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INTRODUCTION

At present, investigation of problems of diffraction
of electromagnetic waves by dielectric bodies with a
permittivity and a permeability that are simulta�
neously negative, εr and μr, is of substantial interest.
The aforementioned constitutive parameters charac�
terize a medium that is conventionally called a
metamaterial. In particular, the problem of scattering
of a plane wave or a cylindrical wave by a metamaterial
shell of a finite thickness is interesting from both the
practical and theoretical viewpoints, because its solu�
tion can contribute to the solution of the problem of
masking (or providing for the invisibility effect, i.e.,
creating an invisibility cloak).

Note that the first theoretical study devoted to
investigation of the interaction of plane and cylindri�
cal waves with a plate made from such a medium was
published in 1967 [1] and the first study reporting an
experimentally created medium with a negative
refractive index was published in 2000 [2]. In [2], such
a medium was cal1ed a metamaterial and the effects
predicted by Veselago in [1] were experimentally veri�
fied. Note that, in the modern scientific literature, the
term metamaterial is used for any artificial media
(although examples of such media—metal�dielectric
materials—have been known since the middle of the
twentieth century [3]).

By the present time, numerous studies devoted to
theoretical and experimental investigations of various
aspects of the problem of interaction of electromag�
netic (or acoustic) waves with metamaterials have
been published (see [4–12] and the references cited
therein), and their number permanently increases. As

a rule, theoretical studies are based on the application
of various asymptotic methods, such as the geometric
optics (GO) method and its various modifications or
the Kirchhoff approximation [13]. The number of
studies presenting rigorous numerical solutions to the
corresponding problems is comparatively small (see
[4] and the references cited therein).

It this study, we present a rigorous numerical solu�
tion to the 2D problem of scattering of a plane wave
and a cylindrical wave by a cylindrical metamaterial
shell whose maximal dimension substantially exceeds
the wavelength. In contrast to study [5], we report
results of rigorous calculation of the field distribution
inside the scatterer and in its neighborhood (i.e., the
structure of the near field).

1. FORMULATION OF THE PROBLEM 
AND DISCUSSION OF RESULTS

Consider the 2D problem of scattering of cylindri�
cal wave U0(r, ϕ),

(1)

by a cylindrical shell (Fig. 1) with contours ρ1, 2(ϕ)
described by the equations

(2)

In addition, it is assumed that the shell’s medium in
the region a2 ≤ r ≤ a1 has relative permittivity εr < 0
and relative permeability μr < 0, i.e., is a metamaterial

with the negative refractive index n1 =  – iν,
where quantity ν characterizes the medium loss, and
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k is the wave number in free space. In the interior
(r < a2) and exterior (r > a1) of the shell, we have free
space (vacuum) with the relative permittivity ε0 = 1
and the relative permeability μ0 = 1.

Expressions (1) and (2) contain the following
quantities: cylindrical spatial coordinates {r, ϕ} of the
observation point, cylindrical spatial coordinates {R0,
ϕ0} of the point of wave source Q, zero�order Hankel

function of the second kind , and parameters a1
and a2 characterizing the radii of the shell (the radii of
the rings).

Total field U(r, ϕ) beyond the shell can be repre�
sented as the superposition of incident wave field (1)
and scattered field U1(r, ϕ)

 (3)

We denote the fields in the metamaterial and inside the
shell U2(r, ϕ) and U3(r, ϕ), respectively.

As is known, fields U(r, ϕ), U2(r, ϕ) and U3(r, ϕ)
satisfy the corresponding Helmholtz equations in the
exterior and interior of the shell and the corresponding
boundary conditions on contours ρ1(ϕ) and ρ2(ϕ) of
the shell. To solve numerically this boundary value
problem, we apply the modified method of discrete
sources (MMDS) [13–14], which enables us to obtain
a solution with a controlled accuracy. In this method,
fields U1(r, ϕ), U2(r, ϕ), and U3(r, ϕ) are represented
as a superposition of the fields produced by auxiliary
cylindrical wave sources located on auxiliary contours
ρΣ11(ϕ), ρΣ12(ϕ), ρΣ21(ϕ), and ρΣ22(ϕ) inside and
beyond contours ρ1(ϕ) and ρ2(ϕ). This representation
automatically satisfies the Helmholtz equations and
the Sommerfeld condition.
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In the MMDS, the amplitude coefficients for the
fields of auxiliary cylindrical wave sources are found
from the boundary conditions fulfilled at N points of
each of contours ρ1(ϕ) and ρ2(ϕ).

