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1. INTRODUCTION

The electromagnetic field near a planar boundary
separating media with material parameters ε = μ = 1
and ε = μ = ⎯1 has unusual properties. For example,
the problem of the excitation of a half�space filled
with a metamaterial with parameters ε = μ = ⎯1 by a
point source has no solution, and surface waves with
a continuous spectrum of propagation constants exist
at the interface [1]. When bodies made of metamate�
rials are excited by a point source located near their
boundaries, surface waves whose fields cannot be
described by the methods of geometrical optics
emerge.

Let us discuss in more detail the properties of the
wave fields near planar and curved boundaries in the
two�dimensional problems of cylindrical�wave dif�
fraction by bodies made of metamaterials whose per�
mittivity and permeability are close or equal to minus
one.

To be specific, we will consider the case of TM�
polarization where the components Hz(x, y), Ex(x, y),
and Ey(x, y) are present in the electromagnetic field.
The diffraction problem is reduced in this case to find�
ing the scalar function U(x, y) = Hz(x, y) that should
satisfy the Helmholtz equations outside and inside the
body, the corresponding boundary conditions on its
surface, and the radiation conditions at infinity. The
incident field U0(r, ϕ) is specified in the form

(1)

where  is the Hankel function, k is the wave num�
ber in a free space, (r, ϕ) and (r0, ϕ0) are the polar

U0 r ϕ,( ) H0
2( ) k r2 r0

2 2rr0 ϕ ϕ0–( )cos–+[ ],=

H0
2( )

coordinates of the observation points and the source,
respectively. The time dependence of the fields is
described by the factor exp(iωt).

2. DIFFRACTION BY A HALF�SPACE

The problem of the excitation of a half�space filled
with a metamaterial (see Fig. 1) was studied analyti�
cally in [1]. In this paper, the problem was shown to
have no solution at ε = μ = ⎯1. Under the assumption
that ε and μ are real quantities and approach minus
one along the curve εμ = 1 (for example, ε = –1 + δ,
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μ = –1 – δ,   0), it was established that the field
increases indefinitely according to the law

(2)

where the function V(x, y) is defined by the integral

(3)

where h is the transverse propagation constant.
The three�dimensional problem of the excitation

of a half�space made of a metamaterial by an electric
dipole parallel to the interface between the media was
studied numerically in [2, 3]. The metamaterial was
assumed to have small heat losses: ε = –1 – iδ and μ =
–1 – iδ. The field was shown to increase when δ  0
according to the law 1/δ, which is consistent with
Eq. (2) (in these calculations, the losses reached very
small values, δ ~ 10–10).

Integral (3) can be written in an equivalent form
that is more convenient for numerical calculations:

(4)

where N0 is the Neumann function.
Figure 2 presents normalized distributions of the

fields along the interface x = 0 for various values of the
parameter kr0 that characterizes the source’s distance

δ
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π
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∫

from the interface x = 0. The field has a multilobe
interference pattern and is concentrated near y = 0.
Both the width of the main lobe and the level of the
side lobes decrease with decreasing parameter kr0.

It follows from Eq. (4) that the coordinate depen�
dence of the field at y = 0 is described by the expression

(5)

where H0 is the Struve function [4]. Figure 3 shows
normalized graphs of functions (5) for various values
of the parameter kr0. It can be seen from the figure that
the fields decrease monotonically with increasing dis�
tance from the interface between the media and have a
form typical of surface waves.

It follows from Eq. (2) and Figs. 2 and 3 that there
is subwavelength field localization at the point with
x = 0 and y = 0 when ε  –1 and μ  –1, i.e., the
field is concentrated in a region whose size is consid�
erably smaller than the wavelength λ = 2π/k.

Recall that, according to (2), the field increases
indefinitely when ε  –1, and, consequently, its
value at the point with x = 0 and y = 0 can exceed con�
siderably the magnitude of the exciting field at this

point (kr0).

3. DIFFRACTION BY A CIRCULAR CYLINDER

Consider the problem of diffraction by a circular
cylinder of radius a with parameters ε < 0 and μ < 0
(see Fig. 4).

