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The mode characteristics of a planar five-layer W-lightguide with various refractive indices of the
intermediate layer are investigated, based on a numerical solution of the dispersion equation. It is
shown that it is easy to ensure the single-mode regime in a broad range of wavelengths, the
necessary field concentration in a large-diameter lightguide core, and efficient filtering of the
evanescent modes in W-lightguides by appropriately choosing the geometrical and optical
parameters. © 2014 Optical Society of America.
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INTRODUCTION

There currently is interest in optical waveguides with a W
profile1–4 because there is a prospect of widely using them in
various devices where there is a requirement of a single-mode
regime in a specified wavelength range, a large cross section
of the fundamental mode (and, as a result, a lower power den-
sity of the radiation in the core), and also low optical losses of
radiation at a bend. The last condition can also be satisfied
with appropriate falloff (loss) of radiation density in the inter-
mediate layer of the W-lightguide (between the core and the
outer cladding).

The above can be achieved by correctly choosing the
design of the W-lightguide, which depends on at least five
parameters: the three values of refractive index n1, n2,
and n3 (n1 > n3 > n2) and the a and b values (Fig. 1). A
W-lightguide with the required parameters can be created
by the widely used MCVD technology, which under modern
conditions makes it possible to create a lightguide with a
specified structure and refractive-index contrast. For example,
a W-lightguide can be fabricated with increased contrast, i.e., a
relatively large (n1 − n2) difference and at the same time a
small (n1 − n3) refractive-index difference of the layers, con-
trolled to the necessary extent (at a level of about 10−3).1

As follows from the calculations, the W configuration
makes it easier to meet the contrast requirements indi-
cated above.

The photonic-crystal waveguides that are widely used at
present (see, for example, Skibina et al.’s review5), which in-
clude microstructured lightguides and lightguides with a
Bragg structure, possess a rich spectrum of properties and
make it possible, among other things, to obtain large-diameter
guided modes (with a core size of about 40λ or larger6). How-
ever, they have still higher sensitivity to bending and a fairly

complex fabrication technology. In turn, W-lightguides
possess more limited possibilities than photonic-crystal wave-
guides but are simpler and consequently more easily fabri-
cated. At the same time, in a number of cases in which
nonlinear processes are undesirable or, on the other hand,
when it is necessary to increase their efficiency, W-lightguides
can be much more efficient for certain applications3 than (at
least) standard lightguides with a stepped refractive index,
since they promise to be less sensitive to bending.

This paper is devoted to an investigation of the main char-
acteristics of the modes in a planar five-layer W-lightguide, as
a function of the contrast of the refractive- index profile. The
results obtained by the authors in Ref. 2 will be used, particu-
larly for the numerical calculations and the construction of
graphs.

THEORY

It is assumed (see Fig. 1) that the values of n1, n2, and n3
are given, as well as those of a and b (in micrometers), and that
the following condition is satisfied:

n1 > n3 > n2: (1)

The only component (∂∕∂y � 0) of the electric field of the
TE mode has the form

Ey � E�x� exp�−iβz� (2)

and satisfies the wave equation

d2E�x�
dx2

� �k2n2�x� − β2�E�x� � 0; (3)
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where β � β0 − iβ00 is the propagation constant of the mode,
and k � ω∕c.

Using the continuity conditions of the functions
Ey ∼ E�x� and Hz ∼ dE�x�∕dx at points x � a and x � b,
the solution of Eq. (3) and the dispersion equation for finding
the wave numbers of the modes can be represented, respec-
tively, in the form of Eqs. (4) and (6):

E�x�

�

8>>><
>>>:

A
h
1� w−v

w�v exp�−2w�b − a��
i
f �x� 0 ≤ x ≤ a;

A
h
1� w−v

w�v exp�−2w�b − x��
i
exp�−w�x − a�� a ≤ x ≤ b;

A
h
1� w−v

w�v

i
exp�−w�b − a�� exp�−v�x − b�� x ≥ b;

