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HIGH-Q QUASISTATIC RESONANCES EXCITED IN A METAMATERIAL
SPHERE BY A MERIDIONAL DIPOLE

A.P.Anyutin,1 D.B.Demin,2 I. P.Korshunov,1 ∗

A.G.Kyurkchan,1,2 and A.D. Shatrov1 UDC 538.566.2+621.372.8

We consider the rigorous problem of excitation of a metamaterial sphere by a meridionally di-
rected electric dipole. High Q-resonances in the low-frequency region are found and studied. The
existence conditions of these resonances are established. Frequency-amplitude characteristics of
the sphere and the vector scattering patterns at resonant frequencies are calculated. Approximate
analytical expressions for resonant frequencies are obtained. The effect of nonresonance field en-
hancement, which consists in that the scattered field exceeds the primary field in a wide frequency
range, is found.

1. INTRODUCTION

Recent years have demonstrated intense advance in electrodynamics of artificial media in which the
relative dielectric permittivity ε and the magnetic permeability μ are negative. The first theoretical studies
of radiophysical properties of such media were performed by V.G.Veselago [1], and they are often called
the Veselago name. Currently, such artificial media are conventionally called metamaterials.

Interaction of an electromagnetic field with metamaterial objects is accompanied by many unusual
effects, such as negative refraction, subwave localization, “reversion” of the Doppler and Vavilov–Čerenkov
effects, resonance scattering by small bodies, etc. The number of works studying these effects is rather great
and continues avalanching (see review works [3–6].

The authors of [7–10] considered two-dimensional problems of excitation of solid and hollow circular
metamaterial cylinders by a filamentary source. It was shown that high-Q resonances exist in cylinders with
small diameters. In the case of TM-polarization, they occur at the values of ε which are close to −1, and in
the case of TE-polarization, at the values of μ which are close to −1.

The purpose of this work is to study low-frequency resonances that occur when a sphere filled with
a metamaterial is excited by a meridional dipole.

2. FORMULATION OF THE PROBLEM

Consider the three-dimensional vector problem on excitation of a metamaterial sphere with the nega-
tive values of the relative dielectric permittivity ε and the magnetic permeability μ by an elementary electric
dipole. It is assumed that the time dependence of the electromagnetic fields is determined by the factor
exp(iωt). We use a spherical coordinate system (r, θ, ϕ). The spatial distribution of the relative material
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parameters of the medium is described by the functions

ε(r) =

{
ε, r < a;

1, r > a,
μ(r) =

{
μ, r < a;

1, r > a,
(1)

where a is the sphere radius.

The elementary dipole is located at the point (0, 0,

Fig. 1. Geometry of the problem.

r0) of the Cartesian coordinate system with the origin at
the center of the sphere (see Fig. 1). The dipole moment
is aligned with the x axis. In this case, the primary field
can be expressed in terms of the electric Hertz vectorΠ(e),
which will have the following components in the Cartesian
coordinate system:

Π(e)
x = A exp(−ikR)/R, Π(e)

y = Π(e)
z = 0, (2)

where

R =
√

r2 + r20 − 2rr0 cos θ, (3)

k = ω
√
ε0μ0, and ε0 and μ0 are the dielectric permittivity

and magnetic permeability of free space, respectively. The
term A in Eq. (2) is specified by the formula

A = p/(4πε0), (4)

where p is the dipole moment.

