
ISSN 1064�2269, Journal of Communications Technology and Electronics, 2014, Vol. 59, No. 5, pp. 400–406. © Pleiades Publishing, Inc., 2014.
Original Russian Text © A.P. Anyutin, I.P. Korshunov, A.D. Shatrov, 2014, published in Radiotekhnika i Elektronika, 2014, Vol. 59, No. 5, pp. 437–444.

400

INTRODUCTION

In study [1], an anisotropic cylinder with a surface
perfectly conducting along helical lines is considered
and the properties of 2D electromagnetic fields
formed during diffraction of plane waves by such a cyl�
inder are analyzed. The model of a cylindrical surface
with helical anisotropic conductivity well describes
single�turn and multiturn wire helices when the dis�
tance between the axes of neighboring conductors is
much smaller than the wavelength and the value of
gaps is within a certain interval [2, 3]. It is shown in [1]
that, resonance phenomena are observed at low fre�
quencies (when the cylinder’s diameter is much
smaller than the wavelength). These resonances occur
only for the specific direction of rotation of the polar�
ization plane of the incident circularly polarized wave
[1, 3].

When the cylinder is filled with a magnetodielectric
with the constitutive parameters  and  and
illuminated by a circularly polarized wave, the scat�
tered field is elliptically polarized under the resonance
conditions [4]. However, if , the polarization
becomes circular and the resonance frequencies coin�
cide with the resonance frequencies of the hollow cyl�
inder. Below, an anisotropic cylinder whose interior
medium is characterized by the parameters 
will be referred to as a hollow cylinder.

In [5], the 2D problem of excitation of a circular
metamaterial cylinder (  ) by a filament
source is investigated numerically. It is shown that
high�Q resonances exist in cylinders of a small diame�
ter. For the TM (TE) polarization, they occur for val�
ues of ε (μ) close to minus unity.

0ε > 0µ >

1εμ =

1ε = μ =

0,ε < 0µ <

It is natural to suppose that new specific effects can
manifest themselves in an object containing a chiral
structure in the form of a metal helix and metamaterial
filling. The purpose of this study is investigation of the
resonance properties of an electrically small metama�
terial cylinder under the assumption that the cylin�
der’s surface exhibits perfect anisotropic conductivity
along helical lines.

1. FORMULATION OF THE PROBLEM

Consider the problem of excitation of a circular
metamaterial cylinder with parameters ε and μ by a fil�
ament source. Cylindrical coordinates ( ) (see
Fig. 1) are used. Assume that, two�sided boundary
conditions of the perfect anisotropic conductivity
along helical lines are fulfilled on the cylinder’s sur�
face  [3]:

(1)

where the plus and minus signs correspond to the
outer  and inner  sides of the surface and
ψ is the twist angle of the helix. For the sake of defi�
niteness, helical lines are assumed to be right�handed
( ).

The cylinder is excited by electric� and magnetic�
current filaments located beyond the cylinder at the
point   (Fig. 1). The exciting currents are
assumed to be independent of the z coordinate. In this
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case, we deal with a 2D but double�potential problem.
As potentials, we choose the functions

(2)

Below, we use a vector notation, for example,

(3)

Vector function  satisfies the inhomogeneous
Helmholtz equation

(4)

where k is the wavenumber in free space, functions 
and  are determined by the formulas

(5)

 is the Dirac delta function, and the  and 

components of vector  specify the amplitudes of the
electric and magnetic exciting currents.

Quantities  and  entering boundary condi�
tions (1) are expressed through  and  as

(6)

Field  should satisfy the radiation condition,
i.e., as , have the form

(7)

Exciting field  is a solution to the inhomogeneous
Helmholtz equation in free space, and it is determined
from the formula

(8)

where  is the Hankel function. The pattern of field

 has the form

(9)

Equation (4), boundary conditions (1), and radia�
tion conditions (7) completely determine the bound�

ary value problem for field 

2. THE METHOD OF SOLUTION

The problem formulated above can be solved ana�
lytically by means of the method of separation of vari�
ables [1, 4, 5]. 

Let us introduce vectors   and  and

scalar 
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where

(14)

 are Bessel functions, and the prime denotes
differentiation with respect to the corresponding argu�
ment.

The total field inside the cylinder (r < a) can be rep�
resented in the form
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Fig. 1. Geometry of the problem.
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In (17),  denotes the scalar product

(18)

The field outside the cylinder ( ) consists of
two terms that are the incident and scattered fields:

(19)

The scattered field is determined from the formula

 (20)

where

(21)

(22)

The terms from formula (20) that contain vectors 

and  will conventionally be referred to as the non�
resonance and resonance components of the scattered
field. Note that the nonresonance field component
coincides with the field formed during scattering by an
isotropically conducting metal cylinder.

