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INTRODUCTION

At optical frequencies, silver behaves as a supercrit�
ical plasma, since its complex permittivity 
satisfies the relationships   [1]. The value
of  monotonically decreases from –1 at the wave�
length λ = 340 nm to –30 at λ = 800 nm. Such a
behavior of the permittivity leads to resonance phe�
nomena occurring during scattering of electromag�
netic waves by particles with a size much smaller than
wavelength λ [2]. In particular, in the 3D problem of
diffraction of a plane wave by a dielectric sphere, the
dipole plasmon resonance occurs at  in the 2D
problem of diffraction by a circular cylinder, at 
Corresponding resonance frequencies for silver, λ =
354 nm and λ = 340 nm, lie in the ultraviolet part of
the spectrum.

As is known, the positions of plasmon resonances
in a spherical dielectric layer (nanoshell) can change
in a wide range under variation in the ratio between the
inner and outer shell radii [2]. In the case of a cylindri�
cal dielectric shell, the plasmon resonance frequencies
also obey this regularity [3].

Here, we investigate a nanostructure consisting of a
quartz nanofiber coated with a silver layer. The aim of
this study is to find the conditions for the plasmon res�
onances in the visible part of the optical range (400–
700 nm) and study both the dipole and multipole res�
onances.

1. FORMULATION OF THE PROBLEM

We consider a 2D problem of diffraction of a lin�
early polarized plane wave
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by a quartz wire coated with a silver layer (Fig. 1). We
use the Gaussian system of units and choose the time
dependence in the form  where  and c
is the speed of light in vacuum.

The dependence of the permittivity on the radius of
the investigated three�layered structure has the form
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where εq and ε are the quartz and silver permittivities,
respectively.
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Fig. 1. Geometry of the problem.
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The real and imaginary parts of the permittivity of
silver in the visible spectral range of electromagnetic
waves will be approximated by the functions obtained
by means of cubic spline interpolation of the experi�
mental data from [1] (Figs. 2 and 3).

Unlike silver, quartz exhibits significantly lower
heat loss in the investigated frequency range and its
permittivity weakly depends on λ. Therefore, we
assume that the permittivity of quartz is a real quantity,
εq = 2.16.

It is convenient to investigate the formulated dif�
fraction problem with the use of component zof the
magnetic field  =  The boundary�value
problem for function  is scalar.

Total field  satisfies the Helmholtz equation

(3)

Boundary conditions for function  are

(4)

The incident field is specified by the function
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The total field in the region r > b  consists of incident
field U0 and scattered field US

(6)

The scattered field in the far zone must satisfy the radi�
ation condition

(7)

where  is the scattering pattern. Components of
the electric field can be expressed through function

(8)

2. QUASI�STATIC DESCRIPTION 
OF PLASMON RESONANCES

If the dimensions of a scatterer are small relative to
the wavelength  then the wave field  in
the region  approximately satisfies the Laplace
equation

(9)

Quantities ε and εq do not enter this equation, but they
enter boundary conditions (4).

At certain discrete values of permittivity ε, homo�
geneous boundary�value problem (9), (4) has solu�
tions rapidly decreasing at  [4]. These eigen
oscillations can be obtained using the method of sepa�
ration of variables:
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Fig. 2. Dependence of the real part of permittivity of silver
ε' on the wavelength.
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Fig. 3. Dependence of the imaginary part of permittivity of
silver ε'' on the wavelength.
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As follows from (9) and (10),

(11)

Using boundary conditions (4), we can obtain a
system of homogeneous algebraic equations for
unknown coefficients Am, Bm, Cm, and Dm. Equating
the determinant of the system to zero, we arrive at the
dispersion equation for ε,

(12)

where

(13)

In [3], dispersion equation (12) was derived from
the rigorous solution of problem (3)–(7) obtained
using the method of separation of variables. The
authors of [3] investigated resonance denominators in
the Fourier expansion of the field with the use of
asymptotic representations for cylindrical functions of
small argument.