(4)

where f �x� � cos�ux�∕ cos�ua� for even modes and f �x� �
sin�ux�∕ sin�ua� for odd modes; u, w, and v are the transverse
wave numbers

u2 � k2n21 − β2;

w2 � β2 − k2n22;

v2 � β2 − k2n23; (5)

F�v� � wC cos�ua� − uD sin�ua� � 0 for even modes;

(6a)

F�v� � wC sin�ua� � uD cos�ua� � 0 for odd modes:

(6b)

Here

C � v cosh�w�b − a�� � w sinh�w�b − a��;
D � w cosh�w�b − a�� � v sinh�w�b − a��: (7)

The internal transverse wave numbers u and w that appear
in Eqs. (4), (6), and (7) should be regarded as functions of
variable v (the external transverse wave number v), which
are determined from

u2 � −v2 � k2�n21 − n23�;
w2 � v2 � k2�n23 − n22�; (8)

which follow from Eq. (5).

The roots of Eq. (6) can be computed by Newton’s
method:7

vm�1 � vm −

F�vm�
F 0�vm�

: (9)

It follows from Eq. (7) that

dw

dv
� v

w
;

du

dv
� −

v

u
: (10)

Using Eq. (10), we get from Eqs. (6) and (7) an explicit
expression for the derivative of the function F�v�:

F 0�v�

� C

�
v

w
cos�ua� �

�
−

u

w
� v�w2 � u2�

uw
a −

uv

w
b

�
sin�ua�

�

�D

�
�1� vb� cos�ua� � u

v
sin�ua�

�
for even modes;

(11a)
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w
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uw
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uv

w
b

�
cos�ua�

�

� D

�
�1� vb� sin�ua� − u

v
cos�ua�

�
for odd modes:

(11b)

RESULTS OF THE CALCULATIONS

We recall that undamped directed waves correspond to
the actual positive values of u, w, and v that are found by solv-
ing dispersion Eq. (6), using Eq. (8). The complex roots
v � v0 � iv00 of the same Eq. (6) with a negative real part
v0 < 0 correspond to evanescent waves whose losses are cal-
culated from

α � 20 log�e� × 106β00 dB∕m; (12)

where β00 is substituted numerically in μm−1. Finally, when
v � 0, dispersion Eq. (6) transforms into an equation for de-
termining the critical frequencies of the W-lightguide2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n23 − n22

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 − n23

p tanh

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n23 − n22

q
�b − a�

�

� tan

�
ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 − n23

q �
for even modes; (13a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n23 − n22

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 − n23

p tanh

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n23 − n22

q
�b − a�

�

� cot

�
ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 − n23

q �
for odd modes: (13b)

It is obvious that the parameters that determine the char-
acteristic properties of a W-lightguide are the refractive index
n2 of the intermediate layer and its width �b − a�.

FIG. 1. Schematic illustration of the transverse refractive-index distribution
in a planar five-layer light-conducting structure.
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Using Eqs. (13a) and (13b), we find the limits of the single-
mode and two-mode regimes of certain configurations of
W-lightguides. Figure 2(a) shows the calculated dependence
of the cutoff frequency of the fundamental mode (the lower
limit of the shaded zone), the dependences of the cutoff fre-
quency of the first, odd mode (the upper limit of the shaded
zone), and the cutoff frequency of the second, even mode
(upper curve) on the refractive index n2 of the intermediate
layer (1 ≤ n2 ≤ n3) of the W-lightguide with fixed values of
the parameters (n1 � 1.456, n3 � 1.453, a � 9.5 μm, and
b � 10 μm). The points that lie in the darkened zone corre-
spond to the single-mode regime, which has zero cutoff of
the fundamental mode in the interval 1.395 < n2 < n3, and
the indicated regime is implemented in themaximum frequency
range at the limit of the interval (in this case, when n2 � 1.395).
The straight line parallel to the horizontal axis at the levelω∕c ≈
4.054 μm−1 corresponds to radiation with wavelength
λ � 1.55 μm. As can be seen from the figure, the given
W-lightguide has two modes in a wide range of variation of
the refractive index (1 < n2 < 1.445) at that wavelength,
whereas it changes to three-mode when 1.445 < n2 < n3.