Scattering pattern  can be represented in the
form of a series:

 (23)

The formulas obtained in this section can be applied to
cylinders made from standard materials (  )
and to cylinders made from metamaterials (

). Refractive index n (see (14)) is assumed to be
positive for these cases.

Below, we consider only electrically small cylin�
ders, i.e., such that

(24)

Using the asymptotic representations of function

 for small values of the argument, we obtain

for  the form of vectors  and  accurate to
factors
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Hence, it follows from formulas (20) and (22) that, at
the frequency

(26)

the harmonic with number m of the resonance compo�
nent of the scattered field is a right�handed circularly
polarized wave and that this harmonic is not excited by
a left�handed circularly polarized field when 

3. LOW�FREQUENCY RESONANCES

Expressions (15) and (19) for near diffraction fields
and (23) for far diffraction fields contain resonance

denominators  determined by formula (13).
Let us examine the frequency dependence of these
denominators. Expression (13) is a complex function
of the parameter  and it does not vanish at the real
values of  Under conditions (24), the real part of
expression (13) substantially exceeds its imaginary

part. The real parts of denominators  vanish at
the points that are resonance frequencies. At these fre�
quencies, the only azimuthal harmonic, 
dominates in the diffraction field.

To determine the resonance frequencies, we apply
the known asymptotic decompositions of cylindrical
functions for small values of the argument. We use two
terms of the decomposition in positive powers for
Bessel functions and two terms of the decomposition
in negative powers of the argument for Hankel func�
tions. As a result, we obtain the following biquadratic
equation for resonance frequencies ka:

 (27)

Recall that the applicability of this equation is
restricted by the condition 

Consider the case when the expressions ( ) and
( ) are not small quantities. These conditions are
always fulfilled for materials with  and 
Then, the second terms in the curly brackets in expres�
sion (27) can be neglected. As a result, we obtain

(28)

This expression matches the results from study [4].
When  formula (28) for the resonance frequen�
cies coincides with condition (26), which provides for
the circular polarization of the harmonic with number
m. Thus, the scattered field in this case is right�handed
circularly polarized at all of the resonance frequencies.
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4. NUMERICAL RESULTS

The numerical results presented below are
obtained by summing series (15), (20), and (23) and
with the help of the modified method of discrete
sources [6, 7]. The results of these calculations are in
complete agreement. In all cases, the source coordi�
nate is assumed to be 

The resonance phenomena observed during dif�
fraction of plane waves by a hollow cylinder are inves�
tigated in [1]. First, let us discuss the spatial and fre�
quency properties of the fields in the case when a hol�
low cylinder with anisotropic conductivity along
helical lines is excited by a filament source situated in
the exterior of the cylinder.

We investigate the cylinder’s amplitude–frequency
characteristic (AFC) that is considered to mean the
dependence of the absolute value of the field at the
point   on the dimensionless parame�
ter ka proportional to the frequency. The AFC for the
case  is depicted in Fig. 2. The excitation is
assumed to be circularly polarized:  and 
The solid and dotted lines in this figure characterize
the behavior of the absolute values of the  and 
components. The frequency characteristic is a
sequence of resonance peaks. The resonances are enu�
merated so that, at resonance frequency , the azi�
muthal harmonic  dominates in the field.

It is seen that the amplitudes of components  and
 are equal at the resonance frequencies, a result that

indicates the circular polarization of the resonance
field.
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Figure 3 shows component  of the vector scat�
tering pattern at the resonance frequency  It con�

tains 10 identical lobes. Second component  of
the vector scattering pattern graphically coincides

with 

The dependence of field component  of the res�
onance oscillation  on radial coordinate r is
depicted in Fig. 4. It is seen that function  is
localized within a narrow interval near the surface r = a.
Function  practically coincides with function

 and, therefore, is not presented. Thus, the
spatial field structure in this case is the same as that of
a surface wave propagating over a medium interface.

Figure 5 illustrates the radial dependence of the
absolute value of field component  for the oscilla�
tion with the azimuthal index  We have found
that component  is a linear function of radius r
in the interior of the cylinder. The same property is
exhibited by function  Therefore (see (6)),

 and  inside the cylin�
der. This result is in agreement with the statement that
components  and  such that  and

 dominate in the field of the reso�
nance oscillation with the index m = 1 inside the cyl�
inder [3].

Let us investigate low�frequency oscillations in
wire helices filled with a metamaterial. The numerical
computation has shown that, depending on the values
of parameters ε, μ, and ψ, the fields of these oscilla�
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tions can exhibit various properties. Consider two spe�
cific examples.

