselago
lens were obtained in [7] on the basis of the solution of
the problem in the rigorous formulation, similar
results were obtained for an infinite plane Veselago
lens [6, 10, 12].

The discussed research area is topical, because,
until now, we see publications where it is erroneously
stated that the Veselago lens provides for ideal focus�
ing, i.e., for the field spatial localization in a volume
whose dimension is not limited by wavelength λ, and
the dimension of this volume is related with the source
size only.

1. AN INFINITE VESELAGO LENS

Consider the 2D problem of excitation of a
metamaterial plate with negative relative permittivity ε
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and permeability μ by a magnetic current filament
located at the point (0, y') (Fig. 1). Let us investigate
the case of the TM polarization, when 2D scalar field
U(x, y) has the meaning of the Hz component of the
electromagnetic field. Function U(x, y) must satisfy
the inhomogeneous Helmholtz equation

 (1)

where

(2)

Function U(x, y) must also satisfy the boundary
conditions at y = ±b

(3)

and the radiation conditions. The solution in the form
of the Fourier integral

(4)

to the problem formulated above is well known and
presented in many monographs and studies (see, e.g.,
[19–21]).
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For the layer parameters ε = μ = –1, representa�
tion (4) can effectively be applied for calculating the
field only in the case when the distance between the
source and the plate’s nearest boundary y = –b is
larger than the plate’s thickness (y' < –3b). When the
source is located at a smaller distance (–3b < y' < –b),
then, according to the GO concepts, two focuses are
formed in the field: one is located beyond the plate
(x = 0, y = y' + 4b) and the other is inside it (x = 0,
y = –y' – 2b) [2]. The focuses are situated symmetri�
cally with respect to the boundary y = b. In this case,
integral (4) diverges in the strip between two focal
planes |y – b| < y' + 3b. This means that, for these
parameters of the layer, the excitation problem has no
solution. For the problem to have a solution, it is nec�
essary to consider a layer with small deviations of
quantities ε and μ from minus unity or introduce a
medium loss. Note that, because of the slow conver�
gence of integral (4), this method is not efficient for
calculating the field.

The spectral method is more suitable for numerical
and analytical investigations. It is based on the field
decomposition in the eigenwaves of discrete and con�
tinuous spectra. Functions ψ(y, α) of the continuous
spectrum are solutions to the ordinary differential
equation

(5)

Function ψ(y, α) must be continuous along with its

weighted derivative  on the layer bound�

aries. In the calculation below, it is convenient to use
two functions ψ1(y, α) and ψ2(y, α) of the continuous
spectrum that have the following form beyond the
layer:

 (6)

Let W(α) denote the Wronskian of these functions:

 (7)

Functions ψ1(y, α) and ψ2(y, α), where parameter α
takes arbitrary real values, exhibit the following bior�
thogonality property:

(8)

where

(9)

In the considered problem, in addition to continuous
spectrum waves, there are an infinite number of dis�
crete spectrum waves. The transverse wave numbers of
these waves are found as the roots of the equation
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Fig. 1. Infinite Veselago lens.
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that are located in the lower half�plane, Imαm < 0.
We denote the transverse distributions of the eigen�
mode fields ψm(y). These functions are determined as
follows:

(11)

Norm Nm of discrete spectrum functions is coupled
with Wronskian W(α) through the formula

(12)

The upper and lower signs in (11) and (12) refer to
even and odd functions ψm(y), respectively.

The completeness and orthogonality of the eigen�
waves of the continuous and discrete spectra enables
us to obtain a solution to the diffraction problem in the
form

(13)

where U1(x, y) and U2(x, y) are the wave fields of the con�
tinuous and discrete spectra. When y > y', we have [2]

(14)

where h(α) =  Here, h > 0 when |α| < k and
Imh < 0 when |α| > k.

The contribution of the discrete spectrum waves is
determined from the formula [22]

 (15)

where hm =  and Imhm < 0 for complex waves.
For undamped eigenwaves, the sign of propagation

constant hm should coincide with the sign of norm Nm.
This excludes the power influx from infinity.

