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1. INTRODUCTION

Electrodynamics of artificial media with negative
permittivity ε and permeability μ has rapidly devel�
oped in recent years [1–6]. Such artificial media are
usually referred to as metamaterials [7]. The electro�
magnetic fields induced by sources located near the
bodies made of metamaterials possess a number of
peculiar properties [8]. For example, effects of reso�
nant excitation of electrical� or magnetic�type modes
of a sphere were discovered in [9] in analysis of radia�
tion from dipole sources on spherical metamaterial
particles. According to [9], if the parameters of the
material are close to ε = –1 – 1/m or μ = –1 – 1/m
(m = 1, 2, 3, …), these resonances are quasi�static
(i.e., exist in particles with electrically small sizes).
Such resonances are not observed in objects made of
conventional magnetodielectrics.

Quasi�static high�Q resonances were observed in
[10] in cylinders made of metamaterials in which ε or
μ are close to –1. Such cylinders can be treated as ring
resonators on very slow surface waves propagating
along the boundary of a metamaterial. In this case, the
field at the resonance frequency is described by a sin�
gle azimuthal harmonic cos(mϕ). The spectral and
polarization properties of fields in a multiturn helix
filled with a metamaterial were investigated in [11].
The helix was simulated by a surface with an ideal
anisotropic conductivity along the helical lines. Sur�
face waves are formed in such a structure by the inter�
face between the media as well as by the wire grid
located on this interface. We will show that for certain
combinations of the parameters of the problem,
degeneracy of quasi�static resonances takes place. It

will be demonstrated, in particular, that in some cases
the field can be described by the function cos(mϕ) with
different values of m in the near� and far�field zones.

Among publications in this field, we can also men�
tion [12], which considered radiation emitted by opti�
cally active molecules located near spherical particles
of chiral metamaterials characterized by three quanti�
ties ε, μ, and η (η is the chirality parameter). The fea�
tures of resonant phenomena determined by negative
values of quantities ε and μ and of the chirality of the
medium were investigated. In contrast to [12], we will
consider cylindrical, not spherical scatterers; the
chirality of an object of a metamaterial is determined
by the properties of its boundary and not by the prop�
erties of the metamaterial constituting it. The helical
geometry of conductors is the simplest way to achieve
chiral electrodynamic objects of a metamaterial in
developing a new elemental base in the decimeter and
centimeter wavelength ranges. The 2D nature of the
model problem considered here makes it possible to
obtain an analytic description of the degeneracy of
eigenmodes using a simpler mathematical apparatus.

2. FORMULATION OF THE PROBLEM 
AND SOLUTION METHOD

We consider the problem of excitation of a circular
cylinder made of a metamaterial with parameters ε
and μ by a filamentary source. We will use the cylindri�
cal system of coordinates (r, ϕ, z) (Fig. 1). We assume
that the following bilateral boundary conditions of
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ideal anisotropic conductivity along the helical lines
hold on the cylinder surface (r = a):

(1)

(2)

where the “plus” and “minus” signs correspond to the
outer (r > a) and inner (r < a) surfaces, ϕ being the
twist angle of the helix. For definiteness, we assume
that the helical lines are right (0 < ψ < π/2). The model
of the cylindrical surface with anisotropic conductivity
of the helical type successfully describes wire (single�
turn or multiturn) spirals if the distance between the
axes of adjacent conductors are much smaller than the
wavelength and the gap spacing lies in a certain inter�
val [13, 14].

The cylinder is excited by electric and magnetic fil�
amentary currents located outside the cylinder at
point r0 > a, ϕ0 = 0 (see Fig. 1). We assume that the
exciting currents are independent of coordinate z. In
this case, the problem under investigation is two�
dimensional, but with two potentials. For the poten�
tials, we choose the functions

(3)

In further analysis, we will use vector notation, e.g.,

(4)

Vector function U(r, ϕ) satisfies the inhomoge�
neous Helmholtz equation

(5)

Ez
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where k is the wavenumber in the free space and func�
tions ε(r) and μ(r) are defined as

(6)

δ(…) is the Dirac delta function, and components A1

and A2 of vector A define the amplitudes of the electric
and magnetic exciting currents.