In the spherical coordinate system, the Hertz vector Π(e) has the components

Π(e)
r = A

sin(θ) cos(ϕ)

R
exp(−ikR), Π

(e)
θ = A

cos(θ) cos(ϕ)

R
exp(−ikR),

Π(e)
ϕ = −A

sin(ϕ)

R
exp(−ikR). (5)

The electric and magnetic fields are expressed in terms of the vector Π(e) by the well-known formulas

E = (grad div + k2)Π(e) = rot rotΠ(e), (6)

H =
ik

ζ0
rotΠ(e), (7)

where
ζ0 =

√
μ0/ε0. (8)

In particular, the radial components of the electromagnetic field excited by the source will be determined
by the formulas

E0
r = −A cos(ϕ)

{
1

r2
∂

∂θ

[
sin(θ)

∂

∂θ

exp(−ikR)

R

]
− 1

r
cos(θ)

∂2

∂r∂θ

exp(−ikR)

R

+
2

r
sin(θ)

∂

∂r

exp(−ikR)

R
+

1

r2
cos(θ)

∂

∂θ

exp(−ikR)

R

}
, (9)
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H0
r = −A

ik

ζ0
sin(ϕ)

[
1

r

∂

∂θ

exp(−ikR)

R

]
. (10)

These components will be needed for formulating the diffraction problem in terms of the Debye potentials.

The problem consists in finding the total field inside the sphere, the scattered field outside the sphere,
and the vector scattering pattern from the radial components of the primary field, which are specified by
Eqs. (9) and (10).

3. ANALYTICAL SOLUTION OF THE DIFFRACTION PROBLEM
BY THE METHOD OF SEPARATION OF VARIABLES

The classical method of solving the problems of diffraction by spherically symmetric bodies consists
in using of the Debye potentials (see, e.g., [11, 12]). The electric and magnetic Debye potentials are scalar
functions U (e)(r, θ, ϕ) and U (m)(r, θ, ϕ), respectively, which satisfy the Helmholtz equation

ΔU + k2ε(r)μ(r)U = 0 (11)

inside and outside the sphere and the following boundary conditions at r = a:

εU (e)
∣∣∣
r=a−0

= U (e)
∣∣∣
r=a+0

,
∂(rU (e))

∂r

∣∣∣
r=a−0

=
∂(rU (e))

∂r

∣∣∣
r=a+0

, (12)

μU (m)
∣∣∣
r=a−0

= U (m)
∣∣∣
r=a+0

,
∂(rU (m))

∂r

∣∣∣
r=a−0

=
∂(rU (m))

∂r

∣∣∣
r=a+0

. (13)

The components of the electromagnetic field are expressed in terms of the Debye potentials by means of
the formulas which contain partial derivatives with respect to r, θ, and ϕ [11, 12]. For example, the radial
components are determined as follows:

Er =

[
∂2

∂r2
+ k2ε(r)μ(r)

]
(rU (e)), (14)

Hr =

[
∂2

∂r2
+ k2ε(r)μ(r)

]
(rU (m)). (15)

If we use the particular solutions of the Helmholtz equation, which are obtained by the method of separation
of variables, as the potentials U (e) and U (m), we then find that in the r > a, region

Ulm(r, θ, ϕ) =

{
jl(kr)

h
(2)
l (kr)

}
Pm
l (cos θ) exp(imϕ). (16)

Here, jl and h
(2)
l are spherical Bessel and Hankel functions, respectively, and Pm

l are associated Legendre
polynomials. Potentials (16) give rise to spherical vector multipole modes of the electric and magnetic types.

The problem of diffraction of a single mode jl(kr)P
m
l (cos θ) exp(imϕ) by the sphere has a simple solu-

tion: in the region r > a, the scattered field is represented as the single spherical mode Rlh
(2)
l (kr)Pm

l (cos θ)×
exp(imϕ) with a simple explicit formula for the reflection coefficient Rl (Mie coefficient). Thus, the main
stage of solving the problem of diffraction by a sphere consists in expansion of the incident field (Eqs. (9)
and 10)) over the spherical vector multipole modes.