In contrast to Fourier integral (4), the spectral
decomposition explicitly contains the contribution of
surface waves, which play an important role in the field
formation near the plate. Therefore, the spectral rep�
resentation proves to be more suitable for investigating
the properties of a thin Veselago lens when parameters
ε and μ are close to minus unity. Note that the spectral
decomposition of the field can be obtained from Fou�
rier integral (4) with the help of a special deformation
of the integration contour in the complex plane of h
(see, e.g., [23]).

When the norm of a certain surface wave vanishes,

(16)

then, decomposition (15) has no meaning. It follows
from (12) that, in this case, quantity αm is a multiple
root of function W(α).

The undamped surface waves
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can propagate over the plate. These waves have real
propagation constant hm and imaginary wave numbers
αm. Functions ψm(y) corresponding to even and odd
waves are schematically shown in Fig. 2.

The total power transferred by a surface wave in the
positive direction of the x axis is proportional to the
quantity hmNm. When Nm > 0 (Nm < 0), the wave is for�
ward (backward). The direction of the phase velocity
of a forward wave coincides with the direction of the
total power transfer. For a backward wave, these direc�
tions are opposite.

Figure 3 shows curves characterizing the relation�
ships between the values of parameters ε and μ such
that forward and backward surface waves are doubly
degenerate [16]. The solid (dashed) curves correspond
to an even (odd) wave. Curves 1–3 correspond to the
values kb = 1, 1.25, and 2. Different points on the
curves are associated with different wave slowing fac�
tors. All of the cusp points of the curves corresponding
to the degenerate even wave lie on the vertical straight
line ε = –1.0363… At cusp points, a surface wave is tri�
ply degenerate [24]. When layer parameters ε, μ, and
kb belong to the corresponding curve, the problem of
layer excitation has no solution because of the reso�
nance of the forward and backward surface waves [22].

–b 0 b

ε ~~  –1

μ ~~  –1

–b 0 b

Fig. 2. Field distribution in even and odd surface waves.
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Evidently, the introduction of a small heat loss
removes this problem.

All of the curves from Fig. 3 end at the point (–1, –1).
When this point is approached, the wave slowing fac�
tor infinitely grows (h/k → ∞) and the fields localize
near the layer boundaries. The intersection of all of the
curves at the point (–1, –1) means that the calculation
of the field near this point is an ill�posed problem. As
ε → –1 and μ → –1, the field amplitude near the layer
boundary infinitely grows and the spatial structure of
the field substantially depends on the way in which
constitutive parameters ε and μ approach the singular
point ε = –1, μ = –1. 

In studies [6, 15, 16, 22], the focusing properties of
plates are investigated for the case when the constitu�
tive parameters ε and μ approach the singular point so
that their values belong to the curve εμ = 1. The devi�
ation of the constitutive parameters from the singular
point is characterized by real quantity σ:

(18)

In this case, the functions of the continuous and dis�
crete spectra have a simple form, and expressions (14)
and (15) can be studied analytically. Thus, the wave
numbers and norms of the discrete spectrum functions
are expressed by the formulas

(19)
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The index m = 0 is associated with a single undamped
wave. When σ > 0, this wave is a forward (N0 > 0) one
with the odd distribution of the field

(21)

When σ < 0, this wave is a backward (N0 < 0) one with
the even distribution of the field

(22)

Field (15) of the discrete spectrum waves exhibits
the following properties as σ → 0. The field
approaches zero when y' < –3b and infinitely grows in
the spatial regions adjacent to the layer boundaries
(|y + b| < y' + 3b, |y – b| < y' + 3b) when –3b < y' < –b.