Quantities Eϕ and Hϕ appearing in boundary con�
ditions (1) and (2), as well as the radial components of
the electromagnetic field, can be expressed in terms of
U1 and U2 using the formulas following from the Max�
well equations:

(7)

(8)

Field U(r, ϕ) must also satisfy the radiation condition;
i.e., for kr  ∞, the field must have the form

(9)

Exciting field U0 is the solution to the inhomogeneous
Helmholtz equation in the free space and is defined as

(10)

where  is the Hankel function. The directional
pattern of the field has the form

(11)

The total field U outside the cylinder is the sum of
the exciting (U0) and scattered (Us) fields. We will
denote by Φs(ϕ) the scattering diagram (i.e., the direc�
tional pattern of field Us).

Equation (5), boundary conditions (1), (2), and
radiation condition (9) determine the boundary�value
problem for field U(r, ϕ) completely.

The problem formulated here can be solved analyt�
ically by separating variables [11]. We can write the
final expressions for the wave fields. We introduce vec�
tors L(m), M(m), N(m) and scalar W(m):

(12)
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Fig. 1. Geometry of the problem.
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(15)

where

(16)

Jm(kna) are the Bessel functions, and the prime indi�
cates differentiation with respect to the argument.

Total field U(r, ϕ) inside the cylinder (r < a) can be
written in the form

(17)

where

(18)

(19)

In expression (19), (A, M(m)) denotes the scalar
product

(20)

The field outside the cylinder (r > a) can be written
as the sum of two terms (incident and scattered fields):

(21)

The scattered field is defined as

(22)

where

(23)

(24)
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The directional pattern of scattered field Φs(ϕ) can
be written in the form of the series:

(25)

Expressions (17) and (22) hold both for cylinders
made of conventional materials (ε > 0, μ > 0) and for
cylinders made of metamaterials (ε < 0, μ < 0). Refrac�
tive index n (see Eq. (16)) for these cases will be
assumed positive.

Expansions (17) and (22) converge for any real val�
ues of parameters ε or μ, which can easily be proved
using the Debye asymptotic representations for cylin�

drical functions Jm and  for m  ∞ [15]. Func�

tion W(m) appearing in the denominators of expres�
sions (19) and (24), which is a complex function of
parameter ka, does not vanish for real values of fre�
quency ka. For this reason, the problem of diffraction
from a cylinder considered here has a solution for any
real values of the parameters of the material (including
ε = μ = –1), while there is no solution to the problem
of diffraction of the field of a pointlike source on half�
space ε = μ = –1 in the absence of heat loss [8].

We will consider only electrically small cylinders:

(26)

The denominators of expressions (17) and (22) contain
resonance functions W(m)(ka) defined by formula (15).
Let us analyze the frequency dependence of these
denominators. If conditions (26) are satisfied, the real
part of expression (15) considerably exceeds its imagi�
nary part. The real part of functions W(m)(ka) vanishes
at the points that are exactly the resonance frequen�
cies. Thus, the equation for resonance frequencies has
the form

(27)

At resonance frequencies, single azimuthal harmonic
cos(mϕ) dominates in expansions (17) and (22).

Let us transform equality (27) using the asymptotic
expressions of cylindrical functions for small values of
the argument [15]:

(28)
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Eq. (27) the zeroth� and first�order terms in the pow�
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ers of small parameter (ka)2, we obtain the following
expression for resonance frequencies:

(29)

It should be recalled that this expression holds only
when condition ka � 1 is satisfied. To this end, it is
necessary that any of the following inequalities be sat�
isfied:

(30)

(31)
For ψ � 1, formula (29) is also applicable for a cylin�
der made of a conventional material (ε > 0, μ > 0). For
a metamaterial, the right�hand side of relation (29) can
be small in view of the fulfillment of condition (31). In
this case, formula (29) is valid for structures with any
twist angles of the conductivity helical lines.

3. NUMERICAL RESULTS

The numerical results presented below were
obtained by summing series (17) and (22) as well as by
using the modified method of discrete sources [16,
17]. The results of calculations obtained by these two
methods coincide.

Calculations were performed in the range of
parameters satisfying conditions (26) and (31). In all
calculations, the coordinate of the source was assumed
to be r0 = 1.2a.