Then we transform Eq. (9). It follows from Eq. (3) that

∂

∂r

[
exp(−ikR)

R

]
=

[
∂

∂R

exp(−ikR)

R

]
r − r0 cos θ

R
, (17)
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∂

∂r0

[
exp(−ikR)

R

]
=

[
∂

∂R

exp(−ikR)

R

]
r0 − r cos θ

R
, (18)

∂

∂θ

[
exp(−ikR)

R

]
=

[
∂

∂R

exp(−ikR)

R

]
rr0 sin θ

R
. (19)

The following relationships follow from Eqs. (17)–(19):

∂

∂r0

[
exp(−ikR)

R

]
=

1

r
sin(θ)

∂

∂θ

[
exp(−ikR)

R

]
− cos(θ)

∂

∂r

[
exp(−ikR)

R

]
, (20)

1

r0

∂

∂θ

[
exp(−ikR)

R

]
= sin(θ)

∂

∂r

[
exp(−ikR)

R

]
+

1

r
cos(θ)

∂

∂θ

[
exp(−ikR)

R

]
. (21)

Equations (20) and (21) allow one to represent Eq. (9) in a more concise form

E0
r = −A cos(ϕ)

{
1

r0r

∂2

∂θ∂r0

[
r0

exp(−ikR)

R

]}
. (22)

The following Debye potentials correspond to the incident field in the region a < r < r0:

rU (e)(r, θ, ϕ) =
Ai

r0
cos(ϕ)

∞∑
l=1

2l + 1

l (l + 1)
h̄
(2)′
l (kr0)j̄l(kr)P

1
l (cos θ), (23)

rU (m)(r, θ, ϕ) = − A

η0r0
sin(ϕ)

∞∑
l=1

2l + 1

l (l + 1)
h̄
(2)
l (kr0)j̄l(kr)P

1
l (cos θ), (24)

where j̄l(kr) and h̄
(2)
l (kr0) are Riccati–Bessel and Riccati–Hankel functions

j̄l(kr) = krjl(kr), h̄
(2)
l (kr) = krh

(2)
l (kr). (25)

The prime in Eq. (23) denotes differentiation with respect to the argument.

In order to verify that expansions (23) and (24) are correct, it is sufficient to apply the operator
∂2/∂r2 + k2 to them and compare the obtained results with Eqs. (10) and (22). The following relation-
ships [13] will be needed for this procedure:

exp(−ikR)

R
= −ik

∞∑
l=0

(2l + 1) jl(kr)h
(2)
l (kr0)Pl(cos θ), r < r0, (26)

d

dθ
Pl(cos θ) = P 1

l (cos θ), (27)(
d2

dr2
+ k2

)
j̄l(kr) =

l (l + 1)

r2
j̄l(kr). (28)

Using expansions (23) and (24), we use the standard procedure to obtain formulas for the Debye
potentials that describe the scattered field (r > a):

rU (e) =
Ai

r0
cos(ϕ)

∞∑
l=1

2l + 1

l (l + 1)
R

(e)
l h̄

(2)′
l (kr0)h̄

(2)
l (kr)P 1

l (cos θ), (29)

rU (m) = − A

ζ0r0
sin(ϕ)

∞∑
l=1

2l + 1

l (l + 1)
R

(m)
l h̄

(2)
l (kr0)h̄

(2)
l (kr)P 1

l (cos θ), (30)
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where

R
(e)
l = − j̄′l(ka)j̄l(Nka) −Nj̄l(ka)j̄

′
l(Nka)/ε

h̄
(2)′
l (ka)j̄l(Nka)−Nh̄

(2)
l (ka)j̄′l(Nka)/ε

, (31)

R
(m)
l = − j̄′l(ka)j̄l(Nka)−Nj̄l(ka)j̄

′
l(Nka)/μ

h̄
(2)′
l (ka)j̄l(Nka)−Nh̄

(2)
l (ka)j̄′l(Nka)/μ

, (32)

N =
√
εμ. (33)

The components of the electromagnetic field are expressed in terms of the Debye potentials [11],
namely,

Eθ =
1

r

∂2(rU (e))

∂r ∂θ
− ikζ0μ(r)

sin θ

∂U (m)

∂ϕ
, (34)