In studies [5, 15, 16, 24], the field distributions in
the focal plane (y = y' + 4b) and on the lens axis (x =
0) are investigated for the case when σ → 0. It is shown
that the superresolution effect, i.e., the situation when
the dimension of the spot in the focal plane of the lens
is substantially smaller than the wavelength, occurs
under the condition

(23)

When this condition is fulfilled, the reactive com�
ponent of the field dominates over its dynamic compo�
nent in the focal plane. Note that the reactive compo�
nent is the response of the layer to the point excitation
source field component that is described by the inte�
gral over plane waves exponentially decaying in the
direction of the y axis. The dynamic component is the
response to the superposition of propagating plane
waves. As ε → –1 and μ → –1, this field component
remains constant and is described by the Bessel func�
tion in the focal planes

(24)

Taking into account that logarithm is a slow func�
tion of its argument, we can see that even a slight
increase in the layer’s thickness 2kb necessitates sub�
stantial decrease of σ. For example, when the consti�
tutive parameters differ from minus unity by values of
about 10–4, the superresolution effect is possible only
when the thickness is substantially smaller than the
wavelength. Since the source and the focal point are
situated in this case near the plate at distances smaller
that its thickness, the field can be calculated in the
quasi�static approximation [15]. In this situation, the
field transmitted through the plate monotonically
decreases along the lens axis (x = 0), and the field
intensity on the plate’s boundary exceeds the field
intensity at the focus. Therefore, in the case under
consideration, there is no focusing in its standard
meaning (i.e., focusing understood as the situation
when a local maximum of the field intensity is
observed at the focal point).
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Fig. 3. Constitutive parameters leading to the double
degeneration of surface waves.
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Figure 4 illustrates the variation of the field inten�
sity along the lens axis for σ = –10–4 and y' = –2b.
Coordinate y changes from the layer boundary y = b to
the point y = 3b, which is located symmetrically with
respect to the focus. Figure 5 shows field distributions
|U |2 normalized to the unit maximum in various sec�
tions y = const. It is seen from this figure that, in the
sections y = b and y = 1.5b, located in front of the focal
plane, the fields exhibit an oscillating character with
high levels of sidelobes (curves 1 and 2). In the focal
plane (y = 2b) and behind it (y = 2.5b), the sidelobe
level is substantially reduced (curves 3 and 4). The spot
dimension in the focal plane determined from the dis�
tance between the neighboring minima of function |U |2

equals

(25)

In the case of the TM polarization, for the superreso�
lution effect to be realized, it is more important that
parameter ε is close to minus unity, because just this
parameter, in contrast to parameter μ, enters the
boundary condition for field U [6, 15].

All of the above relationships refer to the case of the
TM polarization of the incident field. Obviously, upon
the replacement ε → μ and μ → ε (according to the
duality principle), these relationships will be valid for
the TE polarization of the incident field.

Recall that formula (25) is obtained under the
assumption that condition (23) is fulfilled. Taking into
account this condition, we have D  λ. The absence of
wavelength λ in formula (25) confirms the static char�
acter of the field in the neighborhood of the focal
point.
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4 .
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Note that formulas (23) and (25) remain meaning�
ful when there is a heat loss in the medium (for exam�
ple, ε = –1 – iε'' and μ = –1). In this case, we should
set σ = ε''/2 in (23) and (25) [12, 21, 23].

In studies [10, 11], the 3D problem of excitation of
an infinite metamaterial layer by an electric dipole was
considered. The dipole was oriented in parallel to the
layer. For the field, representations in the form of Fou�
rier–Bessel integrals were obtained. These represen�
tations were analyzed numerically. Since, in [10, 11],
the layer thickness 2kb and ε'' did not satisfy condi�
tion (23), the superresolution effect was not found.
The field at the focus of a thick layer satisfied the Ray�
leigh criterion.

2. A FINITE VESELAGO LENS

A more realistic model of the Veselago lens is a layer
of finite dimensions. In this case, the solution of the
diffraction problem necessitates numerical methods.
The fields in the Veselago lens are numerically deter�
mined with the use of the volume integral equation
method [26] and the modified discrete source method
(MDSM) [5, 7–9, 13, 14].