Let us vary the width of the intermediate layer of the light-
guide under consideration while satisfying the condition that
the cutoff frequency of the fundamental mode remains zero in
the entire interval of variation of n2 (1 ≤ n2 ≤ n3). This

requires the use of the inequality that follows from the require-
ment that the right-hand side of Eq. (13a) is greater than or
equal to the left-hand side no matter how small the value
of k is,

a ≥ �b − a� n
2
3 − n22

n21 − n23
: (14)

It is obvious that, if this inequality is satisfied for some
value n̄2, it is even more strongly satisfied for larger values:
n̄2 ≤ n2 ≤ n3. We rewrite inequality (14) in the form

a ≥ b
n23 − n22
n21 − n22

: (15)

It follows from this inequality that, when n1 � 1.456,
n3 � 1.453, b � 10 μm, and n2 � 1, parameter a (the half-
width of the lightguide core) must be about 9.922 μm ≤
a ≤ b. Let a � 9.93 μm, and then the limits of the single-
mode regime of a W-lightguide take the form shown in
Fig. 2(b). As expected, a lightguide was obtained with zero
cutoff of the fundamental mode on the entire interval 1 ≤
n2 ≤ n3. At a wavelength of 1.55 μm, the given W-lightguide
has two modes in the interval 1 < n2 < 1.369, whereas it ac-
quires three modes when 1.369 < n2 < n3. At a wavelength of

FIG. 2. Cutoff frequencies of the fundamental mode (1), the first odd mode (2), and the second even (3) mode of a W-lightguide with parameters n1 � 1.456,
n3 � 1.453, a � 9.5 μm, and b � 10 μm (a); n1 � 1.456, n3 � 1.453, a � 9.93 μm, and b � 10 μm (b); n1 � 1.456, n3 � 1.454, a � 9.5 μm, and b � 11 μm
(c) versus the refractive index n2 of the intermediate layer (1 ≤ n2 ≤ n3).
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2 μm (ω∕c ≈ 3.14 μm−1), it becomes bimodal in the entire in-
terval 1 ≤ n2 ≤ n3.

It is easy to choose the parameters of a waveguide struc-
ture so that it is single-mode for radiation at a definite wave-
length—for example, 1.55 μm. It follows from the calculation
given in Fig. 2(c) for the zones of the single-mode and
two-mode regimes of a W-lightguide with parameters
n1 � 1.456, n3 � 1.454, a � 9.5 μm, and b � 11 μm that,
at a wavelength of 1.55 μm, the given W-lightguide is single-
mode in the range 1 < n2 < 1.4, whereas it becomes two-
mode when 1.4 < n2 < n3.

For definiteness, let us consider a W-lightguide with a
reduced intermediate layer (n1 � 1.456, n3 � 1.453,
a � 9.93 μm, and b � 10 μm). Such a structure is obviously
not optimal but is convenient for representing the results of a
calculation of the mode characteristics in the entire range of
variation of the refractive index n2 of the intermediate layer
(1 ≤ n2 ≤ n3). The form of the resulting dependences will
have a common character for any planar W-lightguides.

Most importantly, we used the dispersion Eqs. (6a) and
(6b) to calculate the transverse wave numbers u, w, and v,
which determine the transverse field distribution given by
Eq. (4) for the directed (undamped) modes, in the internal, in-
termediate, and external layers of the waveguide, respectively,
as well as the propagation constant β given by Eq. (5). Figure 3
shows how the external transverse number v [λ � 1.55 (curve
1), 2 μm (curve 2)] and the internal transverse number u
[λ � 1.55 (curve 3), 2 μm (curve 4)] of the fundamental mode,
as well as the external v [λ � 1.55 (curve 5)] and internal u
[λ � 1.55 (curve 6)] transverse wave numbers of the first
odd mode depend on parameter n2. Both v and u vary insig-
nificantly in the entire interval 1 ≤ n2 ≤ n3; moreover, the in-
ternal wave number u weakly depends on the wavelength by
comparison with the external wave number v. However, such a
dependence of the wave numbers is characteristic of the modes
far from their cutoff. Close to it, this dependence shows up
very distinctly. Thus, a second even mode appears at
n2 � 1.369, at a wavelength of 1.55 μm. The external and

internal wave numbers of the second even mode in the interval
1.369 ≤ n2 ≤ n3 now form curves 7 and 8, respectively,
demonstrating a steeper variation rate.