Let us analyze the amplitude–frequency charac�
teristic (AFC) of a cylinder, i.e., the dependence of the
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field modulus at point r = 0.99a, ϕ = π on dimension�
less parameter ka proportional to frequency. Figure 2
shows the AFC for ε = –1.3, μ = –1.00009775, and
ψ = 1.3. Curves 1 and 2 correspond to AFCs of the cyl�
inder for two conditions of excitation. The figure
shows the graphs only for component U1 since the val�
ues of component U2 turned out to be two orders of
magnitude smaller. Curve 1 in this figure corresponds
to excitation by an electric current filament (A1 = 1,
A2 = 0), while curve 2 corresponds to excitation by a
magnetic current filament (A1 = 0, A2 = 1). Compari�
son of curves 1 and 2 shows that the efficiency of exci�
tation of oscillations in the cylinder by the magnetic
current is two orders of magnitude lower than in the
case of electric current filament. For this reason, we
will consider only component U1, assuming that A1 = 1,
A2 = 0. Calculations show that at resonance frequency
ka = 0.20087, the field on the cylinder surface and the
scattering diagram are described by a single harmonic
cos (5ϕ) with large amplitudes on the order of 108 and
104, respectively.

To analyze the effect of heat loss on the Q factor of
resonances, we will use the modified discrete source
method [16, 17]. Figure 3 shows the family of curves
describing the AFCs of the structure under investiga�
tion in the vicinity of resonance frequency ka =
0.20087 for various values of ε'' determining the
dielectric loss in the medium (ε = ε' – iε''). It can be
seen from the figure that an increase in the heat loss
leads to a decrease in the Q factor of resonance:

(Δka0.7 is the width of the resonance curve at a level of
0.707). Curve 1 in Fig. 3 (ε'' = 10–8) almost coincides
with curve 1 in Fig. 2, corresponding to zero heat loss
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Fig. 2. Amplitude–frequency characteristic of an anisotro�
pically conducting cylinder made of a metamaterial with
ε = –1.3, μ = –1.00009775, ψ = 1.3, A1 = 1, A2 = 0 (1) and
A1 = 0, A2 = 1 (2).
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Fig. 3. Amplitude–frequency characteristic of an anisotro�
pically conducting cylinder made of a metamaterial with
ε' = –1.3, μ = –1.00009775, ψ = 1.3 for different values of
dielectric loss: ε'' = 10–8 (1), 10–7 (2), and 10–5 (3).
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(Q ~ 106). For ε'' = 10–5, the Q factor decreases to
Q ~ 103.

It should be noted that for an arbitrary spiral angle
ψ in the frequency range of ka, resonance may not be
attained. Resonances appear only when angles ψ lie in
narrow intervals near certain discrete values ψm, and
these discrete values correspond to resonances with
various azimuth indices m. To clarify this situation,
Figures 4–6 show the dependences of field modulus
U1(r, ϕ) at point r = 0.99a, ϕ = π on the spiral twist
angle at frequency ka = 0.20087 for three values of
permeability μ + 1 = 10–5, 10–4, and 10–3. The permit�
tivity in this case was ε = –1.3. It can be seen that the
curves in Figs. 4–6 are of the resonance nature. The
index of resonance angle ψm coincides with the num�
ber of the azimuthal harmonic dominating in the field
of the resonance oscillation. Note that for μ + 1 = 10–5

(Fig. 5), resonance angles ψm increase with number m,
and for μ + 1 = 10–3 (Fig. 4), resonance angles
decrease with increasing m. For μ + 1 = 10–4, the
monotonic dependence on the number disappears,
and pairs of resonances ψm with numbers 4 and 9, 8
and 5, and 7 and 6 converge, forming “doublets” (see
Fig. 6).

Let us prove that such a behavior of the resonance
parameters is associated with the intersection of the dis�
persion curves corresponding to different azimuth indi�
ces m (i.e., with degeneracy of oscillations). Figure 7
shows a family of curves describing the relation
between the resonant value of twisting angle ψm and
permeability μ of the cylinder for ka = 0.2… and ε =
⎯1.3. Different curves correspond to different values
of azimuth index m. The curves in Fig. 7 are the trajec�
tories of the peak of the field modulus in the 2D
domain (ψ, μ) for preset values of ka and ε. The curves
were obtained as a result of calculations based on
expression (17) in the vicinity of resonant spikes of the
wave field. Solid and dotted curves correspond to pos�

itive and negative values of quantity 1 + μ > 0, respec�
tively. Figure 7 shows that there exist a domain of
parameter 1 + μ in which the dispersion curves inter�
sect.

It should be noted that the dependences of perme�
ability on the twist angle plotted using formula (29)
coincide with the curves in Fig. 7 with graphical accu�
racy.