2.1. The Calculation Method

The most efficient tool for calculating the fields in
the Veselago lens is the MDSM. Let the cylindrical
wave
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interact with a plate of finite dimensions whose con�
tour ρS(ϕ) in polar coordinates is described by the
equation

(27)

Equating parameter p in (27) to various values, we can
change the form of contour ρS(ϕ) from a circle (when
p = 2 and a = b) to a rectangle (when p  1, e.g., at
p = 20 and a ≠ b). The geometry of the problem for p =
20 is displayed in Fig. 6.

Expressions (26) and (27) contain the following
quantities: {r, ϕ} are the coordinates of the observation
point in cylindrical coordinates, {R0, ϕ0} are the coor�
dinates of wave source Q (a magnetic� or electric�cur�

rent filament) in cylindrical coordinates, and  is
the zero�order Hankel function of the second kind.

Total field U(r, ϕ) beyond the scatterer can be repre�
sented as the superposition of incident wave field (26)
and scattered field U1(r, ϕ)

(28)

The field inside the metamaterial is denoted U2(r, ϕ).
Fields U(r, ϕ) and U2(r, ϕ) must satisfy the corre�

sponding Helmholtz equations beyond and inside the
plate with contour (27) and the corresponding bound�
ary conditions on contour ρS(ϕ) of the plate; i.e., these
fields must solve the boundary value problem. We
apply the MDSM [27, 28], which allows solving the
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boundary value problem with a controlled accuracy. In
this method, fields U1(r, ϕ) and U2(r, ϕ) are repre�
sented in the form of the superposition of the fields of
auxiliary cylindrical sources located on auxiliary con�
tours ρΣ1(ϕ) and ρΣ2(ϕ). Inside and beyond the corre�
sponding contours, this representation automatically
satisfies the Helmholtz equations and the Sommerfeld
condition.

In the MDSM, the amplitude coefficients for the
auxiliary cylindrical sources are found from a solution
to the system of linear algebraic equations that follow
from the boundary conditions fulfilled at N points of
contour ρS(ϕ).

The accuracy of a solution to the problem is con�
trolled through calculating the discrepancy of the
boundary conditions at the centers of the intervals
between the points where the boundary conditions are
fulfilled exactly. At these points, the boundary condi�
tions are fulfilled with the worst accuracy [28].

Since the MDSM and its application to a series of
problems with a similar configuration of the contour
of a scatterer are described in detail in [27, 28], we do
not discuss here this method and the technique of its
application. However, we note that the results of com�
putation presented below have the maximum discrep�
ancy of the boundary conditions that does not exceed
the value Δ < 10–3 for any point of the corresponding
contours.
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Fig. 6. Finite Veselago lens; f is the focus point and Q is the cylindrical wave source.
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2.2. The Focusing Properties of a Thick Veselago Lens 
of Finite Dimensions

As compared to a layer of an infinite length (see
Fig. 1), in a layer of finite dimensions (see Fig. 6), we
observe field rereflections by the narrow butt�ends of
the lens, a circumstance that complicates the field
structure. Obviously, when length 2a of the lens
exceeds its thickness 2b, the electrodynamic proper�
ties of this lens are close to the properties of an infi�
nitely long layer.

As in the case of an infinite layer, the results of com�
putation substantially depend on the relationship
between the thickness of the layer 2kb and the closeness
of parameters ε and μ to the singular point (–1, –1)
(see (23)). The presence of a heat loss (ε'' ≠ 0) deter�
mines the theoretical limit of the possible approach to
this point. If we restrict the consideration to the value
of reachable loss ε'' = 10–4, relationship (23) will be
invalid even for the layer thickness exceeding the
wavelength. We refer to these lenses as thick ones.

Note that, when the condition ε = μ = –1 is ful�
filled, the problem has no numerical solution,
because, the determinant of the system of linear alge�
braic equations is zero, which matches the results
obtained above for an infinite layer.

Let us present typical field distributions in thick
lenses for the case of the TE polarization of the inci�
dent cylindrical wave. Figure 7 illustrates the general
pattern of the focusing effect. In this figure, the spatial
field distribution is shown for the case when ε = μ =
⎯1.0001, ka = 45, kb = 15, kR0 = 25 and ϕ0 = –π/2.

