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INTRODUCTION

Recently, the electromagnetics of artificial media
characterized by negative relative permittivity and per�
meability ε and μ has intensely developed. Veselago is
the first to theoretically investigate the radiophysical
properties of such media [1], which are often called
Veselago media. Today, these artificial media are con�
ventionally called metamaterials [2].

The interaction between the electromagnetic field
and metamaterial objects is accompanied by a number
of extraordinary effects: negative refraction, subwave�
length resolution, and the inversion of the Doppler and
Vavilov–Cerenkov effects. These effects are investi�
gated in a great number of studies. Note reviews [3–6].

The modified discrete source method [7, 8] makes
it possible to effectively calculate wave fields in
2D problems of diffraction by magnetodielectric bod�
ies of complex shapes. In most studies, objects of
dimensions that are large as compared to the wave�
length are investigated. The electrodynamic properties
of small 2D objects were analyzed for the first time in
[9, 10].

The purpose of this study is to investigate the reso�
nance properties of an electrically small cylinder made
from a metamaterial with permittivity ε and perme�
ability μ that are close to minus unity.

1. FORMULATION OF THE PROBLEM

The problem of excitation of a metamaterial cylin�
der with parameters  and  by a filament
source is considered. The case of the TM polarization
is studied. It is assumed that the source is situated
beyond the cylinder at the point   (Fig. 1).
Cylindrical coordinates ( ) are used.

0ε < 0µ <

0 ,r a> 0 0ϕ =

, ,r zϕ

The problem formulated above is reduced to deter�
mination of scalar function  =  satisfy�
ing the inhomogeneous Helmholtz equation
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where k is the wave number in free space, functions
 and  are specified as

(2)

( , )U r ϕ ( , )zH r ϕ

2 2
2

2 2 2

0

1 1 ( ) ( ) ( , )

4 ( ) ( ),

k r r U r
r rr r

i r r
r

⎡ ⎤∂ ∂ ∂+ + + ε μ ϕ⎢ ⎥∂∂ ∂ϕ⎣ ⎦

= − δ − δ ϕ

( )rε ( )rµ

, 0 ,
( )

1, ,

, 0 ,
( )

1, ,

r a
r

r a

r a
r

r a

ε < <⎧ε = ⎨ >⎩
μ < <⎧μ = ⎨ >⎩

High�Q Resonanaces of Surface Waves 
in Thin Metamaterial Cylinders

A. P. Anyutin, I. P. Korshunov, and A. D. Shatrov
Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch), Russian Academy of Sciences, 

pl. Vvedenskogo 1, Fryazino, Moscow oblast, 141190 Russia
e�mail: anioutine@mail.ru, korip@ms.ire.rssi.ru

Received January 27, 2014

Abstract—The 2D problem of excitation of a circular metamaterial cylinder by a filament source is numeri�
cally investigated. It is found that, when the relative permittivity and permeability are close to minus unity,
high�Q resonances occur in cylinders of an electrically small diameter. Near� and far�field patterns are cal�
culated. It is discovered that, under resonance conditions, a multilobe scattering pattern typical of superdi�
rective antennas is formed. The influence of loss on the resonance characteristics is investigated.

DOI: 10.1134/S1064226914110011

ELECTRODYNAMICS 
AND WAVE PROPAGATION

2a

y

x

ε, μ ≈ –1

{r0, ϕ0}

ϕ

{r, ϕ}
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and δ(…) is the Dirac delta function.
The conditions

(3)

are fulfilled on the boundary r = a. Field  satis�
fies the radiation conditions, i.e., has the form

(4)

as , where  is the pattern.
The field of the incident cylindrical wave is a solu�

tion to Eq. (1) at ε = 1 and μ = 1. This field is deter�
mined from the formula

(5)

where  is the Hankel function. Field pattern

 has the form

 (6)

Thus, with the chosen normalization of the right�
hand side of Eq. (1), wave field  is a dimension�
mless quantity.

Consider diffraction phenomena in the case when
the dimensions of the cylinder are substantially
smaller than the wavelength λ = 2π/k. For cylinders of
large electric dimensions ( ), this problem is
numerically investigated in [11] with the help of the
modified discrete source method.

2. THE METHOD OF SOLUTION

The diffraction problem formulated above, can be
analytically solved by means of the method of separa�
tion of variables (the Rayleigh series [12]). For cylin�
ders of small electric dimensions, this series can effec�
tively be applied in the numerical calculation. Let us
present the basic formulas of the Rayleigh method.

The field in the interior of the cylinder ( ) can
be decomposed as follows:

(7)

where

(8)

(9)

 are Bessel functions, and the prime denotes differ�
entiation with respect to an argument.