Eϕ =
1

r sin θ

∂2(rU (e))

∂r ∂ϕ
+ ikζ0μ(r)

∂U (m)

∂θ
. (35)

Let us denote the components of the vector scattering pattern as Fθ(θ, ϕ) and Fϕ(θ, ϕ)

Eθ ∼ Fθ
exp(−ikr)

r
, Eϕ ∼ Fϕ

exp(−ikr)

r
, kr → ∞. (36)

Then, from Eqs. (29), (30), and (34)–(36), we obtain the following formulas for the components of the vector
scattering pattern:

Fθ = Ak2
cos(ϕ)

kr0

∞∑
l=1

il
2l + 1

l (l + 1)

[
iR

(e)
l h̄

(2)′
l (kr0)

dP 1
l (cos θ)

dθ
−R

(m)
l h̄

(2)
l (kr0)

P 1
l (cos θ)

sin θ

]
, (37)

Fϕ = −Ak2
sin(ϕ)

kr0

∞∑
l=1

il
2l + 1

l (l + 1)

[
iR

(e)
l h̄

(2)′
l (kr0)

P 1
l (cos θ)

sin θ
−R

(m)
l h̄

(2)
l (kr0)

dP 1
l (cos θ)

dθ

]
. (38)

In Eqs. (37) and (38), we single out the term Ak2 which is equal to the amplitude of the radiation patterns
F 0
θ and F 0

ϕ of the primary field:

F 0
θ = Ak2 cos(ϕ) cos(θ) exp(ikr0 cos θ), (39)

F 0
ϕ = −Ak2 sin(ϕ) exp(ikr0 cos θ). (40)

At kr0 → ∞, Eqs. (37) and (38) go over to the well-known formulas for the scattering pattern of a plane
wave [11].

4. LOW-FREQUENCY RESONANCES

The quantities R
(e)
l and R

(m)
l determined by Eqs. (31) and (32), respectively, contain resonance de-

nominators. At ka � 1 and Nka � 1, the imaginary parts of these denominators exceed their real parts
significantly. Vanishing the imaginary parts leads to resonances.

For example, let us study the formula for R
(e)
l . The equation for the resonant frequencies of the

electric-type modes has the form

n̄′
l(ka)j̄l(Nka)−Nn̄l(ka)j̄

′
l(Nka)/ε = 0, (41)

where n̄l(ka) is a Riccati–Neumann function.

Using asymptotic expansions of the functions j̄l(Nka) and n̄l(ka) for small values of their arguments,
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we obtain the following expressions for finding the resonant frequencies from Eq. (41):

(ka)2 =
l + (l + 1)/ε

μ/(2l + 3) + 1/(2l − 1)
, l ≥ 1. (42)

It follows from Eq. (42) that for the electric-type modes, low-frequency resonances occur in the case when
the dielectric permittivity of the sphere is close to the quantity given by the formula

ε = −(l + 1)/l, l ≥ 1. (43)

For example, it follows from Eq. (42) that for

l = 3, ε = −1.335, μ = −1, (44)

the resonant frequency is determined by the formula

ka ≈ 0.2, (45)

while for
l = 4, ε = −1.252, μ = −1, (46)

by the formula
ka ≈ 0.35. (47)

It follows from Eqs. (37) and (38) that at the resonant frequencies, the scattering pattern will be described
approximately by the functions

Fθ ∼ cos(ϕ)
dP 1

l (cos θ)

dθ
, Fϕ ∼ − sin(ϕ)

P 1
l (cos θ)

sin θ
. (48)

One can consider low-frequency resonances of the magnetic-type modes in a similar way. The corre-
sponding equation for the resonant frequencies has the form

n̄′
l(ka)j̄l(Nka)−Nn̄l(ka)j̄

′
l(Nka)/μ = 0. (49)

This equation differs from Eq. (41) in that the quantities ε and μ are interchanged.