The accuracy of the solution to the problem is con�
trolled through calculating the discrepancy of the
boundary conditions at the centers of the intervals
between the points where the boundary conditions are
fulfilled exactly. At the aforementioned centers of
intervals, the boundary conditions are satisfied with
the worst accuracy [15]. The MMDS and the tech�
nique of its application to a number of problems with
a similar configuration of a scatterer’s contour are
described in detail in [14, 15]. Therefore, we will not
discuss the peculiarities of the MMDS application in
the case under consideration and only note that the
scattering patterns presented below are calculated with
the maximum discrepancy of the boundary conditions
that does not exceed the quantity Δ < 10–3 for any
point of the corresponding contours.

First, let us consider the problem of diffraction of a
plane wave (i.e., the case when the coordinates of the
cylindrical wave source are assumed to be kR0 = 700
and ϕ0 = π) by a cylindrical shell with the electric radii
ρ1 = ka1 = 10π and ρ2 = ka2 = 8π. Thus, the thickness
kd = ka1 – ka2 of the shell is assumed to be kd = 2π,
i.e., equal to the wavelength. Physically, this means
that we deal with the case of the diffraction of a plane
wave by a relatively thin shell whose overall dimension
is kD = 2ka1  1. Let the medium of such a shell be a
metamaterial characterized by the relative permittivity
εr = –1.0001, the relative permeability μr = –1.0001,
and the loss ν = –0.0001.

Figure 2 shows the calculated spatial distribution of
the total field and the equal�amplitude lines for the
total field. It is seen from the results presented in this
figure that the field practically is not scattered in the
direction opposite to the direction of the incident
plane wave propagation. In the interior of the shell,
where kr ≤ ka2, the field is nonzero and localizes near
the shell’s back inner section. The field amplitude
increases on the lateral segments of the outer (ρ1) and
inner (ρ2) boundaries of the shell’s contours (on the
illuminated sections of the shell), and the shadow
region behind the shell is illuminated. The interfer�
ence structure of the field exists in the region adjacent
to the inner shadow part of the shell.

The normalized scattering pattern for this case is
displayed in Fig. 3. It follows from the pattern that the
amplitude of the scattered field approaches zero in the
region of angles close to the value ϕ = π (i.e., in the
direction opposite to the direction of the incident
wave).

Consider the influence of the thickness of the shell
(ring) on the spatial distribution of the field amplitude.

�
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Fig. 1. Geometry of the problem. Dashed arrows denote
GO rays.
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Let the geometry of the ring be characterized by the
following values of parameters: ρ1 = ka1 = 40 and
ρ2 = ka2 = 20 (kd = ka1 – ka2 = 20  1). The cylindri�
cal wave source has the coordinates kR0 = 800 and
ϕ0 = –π/2. The parameters of the metamaterial
medium are the same as those indicated above. This
means that we deal with the problem of diffraction of
a plane wave by an electrically thick shell.

Figure 4 illustrates the spatial distribution of the
field amplitude calculated for this case. It follows from

�

this figure that the character of the spatial distribution
of the field amplitude substantially differs from that
observed in the case of an electrically thin ring consid�
ered above. Thus, in this case, we observe pronounced
interference of the incident field and the field reflected
by the ring, a circumstance that is not observed in the
case of a thin ring. In addition, in the case of an elec�

(a)

(b)

Fig. 2. Spatial distributions of the (a) total field amplitude
and (b) equal�amplitude lines for the total field obtained
for a plane wave incident on an electrically thin shell with
εr = –1.0001 and μr = –1.0001.
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Fig. 3. Normalized scattering pattern obtained for a plane
wave incident on an electrically thin shell with εr = –1.0001
and μr = –1.0001. The numbers on the curves are the
amplitude values.

Fig. 4. Spatial distribution of the total field amplitude
obtained for a plane wave incident on an electrically thick
ring with εr = –1.0001 and μr = –1.0001.
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trically thick ring, a symmetric caustic with one cusp is
formed in the metamaterial�filled volume of the ring
(ka2 ≤ kr ≤ ka1) [16] and a local focusing region is
formed near boundary ρ2. The field in the inner region
of the ring (where kr < ka2) has a more intricate inter�
ference structure. Since the conditions for the GO
applicability are fulfilled (kD  1, kd  1) for the elec�
trically thick ring, we can attribute the field structure

� �

in the shell to focusing of GO rays refracted by the
ring’s outer boundary ρ1 [16] and the existence of the
field in the inner part to the refraction of GO rays by
the ring’s inner boundary ρ2.