The distribution of the field amplitude along the
lens axis is depicted in Fig. 8 for various positions kR0
of the source. It is seen that the coordinates of the
exterior focal point strictly correspond to the GO con�
cepts: ky = 4kb – kR0.

Figure 9 shows the transverse field distribution in
various sections ky = const for a lens with the param�
eters ε = μ = –1.0001, ka = 45, kb = 20, kR0 = 30, and
ϕ0 = –π/2. It is seen from the figure that the field dis�
tribution on the back face of the lens (ky = 20) is char�
acterized by the presence of nonuniformly scaled
intricate oscillations, which cannot be explained
within the framework of GO. The distribution poorly
resembles a uniform one, which is assumed in the cal�
culation of the field in the focal region within the
Kirchhoff approximation. Note in addition that the
maximum field amplitude of such oscillations can
exceed the field amplitude at the focus point (curve 3).

We should emphasize that the transverse distribu�
tion of the field amplitude in the foal plain has a spe�
cific multilobe form and that distance D between the
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Fig. 7. Spatial distribution of the field amplitude for ε = μ = –1.0001, ka = 45; kb = 15; kR0 = 25, and ϕ0 = –π/2.
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neighboring minima bounding the main lobe exceeds
λ/2. This proves the fact that the limit of the Rayleigh
resolution cannot be exceeded in a thick Veselago lens.

Finally, Fig. 10 illustrates the calculated depen�
dence of resolution D of the lens on its length 2ka. It
follows from the figure that, as the length grows, the
resolution of the lens remains finite and satisfies the
Rayleigh criterion.

Thus, the field behavior in the neighborhood of the
focal point of a thick Veselago lens is the same as that
for a standard lens, and the superresolution effect dis�
cussed in many publications is a myth.

2.3. The Electrodynamic Properties 
of a Thin Veselago Lens of Finite Dimensions

Let us present the results of computation of the
problem of excitation of a plate with the electric
dimensions

(29)
(30)

We assume that the real parts of the relative permittiv�
ity and permeability of the metamaterial are

(31)
(32)

and the imaginary parts of the permittivity and perme�
ability of the metamaterial (the loss in the metamate�
rial medium) are ε'' = 10–6 and μ'' = 10–6. We consider
the case of the TM polarization of the incident cylin�
drical wave whose source Q has the coordinates kR0 =
kb + 1 and ϕ0 = –π/2. Note that quantity σ character�
izing the difference of ε' from minus unity is σ =
6 × 10–5. Thus, condition (23) is fulfilled and the lens
can be regarded as a thin one. In addition, quantities
ε', μ', and kb are chosen such that they provide for the
degeneration of the even surface wave in an infi�
nitely long layer (curve 1 from Fig. 3). This combi�
nation of parameters leads to resonance effects in
the near field [25].

Figure 11 shows the calculated spatial distribution
of the equal�amplitude lines for the total field. It follows
from the figure that the field localizes near the upper
(⎯a ≤ x ≤ a, y = b) and lower (–a ≤ x ≤ a, y = –b) faces
of the plate. The spatial field distributions on the lower
and upper faces of the plate have similar structures.

The structure of the near field is characterized by
the presence of periodic oscillations, i.e., standing sur�
face waves, whose maximum amplitudes monotoni�
cally decreases toward the narrow butt�ends of the

10;ka =

1.00445.kb =

1.000126,ε = −'
0.990273,µ = −'
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18012010080604020 140 160

kD

2ka

Fig. 10. Resolution of the lens vs. its length for ε = μ =
⎯1.0001 – i × 0.0001; 2kb = 30; kR0 = 25, and ϕ0 = –π/2.
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Fig. 11. Spatial distribution of equal�amplitude lines for the total field amplitude.
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plate. This is clearly seen from Fig. 12, which displays
the distribution of |U | over the upper face of the plate.