5. METHOD OF DIAGRAM EQUATIONS

The problem of description of wave diffraction by magnetodielectric scatterers with fairly arbitrary
geometry can efficiently be solved by using the method of diagram equations [14, 15]. According to this
method, the initial boundary value problem is reduced to solving a system of algebraic equations for the
coefficients of expansion of the external scattered field (E1, H1) and the internal field (Ei, Hi) into series in
terms of the spherical wave harmonics:

E1 =

∞∑
n=1

n∑
m=−n

{
anm [∇×∇× (rψm

n )]− ikζ0bnm [∇× (rψm
n )]

}
, (50)

H1 =
∞∑
n=1

n∑
m=−n

{ ik

ζ0
anm [∇× (rψm

n )] + bnm [∇×∇× (rψm
n )]

}
, (51)

Ei =
∞∑
n=1

n∑
m=−n

{
ainm [∇×∇× (rχm

in)]− ikζ0μb
i
nm [∇× (rχm

n )]
}
, (52)
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Hi =

∞∑
n=1

n∑
m=−n

{ ikε

ζ0
ainm [∇× (rχm

in)] + binm [∇×∇× (rχm
n )]

}
. (53)

In the presented relationships,

ψm
n = h(2)n (kr)Pm

n (cos θ) exp(imϕ), χm
in = jn(Nkr)Pm

n (cos θ) exp(imϕ), (54)

and anm, bnm, ainm, and binm are the undetermined coefficients of expansions of the diffracted and internal
fields, respectively.

The above-mentioned algebraic system of equations has the following form [14, 15]:

anm =
∞∑
q=1

q∑
p=−q

(G13
nm,qpa

i
qp +G14

nm,qpb
i
qp), bnm =

∞∑
q=1

q∑
p=−q

(G23
nm,qpa

i
qp +G24

nm,qpb
i
qp), (55)

ainm = a0nm +

∞∑
q=1

q∑
p=−q

(G31
nm,qpaqp +G32

nm,qpbqp), binm = b0nm +

∞∑
q=1

q∑
p=−q

(G41
nm,qpaqp +G42

nm,qpbqp) (56)

for n = 1, 2, . . . and |m| ≤ n. The relationships for the matrix elements Gij
nm,qp and the free terms a0nm and

b0nm are presented in [14, 15]. In the special case of a spherical scatterer, we have

G13
nm,qm = iδqn [j̄n(ka)j̄

′
q(Nka)− εj̄′n(ka)j̄q(Nka)/N ],

G14
nm,qm = 0, G23

nm,qm = 0,

G24
nm,qm = iδqn [j̄n(ka)j̄

′
q(Nka)− μj̄′n(ka)j̄q(Nka)/N ],

G31
nm,qm = −iδqn [h̄

(2)′
q (ka)h̄(2)n (Nka)−Nh̄(2)q (ka)h̄(2)′n (Nka)/ε],

G32
nm,qm = 0, G41

nm,qm = 0,

G42
nm,qm = −iδqn [h̄

(2)′
q (ka)h̄(2)n (Nka) −Nh̄(2)q (ka)h̄(2)′n (Nka)/μ], (57)

where δqn is the Kronecker delta.

As a result, the solution of the system of Eqs. (55) and (56) has the following form:

anm =
G13

nm,nma0nm
1−G13

nm,nmG31
nm,nm

, bnm =
G24

nm,nmb0nm
1−G24

nm,nmG42
nm,nm

, (58)

ainm = a0nm +G31
nm,nmanm, binm = b0nm +G42

nm,nmbnm. (59)

In the case where the primary field (E0,H0) is produced by the electric dipole located at the z axis and
aligned with the x axis, the free terms a0nm and b0nm differ from zero only for m = ±1. In this case,

a0n,±1 = −ζ0Nn,±1a

16π

π∫
0

{
N

ε
h̄(2)′n (Nka)