This problem admits an analytical solution by the
variable separation method (Rayleigh series [5]). In

V x 0,( ) N0 kr0 kx+( )– H0 kr0 kx+( ),+=

H0
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Fig. 2. Normalized distribution of the field magnitude on
the x = 0 plane when ε  –1, μ  –1, r0 = 1.0 (1),
0.5 (2), and 0.1 (3).
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Fig. 3 Normalized distribution of the field magnitude
along the line y = 0 when ε  –1, μ  –1, r0 = 1.0
(1), 0.5 (2), and 0.1 (3).
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particular, the field inside the cylinder can be written
as [6]

(6)

where

(7)

(8)
Jm is the Bessel function; the prime denotes differenti�
ation with respect to the argument.

The field outside the cylinder (r ≥ a) consists of two
terms, the incident and scattered fields:

(9)

The scattered field Us in the far field zone (kr  ∞) is

(10)

where Φs(ϕ) is the scattering pattern. The pattern of
the incident field U0(r, ϕ) is expressed by the formula

(11)

We will not provide the formulas that were used to
calculate the field outside the cylinder and to calculate
the scattered field pattern; they are contained in [6].

Note that the convergence of series (6) slows down
significantly at ε = μ = –1 and ka � 1. The behavior of
the denominator in Eq. (6) when m  ∞ is responsi�
ble for this. At ε = μ = –1, we have

(12)

U r ϕ,( ) 2i
πka
��������–=

× δmHm
2( ) kr0( )Jm knr( ) mϕ( )cos

m 0=

∞

∑

× Hm
2( ) ' ka( )Jm kna( ) n

ε
��Hm

2( ) ka( )Jm' kna( )–
⎩ ⎭
⎨ ⎬
⎧ ⎫

1–

, r a,<

δm
1, m 0,=

2, m 1,≥⎩
⎨
⎧

=

n εμ,=

U r ϕ,( ) U0 r ϕ,( ) Us r ϕ,( ).+=

Us r ϕ,( ) Φs ϕ( ) 2
πkr
�������⎝ ⎠

⎛ ⎞
1/2

ikr– iπ
4
����+⎝ ⎠

⎛ ⎞ ,exp∼

Φ0 ϕ( ) ikr0 ϕcos( ).exp=

Hm
2( ) ' ka( )Jm kna( ) n

ε
��Hm

2( ) ka( )Jm' kna( )–

=  Hm
2( ) ' ka( )Jm ka( ) Hm

2( ) ka( )Jm' ka( )+

For m � ka � 1, the following asymptotic representa�
tions are valid [4]:

(13)

Therefore,

(14)

and, consequently, the principal term of the denomi�
nator of asymptotic form (12) becomes zero when
m ∞, which explains why the convergence of
series (6) deteriorates.

The numerical results presented below were
obtained both by summing the Rayleigh series and
using a modified method of discrete sources [7, 8].
The results of these calculations are in complete agree�
ment with one another.

Figure 5 shows the distributions of the field magni�
tude along the cylinder surface. Curves 1–5 corre�
spond to different diameters of the cylinder. The dis�
tance from the source to the cylinder surface was
assumed to be fixed and equal to k(r0 – a) = 1. It can
be seen that the field is concentrated in the direction to
the source (ϕ = 0) and that the spot size determined
from the distance between adjacent field minima is the
same for all curves and approximately equal to λ/10,
i.e., the subwavelength field localization effect mani�
fests itself.

The field concentration near the cylindrical surface
is also observed along the normal to it. This can be

=  d
d ka( )
����������� Hm

2( ) ka( )Jm ka( )[ ].
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Fig. 4. Metamaterial cylinder; the geometry of the problem.
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Fig. 5. Distribution of the field magnitude on the cylinder
surface for ε = μ = –1, kr0 = ka + 1.0, ka = 2.4 (1), 4 (2),
8 (3), 16 (4), 20 (5); l/λ = kaϕ/2π.
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seen from Fig. 6, where the dependence of the field on
radial coordinate  is plotted for ka = 8 and
k(r0 – a) = 1. At other values of ka specified in Fig. 5,

the behavior of the  distribution is retained;
only the field amplitude at maximum changes. Quali�
tatively, the behavior of the field near a cylindrical
boundary coincides with its behavior near a planar
boundary (see Fig. 3). As in the case of a planar
boundary, there is subwavelength field localization
here at the point with r = a and ϕ = 0 [9]. It follows
from the calculations presented in [9] that the field
decreases monotonically with increasing distance
from the surface into the cylinder and no “focusing”
effects following from approximate representations of
geometrical optics exist. The problem of diffraction by
a large�size cylinder excited by the field of a distant
point source was investigated by the modified method
of discrete sources in [10]. A clear physical interpreta�

U r 0,( )

U r 0,( )

tion of the results based on the method of geometrical
optics is given in [10].