Figure 13 shows the frequency dependence of the
absolute value of total field amplitude U = |U(kb)| at
the point kx = 0; ky = kb, i.e., at the center of the
upper wide face of the plate, where the field has the
maximum amplitude. Note that the distance from
the lower wide face of the plate to cylindrical wave
source Q is constant and equal to kR0 = kb + 1. Fre�
quency dependence |U(kb)| from Fig. 13 has a reso�
nance character, and the Q factor of the resonance is
estimated by a quantity of about several thousand.

Figure 14 shows the field distribution in the focal
plane (ky = 2kb) under the resonance conditions. The
field amplitude takes its maximum value at the point
that formally coincides with the focus point. The field
amplitude at this point is smaller than the field inten�
sity on the upper face of the plate by two orders of
magnitude, and the field structure in the vicinity of the
focus point fundamentally differs from the field struc�
ture at the analogous point for a thick lens (curve 3
from Fig. 9).

Figures 15 and 16 display the spatial field distribu�
tions on the upper face of the plate (–a ≤ x ≤ a, y = b)
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Fig. 12. Distribution of the total field amplitude over the
upper face of the plate under the resonance conditions.
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Fig. 13. Maximum total field amplitude at the center of the
upper wide face of the plate vs. frequency.

25

20

15

10

5

0
1062–2–6–8–10 840–4

|U(kx, ky = 2kb)|

kx

Fig. 14. Distribution of the total field amplitude in the
focal plane under the resonance conditions.
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upper face of the plate at a small distance from the reso�
nance point.
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and in the focal plane (–a ≤ x ≤ a, y = 2b), respectively,
when the value ky = kb = 1 differs from the resonance
value ky = kb = 1.00445.

The comparison of the plots from Figs. 12 and 15
shows that the spatial field distribution on the upper
face of the plate (–a ≤ x ≤ a, y = b) at a nonresonance
point is similar to that in the case of the resonance
point but has a substantially smaller amplitude.

For the focal plane, the character of the field distri�
bution fundamentally differs from that observed in the
case of the resonance point. This circumstance is
manifested not only in the decrease of the field ampli�
tude but also in the character of the field variation near
the focus point kx ≈ 0. Note that the character of the
field variation near the focus point kx ≈ 0 (see Fig. 16)
substantially differs from the field behavior in the
focus region for an electrically thick Veselago lens.
Thus, the width of the main lobe is kD ≈ 0.8, which
indicates the presence of the superresolution effect
that has the diffraction nature.

CONCLUSIONS

The results of rigorous calculation of the fields in
the problem of diffraction of a cylindrical wave by a
metamaterial layer (of a finite or an infinite dimen�
sion) have been analyzed for the case when the dis�
tance between the source and the boundary of the layer
is smaller than its thickness and the values of electro�
dynamic parameters ε and μ are close to unity.
According to the GO concepts, the field in this case
should have two focuses: one focus in the interior and
the other in the exterior of the layer. It has been shown
that the spatial structures of the fields in thick and thin
Veselago lenses (in which the layer thickness is sub�

stantially larger and smaller, respectively, than the
wavelength) are significantly different. The field
behavior in the neighborhood of the exterior focus of a
thick lens coincides with that exhibited by standard
lenses. The dimension of the spot in the focal plane
cannot be smaller than λ/2. There is no superfocusing
that consists in the violation of the Rayleigh criterion.

In thin Veselago lenses, the field is rather sensitive
to the values of the layer parameters. In particular,
high�Q resonances are observed. These resonances are
characterized by an abrupt increase of the reactive
field component, which cannot be described in terms
of GO. Surface wave play a substantial role in the for�
mation of the reactive field. The focusing effect that
consists in the spatial field localization near the focal
point does not occur. However, for a certain combina�
tion of parameters, the effect of diffraction superreso�
lution can be observed. In this effect, the dimension of
the diffraction spot in the focal plane is substantially
smaller than λ/2.

Thus, with the help of a Veselago lens, it is impos�
sible to transmit details of an image that are substan�
tially smaller that the wavelength at a distance exceed�
ing the wavelength.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda�
tion for Basic Research, project nos. 10�02�00053�a,
10�02�01103, and 12�02�00062�a.

