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INTRODUCTION

In the recent decade, the interest in problems of
wave diffraction by compact metamaterial bodies
characterized by negative relative permittivity 
and negative relative permeability  (a negative
refractive index) has increased. Note that the pioneer
study where extraordinary (from the viewpoint of
ordinary media) effects of interaction of plane and
cylindrical waves with a homogeneous medium layer
with a negative refractive index were predicted was
published in 1967 [1], and an experimental observa�
tion of these effects was first reported in 2000 [2]. The
number of studies considering various aspects of inter�
action of waves with such a medium permanently has
been growing every year starting from 2000.

The methods used for solving the corresponding
problems of diffraction of electromagnetic waves by
compact metamaterial bodies include the geometric
optics (GO) method, the Kirchhoff approximation,
the Fourier method, the finite element method, and
the modified method of discrete sources (MMDS)
[3–13, 18]. However, we should note that many publi�
cations exhibit features of advertising materials and
contain a number of unjustified statements. For exam�
ple, certain studies state that a 2D structure consisting
of a perfectly conducting cylinder covered by a finite
layer of a homogeneous metamaterial with the relative
permittivity εr = –1 and the relative permeability

 ideally focuses an incident plane wave in the
interior and exterior of the metamaterial. From the

0rε <

0rµ <

1rµ = −

GO viewpoint, this means that the GO rays refracted
and reflected by the structure form an ideal focus in
the both interior and exterior of the shell by analogy
with a plane Veselago lens (see [4, 5] and the references
cited therein).

In this study, it is shown that, when a plane wave is
diffracted by such a structure, an ideal GO focus is not
formed but there are caustics of rays refracted and
reflected by the perfectly conducting cylinder and that
these caustics can have a cusp point. The amplitudes of
the refracted and scattered fields increase near such
caustics. In addition, we present and discuss examples
of the solution of the problem of diffraction of a cylin�
drical wave by this structure for various positions of the
cylindrical wave source.

1. FORMULATION OF THE PROBLEM 
AND DISCUSSION OF RESULTS

Consider the 2D problem of scattering of cylindri�
cal wave 

(1)

by a perfectly conducting cylinder of radius a0

enclosed in a meatamaterial shell of thickness d. The
outer radius of the shell is . The axis of the
metal cylinder coincides with the axis of the cylindri�
cal shell (Fig. 1). In addition, it is assumed that the
shell’s medium has relative permittivity  and rel�
ative permeability  i.e., is a metamaterial with

0( , )U r ϕ :

(2) 2 2
0 0 0 0 0( , ) ( 2 cos( ))U r H k r R rRϕ = + − ϕ − ϕ

1 0a a d= +
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the negative refractive index nr  – iν, where
quantity ν characterizes the medium loss.

Expression (1) contains the following quantities:
cylindrical spatial coordinates {r, ϕ} of the observation
point, cylindrical spatial coordinates {  } of the
point of wave source Q, wave number of free space k,

zero�order Hankel function of the second kind ,
and parameters a and d characterizing the geometry of
the scattering structure.

Total field  beyond the shell can be repre�
sented as the superposition of incident wave field (1)
and scattered field  in the form

(2)

We denote the field in the metamaterial 

As is known, fields  and  satisfy the
corresponding Helmholtz equations in the exterior
and interior of the shell and the corresponding bound�
ary conditions on contours  and  of
the shell (see Fig. 1). To solve numerically this bound�
ary value problem, we apply the MMDS [16, 17],
which enables us to obtain a solution with a controlled
accuracy. In this method, fields  and  are
represented as a superposition of the fields produced
by auxiliary cylindrical wave sources located on auxil�
iary contours   and  inside and
beyond contours ρ0(ϕ) and ρ1(ϕ). This representation
automatically satisfies the Helmholtz equations and
the Sommerfeld condition.

In the MMDS, the amplitude coefficients for the
fields of auxiliary cylindrical wave sources are found

r r= − ε μ

0,R 0ϕ

(2)
0 ()H ⋅

( , )U r ϕ

1( , )U r ϕ

( )

(2)
0

2 2
0 0 0 1

( , )

2 cos( ) ( , ).

U r H

k r R rR U r
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× + − ϕ − ϕ + ϕ
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( , )U r ϕ 2( , )U r ϕ

0 0( ) aρ ϕ = 1 1( ) aρ ϕ =

1( , )U r ϕ 2( , )U r ϕ

11( ),Σρ ϕ 21( ),Σρ ϕ 22( )Σρ ϕ

from the boundary conditions fulfilled at N points of
each of contours  and 

The accuracy of the solution to the problem is con�
trolled through calculating the discrepancy of the
boundary conditions at the centers of the intervals
between the points where the boundary conditions are
fulfilled exactly. At the aforementioned centers of
intervals, the boundary conditions are satisfied with
the worst accuracy [17].

The MMDS and the technique of its application to
a number of problems with a similar configuration of a
scatterer’s contour are described in detail in [16, 17].
Therefore, we will not discuss the peculiarities of the
MMDS application in the case under consideration
and only note that the scattering patterns presented
below are calculated with the maximum discrepancy
of the boundary conditions that does not exceed the

quantity  for any point of the corresponding
contours.