The field in the exterior of the cylinder ( ) con�
sists of two terms (the incident and scattered fields):

(10)

where the scattered field is determined from the for�
mula

(11)

Far field Us ( ) has the form

(12)

where scattering pattern  can be represented in
the form of the series

(13)

Formulas (7), (11), and (13) contain quantity

 which formally coincides with the refractive
index of a plane wave propagating in a homogeneous
medium with constitutive parameters ε and μ. As is
known, the refractive index of plane waves propagating
in a homogeneous medium with tensor permittivity 
and permeability  can be found from the Fresnel
biquadratic equation [13]. In the case of an isotropic

medium, the Fresnel equation is reduced to the qua�

dratic equation  which has two solutions

 In the electromagnetics of ordinary media
(ε > 0 and μ > 0), the plus sign is conventionally cho�
sen. Some authors recommend choosing the minus
sign for describing Veselago media (ε < 0 and μ < 0).
This choice of the sign is suitable, for example, when
Snell’s law is used. However, it should be kept in mind
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that, strictly speaking, the term refractive index char�
acterizes the properties of plane waves propagating in
a medium rather than the properties of this medium.
The use of the terminology involving refractive indices
is not always effective and can yield incorrect results in
certain cases. It is more suitable to use the notions of
permittivity and permeability, which are the only con�
stitutive parameters entering Maxwell’s equations [5].

As should have been expected, formulas (7), (11),
and (13) are invariant to the sign of n. Helmholtz

equation (1) contains the quantity . Actually,
the numerators and denominators of individual terms
from decompositions (7), (11), and (13) are simulta�
neously either even or odd functions of parameter n.
This fact follows from the formulas

(14)

3. NUMERICAL RESULTS

The numerical results presented below are
obtained both with the help of the modified discrete
source method [11] and from formulas (7), (11), and
(13). The results of the corresponding computations
are in good agreement. In all of the illustrations, we
describe the spatial structure of the field on the linear
scale and the frequency characteristics of the field on
the logarithmic scale.

First, we investigate the dependence of the absolute
value of the total field at the point   located
on the shadow side of the cylinder on parameter ka,
which is proportional to frequency; i.e., we investigate
the amplitude–frequency characteristic (AFC) of the
total field. We disregard the frequency dispersion of
the metamaterial. In all of the computation, the spatial
coordinate of the cylindrical wave source is set to be

 We have found out that, in the case

(15)

the frequency characteristic is a sequence of resonance
peaks. The resonance frequencies of the first eight
modes are summarized in the ascending order in the
table. We restrict the analysis to lower order resonances
that are low�frequency ones. It is shown below that the
resonance frequencies are enumerated so that, at reso�

nance frequency , scattering pattern  and field
 on the cylinder’s surface are described by one

azimuthal harmonic  with a high accuracy.
Figure 2 shows the AFC with two resonance peaks at

frequencies  and ka4 calculated from formula (7). The
Q factors of these resonances are evaluated by the
respective values  and  It is seen
that the Q factor of the resonances grows with fre�
quency.

The scattering patterns calculated at frequencies
 and  are displayed in Figs. 3 and 4. The patterns

from Figs. 3 and 4 contain six and ten identical lobes,

2n = εμ
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respectively. Note that, for the scatterer’s dimension
, these lobes are characterized by rather small

angular dimensions. This means that the superdirec�
tivity effect occurs under resonance conditions. In
addition, the resonance amplitude of the scattering
pattern substantially exceeds the amplitude of the

incident field pattern: 

The scattering pattern calculated at the nonreso�
nance frequency ka = 0.844, i.e., at a frequency lying
between resonance frequencies  and  is dis�
played in Fig. 5. It is seen that, in this case, the scat�
tered field is practically omnidirectional, and scatter�
ing pattern Φs is commensurable with incident field
pattern Φ0.
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Resonances of surface waves in a metamaterial cylinder
with the parameters  and 
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Figure 6 shows the field on the cylinder’s surface at
resonance frequency  This field is described by the
function  with the graphical accuracy. The field
at resonance frequency  is depicted in Fig. 7. This
field is described by the function  Thus, from
Figs. 3, 4, 6, and 7, we can draw the conclusion that,
at resonance frequencies  and , one term of the
series with m = 3 or m = 5 dominates in decomposi�
tions (7), (11), and (13). We should emphasize that the
amplitudes of resonance harmonics  are very

large in the near field (on the order ) and

remain rather large in the far field (  being on the
order 102, see Figs. 3 and 4). Note that the absolute

value of the incident field pattern  is unity.