We denote the solutions of quadratic equation (12)

by 

(14)

Both roots are negative;  

and 

At , expression (14) transforms to the formu�
las obtained in study [4] for a cylindrical shell. In this

paper, the behavior of eigenfunctions  corre�

sponding to the two branches of eigenvalues,  and

, was investigated. A feature of functions  is
that they tend to zero at a certain point inside the
range (a, b).

The existence of nontrivial solutions of homoge�
neous Laplace equation (9) means that, at small values
of parameter kb, the solution of the inhomogeneous
boundary problem for Helmholtz equation (3)–(7)
will rapidly increase as permittivity ε approaches its

eigenvalues  In this case, the only harmonic,
, will dominate in the Fourier expansion.

Eigenvalues  significantly depend on parameter
α and can vary in a wide range. In particular, at α =

0.85, we have  = –19.5. In this case, as follows from
Fig. 2, the dipole plasmon resonance  arises in
the long�wavelength part of the visible range.

A very important characteristic of the structure is
the total scattering cross�section

(15)

Having calculated the dipole polarizability of the
structure from the static problem, we obtain the
expression for the total scattering cross section, which
is valid at 

(16)

At the negative value of ε, which equals

(17)

scattering cross�section (16) vanishes. Certainly, rig�
orous expression (15) cannot vanish. However, below,
we demonstrate that formula (17) makes it possible to
determine wavelength λ at which function σ(λ)
reaches a minimum.

3. NUMERICAL RESULTS

All numerical calculations of wave fields were per�
formed using the modified method of discrete sources
[5–7] applied earlier by the authors for studying the
problems of diffraction by plasma objects [8–10].

Let us consider the scattering properties of a nano�
structure with parameters b = 40 nm and α = 0.75.
Figure 4 shows the dependence of the total scattering
cross section on wavelength λ. It can be seen that, in
the investigated range of wavelengths, there are two
plasmon resonances (m = 1, 2). The permittivity
eigenvalues determined from formula (14) are

  Using the plot from Fig. 2, we
can determine corresponding resonance wavelengths.
The obtained values are consistent with the positions
of the resonance peaks in Fig. 4. Formula (17), which
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determines zeros of the quasi�static scattering cross�
section, yields  In accordance with Fig. 2,
this value corresponds to the wavelength λ ≈ 400 nm.
It can be seen in Fig. 4 that, indeed, function  has
a minimum near λ = 400 nm.

Let us show that, far from resonance frequencies,
calculations of the total scattering cross�section from
approximate quasi�static formula (16) and rigorous
numerical methods yield similar results. Indeed,
according to Fig. 2, at λ = 700 nm, we have ε ≈ –23;
using formula (16), we obtain  This value is
consistent with the numerically calculated data pre�
sented in Fig. 4.

Figures 5 and 6 show the absolute values of scatter�
ing patterns  at frequencies corresponding to the
dipole (m = 1) and quadrupole (m = 2) resonances.
Dashed lines depict the results calculated with consid�
eration for the real loss in silver (Fig. 3). Solid curves
correspond to the idealized lossless case (ε'' = 0).
Comparison of the solid and dashed curves shows that
the loss naturally reduces the level of the scattered
radiation and this effect is more pronounced for the
quadrupole resonance. Scattering patterns  for
both the dipole and quadrupole resonances can be
approximated with a high accuracy by the only har�
monic, 

The spatial structure of the near field of the qua�
drupole oscillation is illustrated in Fig. 7, where level
lines of function |U| are shown. The resonance oscilla�
tion is a standing surface wave whose field is localized
near the boundaries of the silver layer. Note that the
quadrupole resonance cannot arise in a solid silver cyl�
inder because of the heat loss [10].