First, let us consider the problem of diffraction of
cylindrical wave (1) by a perfectly conducting cylinder
that has the electric radius  and is enclosed in a
metamaterial shell. The outer electric radius of the
shell is ka = 10. Thus, the electric thickness kd = ka –
ka0 of the shell is assumed to be  i.e., we deal to
with the case of a relatively thin shell. The cylindrical
wave source has the coordinates  and

 Physically, this means that the cylindrical wave
source is located in the far zone of the scatterer and the
incident wave has a plane front. Note that overall
dimension  of the shell satisfies the condition

 =  though the shell’s thickness is
smaller than the wavelength. Assume that the medium
of the shell is a metamaterial characterized by the rel�
ative permittivity  the relative perme�
ability µr = –1.0001, and the loss 

Figure 2 shows the calculated spatial distribution of
the equal�amplitude lines for the total field. There are
two regions inside the shell where the field amplitude
maxima are localized. One region is located along the
line  and the other, along two curved lines envel�
oping the illuminated segment of the interior cylinder.
Beyond the structure, the field amplitude maxima are
situated along the line  The amplitudes of these
maxima decrease as the distance from the outer
boundary of the shell grows. In addition, the distribu�
tion of the field amplitude in this region indicates that
the shell is an omnidirectional scatterer of the incident
field.

In order to interpret this distribution of field ampli�
tude maxima, let us consider the results obtained with
the use of the GO approximation. Obviously, in the
case of such a scatterer, the GO rays refracted by the
outer boundary of the shell can be divided into two
sets. The first set includes the GO rays that are
refracted by the outer boundary of the shell, do not fall
on the surface of the interior cylinder, and, hence, are

1( )ρ ϕ ( ).ρ ϕ

310−

Δ <

0 6ka =

4,kd =

0 700kR =

0 .ϕ = π

kD
2kD ka= 20 1,�

1.0001,rε = −

0.0001.ν =

,ϕ = π

.ϕ = π
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Fig. 1. Geometry of the problem.
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not reflected by it. The second set of GO rays consists
of the GO rays that are refracted by the outer boundary
of the shell, fall on the surface of the interior cylinder,
and are reflected by it. Depending on the electric
dimensions of the scatterer, each set of the GO rays
can form various types of caustics. Examples of GO ray
trajectories inside the shell with the aforementioned
parameters are calculated for these two sets and pre�
sented in Figs. 3a and 3b, respectively. It is seen from
Fig. 3a that, for the considered geometry of the shell,
the first GO ray set forms two separate branches of a
smooth caustic. The second GO ray set consists of two
subsets. The first subset includes the GO rays that are
reflected in the neighborhood of the point with the
coordinates  and  and form a caustic with
one cusp point (see Fig. 3b). The second subset
includes the GO rays that form no caustic upon reflec�
tion from the surface of the interior cylinder. Note that
none of the GO ray sets form focus points (i.e., points
where all refracted GO intersect) inside the shell. The
comparison of Figs. 3 and 2 shows that some of local
field maxima are situated just in the neighborhood of

0r a= ϕ ≈ π

the aforementioned caustics. The rest local field max�
ima are situated along the line  and are related
with the in�phase and antiphase summation of the GO
ray fields incident on and reflected by the surface of
the perfectly conducting cylinder for  and 
Thus, it follows from the ray pattern that the presence
of the main field maximum inside the shell is due to
the presence of the cusp point of the caustic of the GO
rays reflected by the interior cylinder rather than to the
existence of the focus point. In addition, the existence
and alternation of field maxima on the line 
beyond the structure is explained by the interference of
the incident (ϕ = 0) and reflected ( ) GO rays
rather than by focusing.

Now, let the cylindrical wave source have the coor�
dinates  and  i.e., be located in the near
zone of the shell.

The spatial distribution of equal�amplitude lines
calculated for this case is displayed in Fig. 4. The com�
parison of the data from Figs. 4 and 2 shows that taking
into account the curvature of the incident wave front

ϕ = π

0r a= .ϕ = π

ϕ = π

ϕ = π

0 25kR = ,ϕ = π

Fig. 2. Spatial distribution of equal�amplitude lines for the total field. The results are obtained for the shell’s thickness 
, and a plane incident wave.

4,kd =

1.0001rn = −
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Fig. 4. Spatial distribution of equal�amplitude lines for the total field. The results are obtained for the shell’s thickness
 , and a cylindrical incident wave.1.0001,rn = − 4kd =

120

150

180

210

240

(a) (b)

Fig. 3. Pattern of two sets of refracted GO rays inside a shell whose medium has the refractive index 1.0001.rn = −
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(a)

(b)

Fig. 5. Spatial distribution of the (a) total field amplitude and (b) equal�amplitude lines for the total field. The results are obtained
for the shell’s thickness  , and a plane incident wave.14,kd = 1.0001rn = −
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changes the position of the main maximum of the field
amplitude in the exterior of the shell: this maximum
shifts from the shell toward the source rather than
being situated near the shell. The general character of
the field focusing in the interior of the shell is retained.