Let us analyze the spatial structure of the resonance
field for parameters μ = –0.9999… and ψ = 0.899…,
which ensure degeneracy of oscillations with azimuth
indices m = 4 and 9. Figure 8 shows the field distribu�
tion over the cylinder surface, described by function
cos (9ϕ). Figure 9 shows the scattering diagram for the
cylinder under investigation; it contains only one har�
monic cos (4ϕ). Figure 10 shows the distribution of
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Fig. 4. Dependence of the modulus of field U1(a, π) on the
spiral twist angle for ka = 0.2…, ε = –1.3, μ = –0.999;
numbers correspond to azimuth index m of the resonance.
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Fig. 5. Dependence of the modulus of field U1(a, π) on the
spiral twist angle for ka = 0.2…, ε = –1.3, μ = –0.99999;
numbers correspond to azimuth index m of the resonance.
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Fig. 6. Dependence of the modulus of field U1(a, π) on the
spiral twist angle for ka = 0.2…, ε = –1.3, μ = –0.9999;
numbers correspond to azimuth index m of the resonance.
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total field modulus |U1| over the radial coordinate
(along direction ϕ = π). It can be seen that the curve
contains three segments, kr < 0.6, 0.6 < kr < 3, and
kr > 0.3, on which the field is described by functions
|U1| ~ (kr)–9, |U1| ~ (kr)–4, and |U1| ~ (kr)–1/2, respec�
tively. The first segment corresponds to the near field,
in which the harmonic with m = 9 dominates. The sec�
ond segment also corresponds to the near field, but
with a dominant harmonic with m = 4. Finally, the
third segment corresponds to the far field.

Figure 11 gives a general idea about the spatial dis�
tribution of field modulus |U1| on plane (x, y). It should
be borne in mind that the difference in the field ampli�
tudes in the spatial region under investigation is quite
large (see also Fig. 10). It can be seen that in the vicin�
ity of the cylinder (kr ≈ 0.2), the interference pattern
contains 18 radial fringes; for kr > 0.7, the number of
fringes decreases to eight.

In the vicinity of point kr ≈ 0.6 (Fig. 10), the laws of
the decrease in the resonance field in the radial coordi�
nate change. In the annular region 0.5 < kr < 0.7,
a complex interference pattern emerges as a result of
summation of two harmonics cos(4ϕ) and cos(9ϕ)
with commensurate amplitudes, which results in a
complex interference pattern.

It should be emphasized that the fields behave analo�
gously at all degeneracy points (i.e., at the points of inter�
section of the curves shown in Fig. 7); namely, the higher
azimuthal harmonic dominates in the field on the con�
tour, and the lower harmonic dominates in the far field.

4. STRUCTURE OF RESONANCE FIELDS
IN THE STATIC REGION

Let us consider in greater detail the spatial and
polarization structures of fields in the resonance con�
ditions. The resonances described in the previous sec�
tion are quasi�static. The electromagnetic field is con�
centrated in the static region kr � 1 and rapidly atten�
uates with increasing distance from the cylinder
surface. In this region, electromagnetic field compo�
nents Ez and Hz approximately satisfy the Laplace
equation. We can easily obtain the following expres�
sions for oscillations with number m in the quasi�static
approximation:

(32)
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Fig. 7. Trajectories of resonance parameters of modes with
index m in the (μ, ψ) plane for ka = 0.2…, ε = –1.3; num�
bers correspond to azimuth index m of the resonance.
Solid curves correspond to 1 + μ > 0 (left scale); dotted
curves correspond to 1 + μ < 0 (right scale).
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Fig. 8. Distribution of the modulus of field U1(a, ϕ) at
degeneracy point 4, 9 for ka = 0.2…, ε = –1.3, μ =
⎯0.999895…, ψ = 0.8993626… .
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(35)

(36)

(37)

The electric field defined by formulas (32)–(34) satis�
fies the electrostatics equation

(38)

and boundary conditions (1). The magnetic field
(35)–(37) with allowance for conditions (31) approx�
imately satisfies both the magnetostatics equation

(39)

and boundary condition (2). Expressions (32)–(37)
also satisfy relations (7) and (8).