REFERENCES

1. J. B. Pendry, Science 305 (5685), 788 (2004).
2. V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967).
3. V. Veselago, L. Braginsky, V. Shklover, and C. J. Hafner,

Comput. Theor. Nanoscie. 2, 1 (2006).
4. A. V. Dorofeenko, A. A. Lisyansky, A. M. Merzlikin,

and A. P. Vinogradov, Phys. Rev. 73, 235126 (2006).
5. A. P. Anyutin, J. Radioelectron., No. 6 (2007)

(http://ire/cplire.ru).
6. A. D. Shatrov, J. Commun. Technol. Electron. 52, 1324

(2007).
7. A. P. Anyutin, J. Commun. Technol. Electron. 53, 387

(2008).
8. A. P. Anyutin, J. Commun. Technol. Electron. 53, 1323

(2008).
9. A. P. Anuytin, in Metamaterials�2008 (Proc. 2nd Cong.

on Advanced Electromagnetic Materials in Microwaves
and Optics, Pamplona, Spain, Sept. 21–26, 2008)
(METAMORPHOSE, VI, AISBL, 2008), p. 21.

10. A. B. Petrin, JETP 107, 364 (2008).
11. A. B. Petrin, JETP Lett. 87, 464 (2008).
12. S. E. Bankov, J. Commun. Technol. Electron. 54, 123

(2009).
13. A. P. Anyutin, Radiotekh. Elektron. (Moscow) 54, 982

(2009).
14. A. P. Anyutin, in Proc. Progress in Electromagnetic

Research Symp. (PIERS), Moscow, Aug. 18–21, 2009

3.0

2.5

2.0

1.5

0.5

0
1062–2–6–8–10 840–4

|U(kx, ky = 2kb)|

kx

1.0

Fig. 16. Distribution of the total field amplitude in the
focal plane at a small distance from the resonance point. 



428

JOURNAL OF CJOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 58  No. 5  2013

ANYUTIN, SHATROV

(Electromagn. Academy, Cambridge, MA, 2009),
p. 1036.

15. V. P. Mal’tsev and A. D. Shatrov, J. Commun. Technol.
Electron. 55, 278 (2010).

16. V. P. Mal’tsev and A. D. Shatrov, Fiz. Voln. Protsessov
Radiotekh. Sist. 14 (3), 38 (2011).

17. A. S. Kryukovskii and D. S. Lukin, Edge and Angular
Catastrophes in the Uniform Geometric Theory of Diffrac�
tion (MFTI, Moscow, 1999) [in Russian].

18. A. S. Kryukovskii, D. S. Lukin, E. A. Palkin, and
D. V. Rastyagaev, J. Commun. Technol. Electron. 51,
1087 (2006).

19. G. T. Markov and A. F. Chaplin, Excitation of Electro�
magnetic Waves (Radio i Svyaz’, Moscow, 1983)
[in Russian].

20. A. N. Logarkov and V. N. Kissel, Phys. Rev. Lett. 92,
077401 (2004).

21. A. D. Yaghjian and T. B. Hansen, Phys. Rev. E 72,
046608 (2006).

22. A. D. Shatrov, J. Commun. Technol. Electron. 52, 842
(2007).

23. S. E. Bankov, Electromagnetic Crystals (Fizmatlit, Mos�
cow, 2010) [in Russian].

24. V. P. Mal’tsev and A. D. Shatrov, J. Commun. Technol.
Electron. 57, 170 (2012).

25. A. P. Anyutin and A. D. Shatrov, J. Commun. Technol.
Electron. 57, 1024 (2012).

26. A. N. Lagarkov and V. N. Kisel’, Dokl. Phys. 49,
5 (2004).

27. A. P. Anioutine, A. G. Kyurkchan, and S. A. Minaev,
J. Quant. Spectrosc. Radiat. Transfer 79–80, 509
(2003).

28. A. G. Kyurkchan, S. A. Minaev, and A. L. Soloveichik,
J. Commun. Technol. Electron. 46, 615 (2001).

Translated by I. Efimova