The normalized scattering pattern for this case is
displayed in Fig. 5. We see that it qualitatively differs
from the normalized scattering pattern for an electri�
cally thin ring (see Fig. 3), because the field is scat�
tered in the entire angle range 0 < ϕ < 2π (including the
value ϕ = –π/2, which corresponds to the opposite
direction).

Now, let us consider the influence of the curvature
of the incident wave front. To this end, we place a
cylindrical wave source near an electrically thick ring;
i.e., we assume that the cylindrical wave source has the
coordinates kR0 = 80 and ϕ0 = –π. The remaining
parameters of the problem are the same as those indi�
cated above. The structure of the spatial distribution of
the total field amplitude in the exterior and interior of
the ring is displayed in Fig. 6. The comparison of
Figs. 6 and 4 shows that the peculiarities of the spatial
distribution of the near field that are related with the
formation of caustics and field focusing on the caustics
are retained. The caustic in the inner region of the ring
(kr < ka2) is more pronounced than in the case of a
plane wave.

The normalized scattering pattern for this situation
is displayed in Fig. 7. As is seen, it also substantially
differs from the normalized scattering pattern for the
case when a plane wave is incident on the ring (see
Fig. 5).

It follows from the above results that, in the case of
an electrically large ring (kD  1) whose medium is a
metamaterial with the parameters εr = –1.0001 and

�
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Fig. 5. Normalized scattering pattern obtained for a plane
wave incident on an electrically thick ring with εr = –1.0001
and μr = –1.0001. The numbers on the curves are the
amplitude values.

Fig. 6. Spatial distribution of the total field amplitude obtained for a cylindrical wave incident on an electrically thick ring with
εr = –1.0001 and μr = –1.0001.
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μr = –1.0001, perfect field focusing (focusing into a
single point) is observed for neither a plane incident
wave nor a cylindrical incident wave. In the case of an
electrically thick shell (kd  1), the focusing process is
accompanied by formation of a caustic with one cusp.
In addition, we note that the field is scattered in all
directions (though, in this case, the local reflection
coefficient of the vacuum/metamaterial interface is
zero in the GO approximation) and that the near field
always has an interference structure.

Now, consider the case when the refractive index of
the ring’s metamaterial differs from unity and the
ring’s thickness is kd = 2π. Let the geometry of the
problem and the metamaterial medium be character�
ized by the following parameters: εr = –0.5, μr = –0.5,
ka1 = 10π; ka2 = 8π, kR0 = 700, and ϕ0 = π. The spa�
tial pattern of the distribution of the total field ampli�
tude and the pattern of equal�amplitude lines for the
total field are displayed in Figs. 8a and 8b, respectively.
It is seen from the results presented in Fig. 8 that the
field structure intrinsic to the field of a whispering�gal�
lery wave is formed in the inner region of the ring (kr ≤
ka2) near the inner boundary ρ2 = ka2. Surface waves
exist on the boundary ρ2 = ka2. In addition, in the illu�
minated region of the ring (ka2 ≤ kr ≤ ka1), the
refracted field is focused on a caustic that has one cusp
and branches located near the ring’s boundary ρ2 =
ka2. Note that, in this case (|n1| < 1), the focusing
region (which is caustic branches) is located nearer to

�

the boundary ρ2 = ka2 than in the case |n1| = 1.0001. In
the remaining part of this region ka2 ≤ kr ≤ ka1, the
field approaches zero.

From the standpoint of GO, this structure of the
near field can be interpreted as follows. Some of the
GO rays refracted by the outer boundary ρ1 = ka1 of
the ring are, at first, focused in the interior region
ka2 ≤ kr ≤ ka1 of the ring (i.e., in the region located
near the angle ϕ ≈ π) and, then, are multiply refracted
and reflected by the inner boundary ρ2 = ka2. The GO
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Fig. 7. Normalized scattering pattern obtained for a cylin�
drical wave incident on an electrically thick ring with εr =
–1.0001 and μr = –1.0001. The numbers on the curves are
the amplitude values.

(a)

(b)

Fig. 8. Spatial distributions of the (a) total field amplitude
and (b) equal�amplitude lines for the total field obtained
for a plane wave incident on an electrically thin ring with
εr = –0.5 and μr = –0.5.
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rays refracted by this boundary and rereflected by the
inner boundary ρ2 = ka2 of the ring form a whispering�
gallery wave. The angle of the incidence of the remain�
ing GO rays on the outer contour ρ1 = ka1 exceeds the
angle of total reflection, a circumstance that causes
the substantial attenuation of the field penetrating into
the interior region ka2 ≤ kr ≤ ka1 of such a ring.