(i) Let a cylinder be made from a metamaterial with
parameters ε and μ close to minus unity and let ε = μ.
Then, Eq. (27) yields the following expression for the
resonance frequencies:

(29)

Note that the resonance frequencies prove to be inde�
pendent of twist angle ψ. Expression (29) matches the

2 2 2( ) ( 1)(1 ) ( 1)(1 ),

2.

ka m m m m

m

= − − + ε = − − + μ

≥

results from [5], where metamaterial cylinders are
investigated in the cases of the TM and TE polariza�
tions. However, in contrast to [5], in the case under
study, the eigenmode field contains both components

 and , and angle ψ determines the relationship
between their amplitudes. In particular, the circular
polarization can be provided for a specific eigenmode
with the appropriately chosen angle ψ (see (26)).

The AFC of a cylinder filled with a metamaterial
characterized by the parameters  and  is
depicted in Fig. 6 (dashed curve). Such a cylinder does
not exhibit resonance properties, which follows from
formula (29). However, when the values of the consti�
tutive parameters slightly deviate form minus unity,
high�Q oscillations appear. This effect is illustrated by
the solid curve in Fig. 6.This curve is the ACF of a cyl�
inder with the parameters  and

 Approximate formula (29) yields the follow�
ing approximate values of resonance frequencies:

  and  These
quantities are in good agreement with the positions of
peaks on the solid curve. The numerical computation
has shown that the positions of these peaks on the solid
curve do not depend on angle ψ, a result that matches
Eq. (29).

At the resonance frequency , the field is circu�
larly polarized ( ) at the helix twist angle

 In the case of the right�handed circularly
polarized excitation (  and ), the scatter�

ing pattern is described by the function 
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Figure 7 illustrates the influence of helix twist angle

ψ on the resonance frequencies of the cylinder for the
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case when  Curves 1 and 2 are the AFCs of cylin�
ders with the parameters  and 
for the angles  and , respectively. It is
seen that the resonance frequencies in this case sub�
stantially depend on angle ψ; in particular, as ψ grows,
the frequency spectrum rarefies.

(ii) Consider the case when the metamaterial is
characterized by the parameters  and

 Curves 1 and 2 in Fig. 8 are the AFCs of a
cylinder with the aforementioned constitutive param�
eters for the twist angle  under two exci�
tation conditions. Note that, in contrast to the situa�
tion illustrated in Fig. 7, in this case, the form of the
AFC is radically changed: an only one resonance
occurs. The figure depicts only the plots for the 
component, because the values of the  component
are smaller by two orders of magnitude. Curve 1 corre�
sponds to the excitation by an electric�current fila�
ment (  and ), and curve 2 corresponds to
the excitation by a magnetic�current filament (
and ). The comparison of curves 1 and 2 shows
that the efficiency of the excitation by the magnetic
current is lower than the excitation by the electric cur�
rent by two orders of magnitude. Therefore, the con�
sidered 2D vector problem can be regarded approxi�
mately as the scalar problem corresponding to the case
of the TE polarization. Below, we consider only com�
ponent  and set  and 

A substantial difference of Fig. 8 from Figs. 6 and 7
is the presence of only one resonance in a wide fre�
quency interval. The index m = 5 is ascribed to twist
angle  corresponding to curves 1 and 2, because, at
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excited at the resonance frequency . Curve 3
corresponds to the twist angle differing from  by
0.1°. When the twist angle changes so insignificantly,
the resonance frequency increases by a factor exceed�
ing 1.5. Therefore, when angle ψ is specified arbi�
trarily, the considered frequency interval may contain
no resonance. A resonance occurs only when angle ψ
belongs to narrow intervals and is near specific discrete
values  These discrete values are associated with
resonances with different azimuthal indices m. To elu�
cidate this situation, the absolute value of field 
observed at the point   at the frequency

 is shown in Fig. 9 as a function of twist angle
ψ. It is seen that the curve exhibits a resonance character
and that, the only azimuthal harmonic  prevails
in the field at the resonance values of angles .

Setting  in Eq. (27), we obtain an approxi�
mate formula for the determination of resonance twist
angles 
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ψ3 = 0.8183,  and  These
values are in complete agreement with the positions of
resonance peaks in Fig. 9.
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 (curve 3)   and 
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2 1;A = 5 1.0832075,ψ = 1 1,A = 2 0.A =
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resonance oscillation is shown in Fig. 10 as a function
of the radial coordinate. As in the case of a hollow cyl�
inder (as well as a cylinder without a wire helix), the
field has the form of a surface wave localized near the
boundary  Note that the value of the field ampli�

tude at the point   is about  (
for the hollow cylinder, see Fig. 4).

CONCLUSIONS

High�Q low�frequency resonances in a multiturn
wire helix filled with a metamaterial have been found
and investigated. It has been shown that the studied
structure can be regarded as a ring resonator for sur�
face waves formed by both the medium interface and
the wire grating located on this interface. The polar�
ization and spectral properties of the resonance fields
have been analyzed. Note that these properties have
not been observed for simpler structures previously
investigated (e.g., structures without a metamaterial or
a multiturn helix).
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