The field increases monotonically with increasing
cylinder radius a, as can be seen from Fig. 7. Such a
behavior of the field is consistent with the results of the
previous section, from which it follows that the cylin�
drical surface passes into a planar boundary when
a  ∞, and the diffraction problem has no solution
in this case.

The pattern of the field distribution in space and
the dependence of its amplitude on the frequency of
the exciting source change radically at small devia�
tions of ε and μ from minus one. Let us demonstrate
this using the following examples.

We will describe the behavior of the field in the fre�
quency band by the amplitude–frequency characteris�
tic (AFC), by which we will mean the dependence of
the field magnitude on the cylinder surface at the point
with r = a and ϕ = π on the dimensionless parameter
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Fig. 6. Radial distribution of the field magnitude in a cyl�
inder made of a metamaterial with parameters ε = μ = –1,
ka = 8, kr0 = 9.0, and ϕ = 0.

10

14

30

|U(a, 0)|

8
0

20

20

40

ka
2

50

Fig. 7. Maximum field magnitude on the cylinder surface
versus radius for ε = μ = –1, kr0 = ka + 1.0, and ϕ = 0.
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Fig. 8. AFC of a cylinder made of a metamaterial with
parameters ε = –1.001, μ = –0.98; kr0 = ka + 0.15; ϕ = π.
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Fig. 9. AFC of a cylinder made of a metamaterial with
parameters ε = –1.01, μ = ⎯0.98; kr0 = ka + 0.15; ϕ = π.
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ka. We neglect the frequency dispersion of the
metamaterial.

Figures 8 and 9 show the AFCs of cylinders with
parameters

(15)
and

(16)
The curves in Figs. 8 and 9 are the sequences of almost
equidistant resonance peaks. Despite the fact that the
material parameters (15) and (16) are very close, the
curves in Figs. 8 and 9 differ by the number of reso�
nances in the same frequency interval by more than a
factor of 2. The field distribution along the cylinder
surface and the scattering pattern at each of the reso�
nance frequencies are described with a high accuracy
by only one azimuthal harmonic cos(mϕ). The indices
m coincident with the resonance numbers in Figs. 8
and 9 (they are indicated for the three lowest reso�
nances) also differ by a factor of 2.

It is important to note that the amplitude of the
harmonic cos(mϕ) is very large in the near field (~108–
109) and remains fairly large in the far field (Φs(ϕ) is
~104, see Fig. 10). Note that the magnitude of the inci�
dent field pattern Φ0(ϕ) is equal to one.

Figure 11 shows the radial distribution of the mag�
nitude of the total field along the direction ϕ = π at the
same parameters as those in Fig. 10. It can be seen that
the curve contains two segments, kr < 10 and kr > 20,
on which the field is described by the functions  ~
(kr)–m and  ~ (kr)–1/2. These segments correspond
to the near and far field zones of the diffraction field.

The effects being discussed can be explained by
considering the cylinder as a ring resonator for surface
waves. Indeed, an undamped surface wave with a
propagation constant h that is determined from the
following relation [1] can propagate along the planar

ε 1.001, μ– 0.98–= =

ε 1.01, μ– 0.98.–= =

U
U

boundary of a half�space filled with a medium with
parameters ε < 0 and μ < 0:

(17)

The values of the material parameters at which this
surface wave exist are in the third quadrant of the (ε, μ)
plane and lie in regions 1 and 2 located between the
two lines intersecting at point (⎯1, ⎯1): the vertical
straight line ε = ⎯1 and the hyperbola μ = 1/ε
(see Fig. 12). In these domains, Eq. (17) simulta�
neously satisfies the conditions

h2

k2
���� ε ε μ–( )

ε2 1–
����������������.=

h2

k2
���� 1, h2

k2
���� εμ,> >

104

104

90°

0

2 × 104

2 × 104

3 × 104

3 × 104 60°

30°

0

330°

300°
270°

240°

210°

180°

150°

120°

Fig. 10. Scattered field pattern Φs(ϕ) for a cylinder at ε =
–1.01, μ = –0.98; ka = 4.62778205; kr0 = ka + 0.15.
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field outside the cylinder at ε = –1.01, μ = –0.98; ka =
4.62778205; kr0 = ka + 0.15.
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i.e., the conditions for a decrease of the surface�wave
field with increasing distance from the interface
between the media.