Let us discuss evolution of plasmon resonances
with an increase in the value of parameter α. The
dependence of total scattering cross�section on λ for

0 4.6.ε = −

( )kσ λ

0.2.kσ ≈

( )Φ ϕ

( )Φ ϕ

cos( ).mϕ

lossy and lossless structures with parameters b = 40 nm
and α = 0.85 is presented in Fig. 8. In contrast to
Fig. 4, we have here three plasmon resonances (m = 1,
2, 3); the multipole resonance with index m = 3 exists
only at  and the dipole and quadrupole reso�
nances are shifted toward the long�wavelength region
of the visible range. Calculations have shown that scat�
tering patterns at frequencies corresponding to these
resonances are qualitatively the same as patterns in
Figs. 5 and 6. Using formula (14), we obtain

   As in the previous
case, corresponding wavelengths are consistent with
positions of resonance peaks of function σ(λ).
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Fig. 4. Dependence of the total scattering cross�section of
a structure with parameters b = 40 nm and α = 0.75 on the
wavelength. Solid and dashed curves correspond to ε = ε'
and ε = ε' –iε''.
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Fig. 5. Absolute values of scattering patterns of a structure
with parameters b = 40 nm and α = 0.75 at the wavelength
of the dipole resonance (λ ≈ 540 nm). Solid and dashed
curves correspond to ε = ε' and ε = ε' –iε''.
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Fig. 6. Absolute values of scattering patterns of a structure
with parameters b = 40 nm and α = 0.75 at the wavelength
of the quadrupole resonance (λ ≈ 430 nm). Solid and
dashed curves correspond to ε = ε' and ε = ε' –iε''.
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The plot of function  shown in Fig. 8 at λ ≈

475 nm has a minimum value of 9 × 10–3. When the sil�
ver layer is absent (ε = 1), the scattering cross�section
of the wire is estimated in the quasi�static approxima�
tion as

(18)

At λ = 475 nm and a = 0.85 × 40 nm, this expression
is equal to 2.7 × 10–2. Thus, the deposited silver layer with
a thickness of 6 nm decreases the scattering cross�section
of a quartz fiber by a factor of three. This effect is inde�

( ),kσ λ
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2

4 1
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2 1
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− επ
σ =

+ ε

q

q

pendent of heat loss in silver; solid and dashed curves in
Fig. 8 almost coincide near λ = 475 nm.

Figure 9 shows the absolute value of scattering pat�
tern  at the wavelength λ = 475 nm correspond�
ing to the minimum of the scattered power. The
dashed curve was calculated for the lossy case and the
solid curve, for the lossless case (ε'' = 0). It appeared
that this curve is described with a high accuracy by an
analytical function, which is a linear combination of
three harmonics, 1,   with real coeffi�
cients:

(19)

Thus, at λ = 475 nm, the scattered field can be consid�
ered as a superposition of three in�phase multipole
oscillations. Small value of the scattering cross�section
implies that the phase of complex pattern  is close
to π/2. This follows from the optical theorem [11],
which, in the lossless case , states the following:

(20)

In the presence of loss , the left�hand side of
formula (20) should be supplemented with a term hav�
ing the meaning of the absorption cross�section.

CONCLUSIONS

Plasmon resonances in a nanostructure consisting
of a quartz fiber coated with a silver layer have been
numerically investigated. The dependence of the total
scattering cross�section on the wavelength has been
calculated. Geometric parameters of the structure that
ensure the existence of dipole and multipole plasmon
resonances in the visible range of optical waves have
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Fig. 8. Dependence of the total scattering cross�section of
a structure with parameters b = 40 nm and α = 0.85 on the
wavelength. Solid and dashed curves correspond to ε = ε'
and ε = ε' –iε''.
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Fig. 9. Absolute values of scattering patterns of a structure
with parameters b = 40 nm and α = 0.85 at λ = 475 nm. Solid
and dashed curves correspond to ε = ε' and ε = ε' –iε''.
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Fig. 7. Level lines of function |U| of a structure with param�
eters b = 40 nm and α = 0.75 at the wavelength of the qua�
drupole resonance (λ ≈ 430 nm).
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been determined. Scattering patterns at resonance fre�
quencies have been calculated. It has been demon�
strated that a silver layer deposited onto a quartz fiber
can reduce its scattering cross�section several times.
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