It should be noted that the spiral twist angle ψ is
assumed to be small; consequently cotψ cannot
assume large values. Therefore, with allowance for
condition ka � 1, we conclude that the magnetic com�

Hz

i ka
m
�����⎝ ⎠

⎛ ⎞
2

ε ψ r
a
��⎝ ⎠

⎛ ⎞
m

imϕ( ), rexpcot a,<

i ka
m
�����⎝ ⎠

⎛ ⎞
2

ψ r
a
��⎝ ⎠

⎛ ⎞
m

imϕ( ), rexpcot– a,>
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Hr

1
μ
�� r

a
��⎝ ⎠

⎛ ⎞
m 1–

imϕ( )exp , r– a,<

r
a
��⎝ ⎠

⎛ ⎞
–m 1–

imϕ( ), rexp– a,>
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Hϕ

i
μ
�� r

a
��⎝ ⎠

⎛ ⎞
m 1–

imϕ( )exp , r– a,<

i r
a
��⎝ ⎠

⎛ ⎞
–m 1–

imϕ( ), rexp a,>
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

divE 0=

divH 0=

ponent |H| � |E| dominates in field (32)–(37). In this
case, the following relations hold:

(40)

(41)

Thus, we can assume that the magnetic field is per�
pendicular to the z axis (see Fig. 1). Condition (40)
(i.e., |U1| � |U2|) matches the results of numerical cal�
culations given in the previous section.

Let us consider the polarization structure of the
fields of self�oscillations. Formulas (32) and (34)
imply that the electric field component tangential to
cylindrical surfaces r = const has the linear polariza�
tion; in this case, we have

(42)

Thus, the electric field lines on the cylinder surface r =
const are helical. It follows from relation (42) that
these lines on the boundary r = a of a metamaterial
cylinder are orthogonal to the spiral conductors. When
radius r increases, the twist angle of the electric field
lines decreases.

The electric and magnetic field components lying
in the planes perpendicular to the cylinder axis are cir�
cularly polarized: Er = ±iEϕ, Hr = ±iHϕ. Inside and
outside the cylinder r = a, these fields with the circular
polarization have opposite directions of rotation.
These properties are typical of chiral objects [13].

The equation for the eigenfrequencies of quasi�
static oscillations can be derived from the following
relation expressing the equality of the energies stored

Ez  � Hz ,

Hr Hϕ  � Hz .=

Eϕ

Ez

����� a
r
�� ψ.cot–=

|Φ1
s(ϕ)|
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Fig. 9. Modulus of scattering diagram (ϕ) of the field

on the cylinder at degeneracy point 4, 9 for ka = 0.2…, ε =
–1.3, μ = –0.999895…, ψ = 0.8993626… .
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side the cylinder at degeneracy point 4, 9 for ka = 0.2…,
ε = –1.3, μ = –0.999895…, ψ = 0.8993626… .
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by the electric and magnetic fields of the resonant
structure under investigation:

(43)

This property is well known from the theory of bulk
resonators [18]. In formula (43), we have disregarded
component Hz in view of relation (41). Since the elec�
tromagnetic field is concentrated in the static region,
we can use formulas (32)–(34), (36), and (37) in (43).
Performing integration, we obtain Eq. (29). Thus, this
equation is equivalent in physical meaning to the
Thomson formula ω2 = 1/LC, which determines the
resonance frequency of the LC circuit.

μ r( ) Hr r ϕ,( ) 2 Hϕ r ϕ,( ) 2+[ ]r rd ϕd

0

2π

∫
0

∞

∫

=  ε r( ) Ez r ϕ,( ) 2 Er r ϕ,( ) 2 Eϕ r ϕ,( ) 2+ +[ ]r rd ϕ.d

0

2π

∫
0

∞

∫

5. CONCLUSIONS

We have numerically investigated the excitation of
a cylindrical multiturn wire helix filled with a metama�
terial by filaments of electric and magnetic currents.
In cylinders small as compared to the wavelength and
having a permittivity close to –1, the effect of degen�
eracy of high�Q resonators has been observed.

We have analyzed the dynamics of degeneracy of
self�oscillations of a chiral cylinder filled with a
metamaterial. It has been shown that there exist oscil�
lations for which the azimuthal dependence cos(mϕ)
of the field has different values of index m in near and
far fields. Resonances have been described analytically
in the quasi�static approximation. An explicit expres�
sion has been derived for eigenfrequencies of a cylin�
drical chiral cylinder filled with a metamaterial.
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Fig. 11. Spatial distribution of function |U1| in the (x, y) plane for ka = 0.2…, ε = –1.3, μ = –0.999895..., ψ = 0.8993626… .
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