The result of calculating the intermediate transverse wave
number w of the fundamental mode [λ � 1.55 (curve 1) and
2 μm (curve 2)] and the second even mode [λ � 1.55 μm
(curve 3)], shown in Fig. 4, indicates that w strongly (by com-
parison with v and u—see Fig. 3) depends on the refractive
index n2 of the intermediate layer and the wavelength of the
radiation. The dependence of w on n2 for the first odd mode, at
wavelength 1.55 μm, virtually coincides with the similar
dependence for the fundamental mode �weven − wodd�∕w ≈
0.01 and therefore is not shown here.

As can be seen from Fig. 5, reducing n2 (strengthening the
contrast of the waveguide’s refractive-index profile) increases
the field concentration in the light-conducting layer, and this
in turn substantially reduces the losses at a bend in W-
lightguides by comparison with standard stepped waveguides.
Moreover, the field concentration of the fundamental mode at
a wavelength of 1.55 μm (curve 1) exceeds the analogous one
at λ � 2 μm (curve 2). The behavior of the dependence of the
field concentration of the first odd mode at λ � 1.55 μm has a
similar character (curve 3). The degree of the field

FIG. 3. External transverse wave number v of the fundamental mode
[λ � 1.55 (1), 2 μm (2)] and its internal transverse wave number u
[λ � 1.55 (3), 2 μm (4)], as well as the external and internal wave numbers
of the first odd mode [λ � 1.55 (5) and (6)] and the second even mode
[λ � 1.55 (7) and (8)] of a W-lightguide with parameters n1 � 1.456,
n3 � 1.453, a � 9.93 μm, and b � 10 μm versus the refractive index n2
of the intermediate layer.

FIG. 4. Intermediate transverse wave number w of the fundamental mode
[λ � 1.55 (1), 2 μm (2)], as well as intermediate wave number of the second
even mode [λ � 1.55 (3)] of a W-lightguide with parameters n1 � 1.456,
n3 � 1.453, a � 9.93 μm, and b � 10 μm versus the refractive index n2
of the intermediate layer.

FIG. 5. Field concentration of the fundamental mode [λ � 1.55 (1), 2 μm
(2)] and the first odd mode [λ � 1.55 (3)] of the W-lightguide considered here
versus the refractive index n2 of the intermediate layer.
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concentration was estimated by coefficient η � E�b�∕Emax

(a smaller value of the coefficient corresponds to a larger field
concentration)2

η �
���� w cos�ua�
w ch�w�b − a�� � v ch�w�b − a��

���� for even modes;

(16a)

η �
���� w sin�ua�
w ch�w�b − a�� � v ch�w�b − a��

���� for odd modes:

(16b)

Evanescent modes play an appreciable role in a
W-lightguide. Such modes, as pointed out above, correspond
to the complex roots of dispersion Eqs. (6a) and (6b) of the
external transverse wave numbers v � v0 � iv00, which
determine the imaginary part of the propagation constant

β � β0 − iβ00 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n23 � v2

q
(17)

and, in the final analysis, the losses to radiation given by
Eq. (12). The distribution of roots on the complex plane
has the lobed structure shown in Fig. 6(a),2 with the minimum
losses possessed by the evanescent modes with the smallest
imaginary part jβ00j. Therefore, to stabilize the directed-mode
regime, the W-lightguide parameters need to be chosen to en-
sure effective filtering of the evanescent (parasitic) modes,
which possess the minimum losses. To do this, it is useful