The normalized scattering pattern for this case is
displayed in Fig. 9. It follows from this figure that the
intensity of the backscattered field (observed in the
region of angles ϕ ≈ π) is close to zero.

In the case of an electrically thick ring (ka1 = 10π;
ka2 = 5π), the aforementioned phenomena—focus�
ing of GO rays in the region ka2 ≤ kr ≤ ka1 and surface
waves on the boundary ρ2 = ka2—are observed more
distinctly. This circumstance is indicated by the calcu�
lated spatial structure of the total field amplitude and
equal�amplitude lines of the total field that are dis�
played in Figs. 10a and 10b, respectively. Simulta�
neously, we can observe focusing of GO rays in the
interior (kr < ka2) of the ring.

Similar phenomena also occur for a cylindrical inci�
dent wave (Fig. 11) whose source is located at the spatial
point with the coordinates kR0 = 14π and ϕ0 = π. The
remaining parameters of the problem are retained.

Now, consider the case when the parameters of the
ring’s metamaterial are εr = –2.0 and μr = –2.0; the
outer and inner radii of the ring are ka1 = 40 and

ka2 = 30, respectively; and the source of the cylindri�
cal wave is located at the point with the coordinates
kR0 = 80 and ϕ0 = π. The spatial distribution of the
total field amplitude and equal�amplitude lines for the
total field are displayed in Fig. 12.
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Fig. 9. Normalized scattering pattern obtained for a plane
wave incident on an electrically thin ring with εr = –0.5
and μr = –0.5. The numbers on the curves are the ampli�
tude values.

(a)
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Fig. 10. Spatial distributions of the (a) total field amplitude
and (b) equal�amplitude lines for the total field obtained
for a plane wave incident on an electrically thick ring with
εr = –0.5 and μr = –0.5.
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In contrast to the case considered above, here, the
field for ka2 ≤ kr ≤ ka1 has the structure intrinsic to the
waveguide–interference mechanism of field propaga�
tion between two boundaries of the ring. Evidently,
this situation is related with field rereflections between

the shell’s boundaries. Whispering�gallery waves are
not formed in the interior region kr < ka2 of the ring.

For the case of an electrically thick ring when
ka1 = 40; ka2 = 20, and the remaining parameters of
the problem are retained, the spatial distribution of the

(a)

(b)

Fig. 11. Spatial distributions of the (a) total field amplitude and (b) equal�amplitude lines for the total field obtained for a cylin�
drical wave incident on an electrically thick ring with εr = –0.5 and μr = –0.5.
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total field amplitude and equal�amplitude lines for the
total field are displayed in Figs. 13a and 13b, respec�
tively. It is seen from the figure that the field inside the
ring has an intricate interference structure that indi�
cates the field focusing and interference effects in the
ring’s regions kr < ka2 and ka2 ≤ kr ≤ ka1.

The results presented above refer to the case when
the maximum critical dimension of the ring satisfies
the condition kD = ka1  1, i.e., the case of a quasi�
optic region. In the case when kD = ka1 ≈ 2π, i.e., in
the quasi�resonance region, the diffraction of electro�

�

magnetic waves by such a ring differs from the diffrac�
tion in the case when kD = ka1  1. This conclusion
can be drawn from the analysis of Fig. 14, which dis�
plays the spatial distribution of the total field ampli�
tude and equal�amplitude lines for the total field cal�
culated for the case when the dimensions of a thin ring
ka1 = 2π and ka2 = ka1 – 1.5 correspond to the quasi�
resonance region and the cylindrical wave source has
the coordinates kR0 = ka1 + 1 and ϕ0 = π. It follows
from the figure that, in the process of diffraction of the
cylindrical wave field by such a structure, surface waves

�

(a)

(b)

Fig. 12. Spatial distributions of the (a) total field amplitude
and (b) equal�amplitude lines for the total field obtained
for a cylindrical wave incident on an electrically thin ring
with εr = –2.0 and μr = –2.0.

(a)

(b)

Fig. 13. Spatial distributions of the (a) total field amplitude
and (b) equal�amplitude lines for the total field obtained
for a cylindrical wave incident on an electrically thick ring
with εr = –2.0 and μr = –2.0.
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are formed on the inner (r = a2) and outer (r = a1)
boundaries of the ring. The field in all of the remaining
regions is unnoticeable against the background of the
amplitude of surface waves.
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