At ka � 1, we can neglect the curvature of the cyl�
inder surface and determine the resonance frequencies
of the ring resonator from the relation ha = m,
whence, given Eq. (17), the formula for the distance
between adjacent resonance frequencies follows:

(18)

The material parameters (15) and (16) lie in the region
of existence of the surface wave, and we will obtain,
respectively, Δ(ka) ≈ 0.3 and 0.8 from Eq. (18) for
these parameters. Note that the distances between
adjacent resonances in Figs. 8 and 9 in the range of
high frequencies are Δ(ka) ≈ 0.25 and 0.6. Thus, the
planar boundary model allows the resonance proper�
ties of a metamaterial cylinder to be described qualita�
tively.

Let us show that going away from the regime of
existence of surface waves changes fundamentally the
spatial and frequency distributions of the field. Let us
choose the following values of the material parameters
that are outside regions 1 and 2 in Fig. 12:

(19)

The AFC shown in Fig. 13 corresponds to this case.
We see that, in contrast to the curves in Figs. 8 and 9,
it contains no high�Q resonances. In addition, the
subwavelength field localization effect clearly mani�
fests itself at these values of the parameters, as can be
seen from Fig. 14 that presents the field distribution on
the cylinder surface at the frequency point ka = 6.
Thus, this effect takes place not only at ε = μ = ⎯1 but
also in some region of parameters ε and μ near point
(⎯1, ⎯1).

Δ ka( ) ε2 1–
ε ε μ–( )
����������������.=

ε 0.98, μ– 1.001.–= =

It also follows from Fig. 14 that the local maxima of
the field U(a, ϕ) on the cylinder surface exceed con�
siderably the amplitude of the incident field U0(a, ϕ) at
these points. Therefore, we can also talk about the
nonresonant electromagnetic field enhancement
effect on a cylindrical metamaterial boundary. Recall
that the field at the boundary increases with increasing
cylinder radius a (see Fig. 7). The limiting case of this
effect is illustrated by the problem of diffraction by a
half�space with parameters ε = μ = ⎯1, when the field
enhancement factor becomes infinitely large.

Figure 15 presents the scattering pattern for a cyl�
inder with parameters (19). The pattern contains a
large number of lobes with different amplitudes and
widths. Since the amplitudes of the lobes exceed one,
the contribution from the incident field in the far field
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Fig. 13. AFC of a cylinder made of a metamaterial with
parameters ε = –0.98, μ = –1.001; kr0 = ka + 0.15; ϕ = π.

|U(a, ϕ)|

−150
ϕ, deg

101

−50 0 100 15050−100

100

10−1

Fig. 14. Magnitude of the scattered field on the surface of
a cylinder made of a metamaterial with parameters ε =
⎯0.98, μ = –1.001; ka = 6, kr0 = 6.15.
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zone may be neglected, which is a confirmation of the
nonresonant field enhancement effect.

4. CONCLUSIONS

We investigated the spatial structure and spectral
properties of the electromagnetic fields near the
boundaries of bodies made of metamaterials. The
electromagnetic field emerging when a cylinder made
of a metamaterial with electrodynamic parameters
ε  –1 and μ  –1 is excited by a point source was
shown to depend significantly on the direction along
which these parameters in the (ε, μ) plane approach
the singular point (⎯1, ⎯1). We investigated the field
properties in the frequency band. We established the
regions of parameters where high�Q resonances exist.
The field at the resonance frequency was shown to be
concentrated near the boundary and to be described
with a high accuracy by one azimuthal harmonic
cos(mϕ). We found and investigated nonresonant
regimes characterized by the field concentration not
only near but also along the boundary. These regimes
are accompanied by subwavelength field localization,
when the spot size can be ~λ/10, and by nonresonant
enhancement, when the total field at the metamaterial
boundary can exceed considerably the magnitude of
the incident field in a wide frequency band.
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