[
H̃0

ϕ(a, θ) sin θ
dP±1

n (cos θ)

dθ
− H̃0

θ (a, θ)P
±1
n (cos θ)

]

+
1

k
h̄(2)n (Nka)

[
−Ẽ0

ϕ(a, θ)P
±1
n (cos θ) + Ẽ0

θ (a, θ) sin θ
dP±1

n (cos θ)

dθ

]}
dθ, (60)

b0n,±1 =
Nn,±1a

16π

π∫
0

{
N

kμ
h̄(2)′n (Nka)

[
−Ẽ0

ϕ(a, θ) sin θ
dP±1

n (cos θ)

dθ
+ Ẽ0

θ (a, θ)P
±1
n (cos θ)

]
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+ h̄(2)n (Nka)

[
−H̃0

ϕ(a, θ)P
±1
n (cos θ) + H̃0

θ (a, θ) sin θ
dP±1

n (cos θ)

dθ

]}
dθ, (61)

where

P−1
n = − 1

n (n+ 1)
P 1
n , Nn,1 =

2n + 1

[n (n+ 1)]2
, Nn,−1 = Nn,1 [n (n+ 1)]2,

H0
θ = −sinϕ

4π
H̃0

θ , H̃0
θ (r, θ) = (r − r0 cos θ)

(
ik

R2
+

1

R3

)
exp(−ikR),

H0
ϕ =

cosϕ

4π
H̃0

ϕ, H̃0
ϕ(r, θ) = (r0 − r cos θ)

(
ik

R2
+

1

R3

)
exp(−ikR),

E0
θ =

ζ0
ik

cosϕ

4π
Ẽ0

ϕ,

Ẽ0
θ (r, θ) =

[
2 cos θ

(
ik

R2
+

1

R3

)
+ (r0 − r cos θ) (r − r0 cos θ)

(
− k2

R3
+

3ik

R4
+

3

R5

)]
exp(−ikR),

E0
ϕ =

ζ0
ik

sinϕ

4π
Ẽ0

ϕ, Ẽ0
ϕ(r, θ) =

[(
ik

R2
+

1

R3

)
− k2

R

]
exp(−ikR). (62)

Here, the adopted normalization of the fields E0 and H0 corresponds to the unit moment of the dipole
current. Equations (62) will coincide with the formulas for the primary field, which are given in Sec. 2, if
one assumes that the dipole moment is equal to p = (iω)−1. In this case, A = ζ0 (4πik)

−1.

6. NUMERICAL RESULTS

The numerical results presented below are obtained by using both the method of diagram equations
and Eqs. (37) and (38). They are in full agreement with each other.

In what follows, by the scattering patterns Fθ and Fϕ we mean the dimensionless quantities which
are determined by Eqs. (37) and (38) if one omits therein the dimensional term Ak2, which is equal to the
maximum amplitude of the radiation patterns F 0

θ and F 0
ϕ of the primary field.

First, we study the dependence of the absolute value of the scattering-pattern component Fθ(π, 0)
on the parameter ka. We will call this dependence the frequency-amplitude characteristic of the sphere and
neglect the frequency dispersion of the metamaterial. In all calculations, the coordinate r0 of the source was
assumed equal to 1.2a.

Figure 2 shows the frequency-amplitude characteristics of a sphere for two sets of values of ε and
μ, which are specified by Eqs. (44) and (46) (curves 1 and 2, respectively). Dependences 1 and 2 have the
resonance character. The resonant frequencies are found from the relationships

ka3 = 0.20468710 . . . , (63)

ka4 = 0.349352769 . . . . (64)

The values of the resonant frequencies obtained from Eqs. (63) and (64) agree well with the values found
from Eqs. (45) and (47), which are obtained from approximate formula (42). The resonance Q-factors are
estimated as Q3 ∼ 5 · 104 and Q4 ∼ 7 · 105. Since the thermal loss in the medium is not allowed for in the
calculations presented, the resonance Q-factors are determined only by the radiation loss. The latter turned
out to be rather low, which required calculation of the resonant frequencies with the high accuracy used in
Eqs. (63) and (64).