Now, let us consider the influence of the shell
thickness on the structure of the scattered field. Within
the framework of GO, the structure of the GO ray set
and the presence and geometry of caustics substan�
tially depend on the geometry of the problem. In par�
ticular, it seems evident that an increase in the shell’s
thickness  should mainly affect the structure of the
refracted GO rays that are not reflected by the interior
cylinder. It follows from the results of studies [18, 19]
(where the problem of diffraction of plane and cylin�
drical waves by an electrically thick cylinder and a
metamaterial shell is investigated) that the GO rays
refracted by (transmitted through) the outer boundary
of the scatterer form a caustic with one cusp point.
Therefore, it should be expected that an increase in
thickness kd of the metamaterial layer covering the
metal cylinder will lead to field focusing inside the
shell on two caustics, each having one cusp point. This

kd

effect is illustrated by the calculated spatial distribu�
tions of the field amplitude and equal�amplitude lines
for the field that are depicted in Figs. 5a and 5b,
respectively. In the calculation, it is assumed that the
electric radius of the outer surface of the shell is ka =
20 and, hence, the shell’s thickness is .
The remaining parameters of the problem coincide
with the data of the problem considered above. It fol�
lows from the results presented in Fig. 5 that the field
in the interior of the shell is localized on two caustics.
The first caustic has one cusp point and is formed by
the GO rays that are refracted by the outer boundary of
the shell and do not fall on the interior perfectly con�
ducting cylinder. The second caustic has one cusp
point and is formed by the GO rays reflected by the
interior cylinder.

Now, let us consider the influence of the refractive
index on the structure of the near field of a metal cyl�
inder covered by a metamaterial shell. Assume that a
perfectly conducting cylinder has the electric radius

 and is covered by a cylindrical metamaterial
shell with the relative permittivity  the rela�
tive permeability , and the loss 

14 1kd = �

0 6ka =

1.4,rε = −

1.3rµ = − 0.0001.ν =

Fig. 6. Spatial distribution of equal�amplitude lines for the total field. The results are obtained for the parameters of the shell’s
medium  and  and a plane incident wave.1.4rε = − 1.3rµ = −
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The outer electric radius of the shell is  The
coordinates of a cylindrical wave source are 
and ϕ0 = π. Physically, this means that we deal with the
case of diffraction of a plane wave by an electrically
thin shell.

Figure 6 shows the spatial distribution of equal�
amplitude lines for the field calculated for this case. As

in the foregoing, here,  (see Fig. 2)
and we can notice field focusing on the aforemen�
tioned two types of caustics. We deal with the situation
when the field focusing on two caustic branches is pro�
nounced more distinctly than in the case illustrated in
Fig. 2. In addition, the effect of field leaking into the
shadow region is observed.

Let us place the cylindrical wave source at the point
with the coordinates  and  The rest
parameters of the problem are retained. The spatial
distribution of the field amplitude calculated for this
case is depicted in Fig. 7. It is seen from this figure that
the field distribution in the interior of the shell sub�
stantially differs from that observed in the case of the
diffraction of the plane wave. Thus, the process of field

10.ka =

0 700kR =

| | | | 1r r rn = ε μ ≈

0 25kR = .ϕ = π

leaking into the shadow region has a wave�like charac�
ter, a circumstance that is not observed in Fig. 6.

Now, let the medium of the metamaterial shell be
characterized by the relative permittivity 
the relative permeability , and the loss

. The remaining parameters are retained.
The spatial distribution of equal�amplitude lines cal�
culated for the cases of the incidence of plane and
cylindrical waves are presented in Figs. 8a and 8b,
respectively. The coordinates of the wave source are

 and . It is seen that, for the field inside
the shell, the caustics of refracted GO rays (i.e., the
rays that are refracted by the outer boundary and do
not fall on the interior metal cylinder) are so closely
spaced from the outer boundary that, actually, the field
is not focused on it. In the case of a cylindrical inci�
dent wave, the region into which the refracted field
leaks is reduced.

Thus, it follows from the results presented above
that the character of diffraction of a plane (cylindrical)
wave by a perfectly conducting cylinder that has large
electric dimensions and is covered by a metamaterial

0.5,rε = −

0.5rμ = −

0.0001ν =

0 25kR = 0ϕ = π

Fig. 7. Spatial distribution of equal�amplitude lines for the total field. The results are obtained for the parameters of the shell’s
medium  and  and a cylindrical incident wave.1.4rε = − 1.3rµ = −
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(a)

(b)

Fig. 8. Spatial distribution of equal�amplitude lines for the total field. The results are obtained for the refractive index of shell’s
medium  and (a) plane and (b) cylindrical incident waves.0.5rn = −
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layer is related with focusing of the refracted field on
two caustics. Each of the caustics can have one cusp
point. The case when the electric dimensions of such a
scatterer are commensurable with the wavelength calls
for additional consideration.
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