to track how the wave numbers v of the indicated modes be-
have as the refractive index of the intermediate layer varies.
The first fourteen values of the external transverse wave num-
ber v (curves 1 and 2) for the evanescent modes at λ �
1.55 μm and the same number of values of v (curves 3 and 4)
at λ � 2 μm, computed for n2 � 1, are shown in Fig. 6(b).
The roots given by curves 1 and 3 are solutions of dispersion
Eq. (6a) for even modes, while the roots given by curves 2 and
4 are the solutions of dispersion Eq. (6b) for odd modes. The
roots that correspond to the minimum losses (the first three for
the evanescent modes at wavelength 1.55 μm and one for the
evanescent mode at wavelength 2 μm) are shown by an ellipse.
Their dependences on the refractive index of the intermediate
layer are shown in Fig. 7. It can be seen from the figure that, as
n2 increases (as the contrast of the refractive-index profile de-
creases), the imaginary values jv00j of the roots decrease. More-
over, for a definite value of the refractive index (in this case,
when n2 ≈ 1.36), the imaginary part of the wave number of
the evanescent mode with minimal losses at λ � 1.55 μm be-
comes equal to zero (v � −0.0625, point 7). The position of
point 7 is found by solving the following system of equations:

�
F�v; n2� � 0

F 0�v; n2� � 0
: �18�

A further increase of the refractive index of the intermedi-
ate layer by Δn2 ≈ 0.01 causes a second even mode to appear
at wavelength 1.55 μm with n2 ≈ 1.37 and v � 0 (see Fig. 3,
curves 7 and 8).

It follows from what was said above that, in a W-
lightguide with a fairly contrast refractive-index profile, it
is possible to ensure a high degree of concentration of the
directed mode and effective filtering of the evanescent modes
in the given wavelength region. For instance, for a structure
with n1 � 1.456, n3 � 1.454, a � 9.5 μm, and b � 11 μm in
which n2 � 1.38, the field concentration in the fundamental
mode at a wavelength of 1.55 μm is η ≈ 0.009, while the
damping of the evanescent mode with the smallest losses
is α ≈ 54 dB∕m.

In this case, the refractive index n2 of the intermediate
layer must not exceed the critical value n2k , for which the
losses of the evanescent mode at the working frequency
become negligible.

FIG. 6. Calculated values of the external transverse wave number v of the
evanescent modes (λ � 1.55 μm), computed in the range jv00j < 90 (a) and of
the fist fourteen (the smallest in modulus) values of v [λ � 1.55 (1) and (2),
2 μm (3) and (4)] (b) of the W-lightguide considered here when n2 � 1.

FIG. 7. Dependence of the three (smallest in modulus) roots of the
dispersion equation [λ � 1.55 (1, 2, 4)] and of the one (smallest in modulus)
root [λ � 2 μm (3)] (circled in Fig. 6) for various values of the refractive index
of the intermediate layer n2 � 1 (1), 1.056 (2), 1.156 (3), 1.256 (4), 1.31 (5),
1.35 (6), 1.36 (7), 1.37 (8), 1.39 (9), 1.426 (10), 1.446 (11), and 1.453 (12).
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We should point out that the field distribution in the ex-
ternal field of the waveguide sharply varies when n2 exceeds
the critical value n2k but remains smaller than the value at
which a new mode appears: n2k ≤ n2 ≤ n2k � Δn2 (in the case
considered here, Δn2 ≈ 0.01), and this can be used in devel-
oping waveguide splitters and electro-optic modulators.

The size of the Δn2 interval depends both on the radiation
frequency and on the geometrical and optical parameters of the
W-lightguide. For instance, in the zone of the two-mode re-
gime in Fig. 2(a), it has the value Δn2 ≈ 0.001 at wavelength
1.55 μm.

CONCLUSION

The planar five-layer model has been used to obtain
and analyze the relationship of the modal dispersion of a
W-lightguide in a wide range of variation of its parameters.
In particular, the behavior of the directed and evanescent
modes as the contrast of the refractive-index profile varies
has been investigated in fairly great detail.

It has been shown that a special role is played by the width
and refractive index of the intermediate layer in a wide range
of parameters that determine the properties of a W-lightguide.
The choice of suitable values of just these parameters can sub-
stantially expand the zone of the single-mode regime, can op-
timize the size of the fundamental mode, can reach a high field

concentration, and, as a consequence, can obtain small bend-
ing losses of the radiation.
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