To study the influence of the thermal loss on the resonance Q-factors, we used the method of diagram
equations. Figure 3 shows a set of curves which describe the frequency-amplitude characteristics of the sphere
near the resonant frequency ka3 for various values of the quantity ν = −Im ε that determines the thermal
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Fig. 2. Frequency-amplitude characteristic
Fθ(π, 0) of the sphere with ε = −1.335 and
μ = −1 (curve 1), ε = −1.252 and μ = −1 (2),
ε = −1.3 and μ = −1 (3), and ε = 1.3 and μ = 1
(4).

Fig. 3. Frequency-amplitude characteristic
Fθ(π, 0) of the sphere with ε = −1.335 and
μ = −1 near the dimensionless resonant frequency
ka3 = 0.2046 . . . for different dielectric-loss val-
ues: curves 1, 2 and 3 correspond to ν = 10−9,
10−6, and 10−5, respectively.

Fig. 4. Scattering patterns for the sphere with ε =
−1.335 and μ= −1 at the dimensionless frequency
ka3 = 0.2046 . . . : curves 1 and 2 correspond to
Fθ(θ, 0) and Fϕ(θ, π/2), respectively.

Fig. 5. Scattering patterns for the sphere with ε =
−1.252 and μ= −1 at the dimensionless frequency
ka4 = 0.3494 . . . : curves 1 and 2 correspond to
Fθ(θ, 0) and Fϕ(θ, π/2), respectively.

loss in the medium. One can see in the figure that an increase in the thermal loss leads to a decrease in the
resonance Q-factor Q3. Curve 1 in this figure, which corresponds to ν = 10−9, coincides almost completely
with curve 1 in Fig. 2, which corresponds to the absence of the thermal loss when Q3 ∼ 5 ·104. At ν = 10−5,
the Q-factor decreases until it reaches the value Q3 ≈ 2 · 102.

Figure 4 shows the absolute values of the components Fθ(θ, 0) and Fϕ(θ, π/2) of the vector scattering
pattern at the resonant frequency ka3. The component Fθ contains six lobes that are nearly identical. The
component Fϕ has two symmetric main lobes which are oriented in the directions θ = 0 and θ = π. Figure 5
shows the absolute values of the components Fθ and Fϕ at the resonant dimensionless frequency ka4. In
this case, the Fθ component has eight lobes, and the Fϕ component is still characterized by two main lobes.
This form of the radiation patterns corresponds to analytical expressions (48).

463



Fig. 6. Scattering patterns for the sphere with ε =
−1.3 and μ= −1 at the dimensionless frequency
ka3 = 0.2046 . . . : curves 1 and 2 correspond to
Fθ(θ, 0) and Fϕ(θ, π/2), respectively.

Fig. 7. Scattering patterns for the sphere with
ε = 1.3 and μ = 1 at the dimensionless frequency
ka3 = 0.2046 . . . : curves 1 and 2 correspond to
Fθ(θ, 0) and Fϕ(θ, π/2), respectively.

Let us compare the resonance properties of a small sphere with analogous properties of the narrow
cylinder [8]. Recall that within the framework of the two-dimensional problem of diffraction by a cylinder,
low-frequency resonances occur for ε close to −1 (in the case of TM polarization). This condition is manda-
tory for all values of the azimuthal index m of the resonance oscillations (at the resonance, the dependence
of the field on the angle ϕ is determined by the term cos(mϕ)). In a sphere, resonances of the electric-type
modes occur for ε close to −(l + 1)/l, where l = 1, 2, 3, . . . . Note that 2l is equal to the number of lobes in
the radiation pattern Fθ(θ, 0). Thus, the index l in the three-dimensional problem of a sphere acts as the
index m in the two-dimensional problem of a cylinder.