The near�field pattern at the nonresonance fre�
quency ka = 0.844 has a more intricate form (Fig. 8).
The amplitude of field oscillations on the illuminated
side of the cylinder is smaller than that on the shadow

5.ka
cos(5 )ϕ

3ka
cos(3 ).ϕ

3ka 5ka

cos( )mϕ

4 310 10−

s( )Φ ϕ

0( )Φ ϕ

side. The field decreases by three orders of magnitude
as compared to the resonance case 

The dependence of the field of resonance oscilla�
tion ka5 on radial coordinate r is depicted in Fig. 9. It
is seen that function  is concentrated within a
narrow interval near the surface r = a. This localiza�
tion of the field is typical of surface waves propagating
over a plane boundary of a metamaterial [14]. The
abrupt increase of the field at certain frequencies is
related with the resonances of a surface wave propa�
gating over the interface r = a. Resonances occur when
the phase of the surface wave covering the total length
of the cylinder’s circle increases by the value  a
situation that is possible for small cylinders in the case
of an extremely slow wave.

Figure 10 illustrates the influence of loss on the
APC in the neighborhood of the resonance frequency

 The absorbing properties of a medium with com�
plex refractive index n are characterized by the quan�
tity  It is seen that, as the loss grows, the
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resonance Q factor decreases and the resonance fre�
quency shifts toward low frequencies.

For the resonance frequencies satisfying the con�
dition

(16)

simple approximate analytic expressions can be
obtained. Formulas (7), (11), and (13) contain the res�
onance denominator

(17)

Let us investigate the frequency dependence of this
denominator assuming that

(18)

(19)

Expression (17) is a complex function of parameter
ka and does not vanish at real values of ka. Note that,
under conditions (18), the imaginary part of expres�
sion (17) substantially exceeds its real part. The imag�
inary part of denominator from (17) vanishes at the
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points kam that are the sought resonance frequencies.
To determine these frequencies, we apply the known
asymptotic decompositions of cylindrical functions
for small values of the argument. We use two terms of
the decomposition in the positive powers of the argu�
ment for Bessel functions and two terms of the decom�
position in the negative powers of the argument for
Hankel functions. Taking into account condition (19),
we obtain the sought expression for resonance fre�
quencies

(20)

As it follows from formula (20), the main condi�
tion for the existence of low�frequency resonances is
the closeness of the permittivity to minus unity (con�
dition (19)). This condition ensures the fulfillment of
inequality (16) (at least, for the values of index m that
are not very large).

For expression (20) to be positive, it is necessary to
impose a constraint on the range of ε and μ. To this
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end, any pair of the inequalities presented below
should be fulfilled:

(21)

(22)

In contrast to the permittivity, which should be
close to minus unity, the permeability can change
within a wide range. For example, the parameters

 and  satisfy condition (21). Then,

(23)

Plasma with the parameters μ = 1 and ε < –1 satisfies
condition (21). The resonance frequency is deter�
mined from the formula

(24)

Parameters (15), which are used in the numerical calcu�
lation, also satisfy inequalities (21). Inequalities (22) are
fulfilled, for example, for the parameters ε = –0.99
and μ = –3.
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Fig. 5. Absolute value of scattering pattern  at a frequency lying between the fourth and fifth resonances ( ).
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For constitutive parameters (15) and m = 3,
Eq. (20) yields  This quantity is in good
agreement with the rigorous value 

A solution to the problem of excitation of a metama�
terial cylinder by an electric�current filament can be
obtained from the above formulas with the help of the fol�
lowing change of notation:  
and  Therefore, in the case of the TE polariza�
tion, low�frequency resonances occur when the per�
meability approaches minus unity.

3 0.469...ka =

3 0.455...ka =

( , ) ( , ),zU r E rϕ → ϕ ,ε → μ

.μ → ε

CONCLUSIONS

Resonances can also exist in thin cylinders ( )
made from a standard magnetodielectric with a large
refractive index. In 2D electromagnetics, other objects
exhibiting resonance properties in the low�frequency
region are known: a hollow metal cylinder with a nar�
row longitudinal slot and a multiturn wire helix with a
large helix angle. Note that these structures contain
metal, i.e., a material with the large absolute value of a
complex permittivity. In the aforementioned exam�
ples, volume resonance oscillations develop, and the
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face at a frequency lying between the fourth and fifth reso�
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( , )U a ϕ

ka = 0.844

6 × 104

4 × 104

2 × 104

0 2.01.61.41.20.80.4 0.60.2 1.0

r/a

1.8

|U(r, ϕ)|

Fig. 9. Radial distribution of field  at resonance fre�
quency 

( , )U r π

5.ka

103

0.500.480.440.41 0.450.42 0.49

ka

⎟U(a, π)⎟

0.470.460.430.40

1

2

3

102
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0.01, and 0.1, respectively.
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field occupies the entire interior cavity of a cylinder.
The case considered in the study differs from these
analogs by the fact that the refractive index of the
metamaterial forming the cylinder is not large (being
close to unity) and the resonance field has a funda�
mentally different spatial structure: it is concentrated
within a narrow strip near the cylinder’s boundary.
The investigated structure can be regarded as a high�Q
ring resonator operating with the use of an extremely
slow surface wave.
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