The frequency-amplitude characteristic of the cylinder at a given value of ε is a sequence of resonance
bursts with different indices m corresponding to each burst. The frequency-amplitude characteristic of a
sphere contains a single resonance and the index l, which is predetermined by the choice of the value of ε,
corresponds to it. Curves 1 and 2 in Fig. 2 represent the resonance frequency-amplitude characteristics of
the sphere for ε ≈ −4/3 and ε ≈ −5/4, respectively. If the dielectric permittivity is specified arbitrarily,
quasistatic resonances will not exist, generally speaking, which is demonstrated by curve 3 in Fig. 2 for
ε = −1.3 and μ = −1

Figure 6 shows the scattering patterns Fθ and Fϕ for a metamaterial sphere with ε = −1.3 and
μ = −1 at the dimensionless frequency ka3 = 0.204 . . . , which is the resonant frequency in the case where
ε = −1.335 and μ = −1. Recall that these patterns are normalized to the maximum amplitude of the
radiation patterns |F 0

θ | and |F 0
ϕ| of the primary field. The patterns presented in Fig. 6 are not directional,

and their amplitudes decreased by more than 105 times compared with the resonance case (see Fig. 4).
Nevertheless, the amplitudes of the patterns exceed unity, which means that the effect of the nonresonance
field enhancement is present [10]. Enhancement of the source field compared with the field in the absence of
the scatterer (at the same value of the current supplied) occurs in a wide frequency range (see Fig. 2) and
is observed only in the case of diffraction by metamaterial bodies. For comparison, Fig. 7 shows patterns of
scattering by a dielectric sphere. The electrical size of the sphere and the refractive index of the material
are chosen such as to ensure their coincidence with similar parameters of the above-considered metamaterial
sphere (ε = 1.3, μ = 1, and ka = 0.204 . . . ) with accuracy up to one decimal place. One can see that
the absolute values of the scattering patterns are much smaller than unity, which indicates that the field
enhancement effect is absent in this case. Then the scattering patterns have the form identical to those of
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the radiation patterns of the primary field (see Eqs. (39) and (40)). The frequency-amplitude characteristic
of the dielectric sphere in a wide frequency range is represented by curve 4 in Fig. 2. It follows from the
comparison of curves 3 and 4 in Fig. 2 that the amplitude of the scattered field for a metamaterial sphere is
almost two orders of magnitude higher than that in the case of a dielectric sphere.

Finally, it should be noted that resonance excitation of the magnetic-type modes occurs when the
magnetic permeability of the sphere is close to the value μ = −(l+1)/l, where l = 1, 2, 3, . . . . At resonance,
the components of the vector scattering pattern will be described by the functions

Fθ ∼ cosϕ
P 1
l (cos θ)

sin θ
, Fϕ ∼ − sinϕ

dP 1
l (cos θ)

dθ
. (65)

The calculations performed for the case ε = −1 and μ = −1.335 (cf. Eq. (44)) showed that at the resonant
dimensionless frequency ka3, the patterns Fθ and Fϕ have the same form as the patterns in Fig. 4 to an
accuracy of the replacements Fθ → Fϕ and Fϕ → Fθ. In this case, the field amplitude turned out to be an
order of magnitude lower.

7. CONCLUSIONS

We have studied numerically the properties of the electromagnetic fields which arise when a meridional
electric dipole excites a sphere made of a metameterial. The regions of electrodynamic parameters for which
high-Q quasistatic resonances exist have been established. It is shown that frequency characteristics are
essentially different for three- and two-dimensional metamaterial objects. It was found that the scattering
patterns at resonance are of multi-lobe form, which is typical of superdirective antennas. The influence of
the thermal loss on the resonance Q-factors has been studied. The effect of nonresonance enhancement of
the scattered field has been found.

This work was partially supported by the Russian Foundation for Basic Research (project No. 12–
02–00062-a).
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