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1. FORMULATION OF THE PROBLEM

A 2D problem of diffraction of a plane linearly
polarized wave

(1)
by a circular dielectric cylinder is considered (Fig. 1).

The Gaussian system of physical units is used. The
time dependence of the fields is chosen to be exp(iωt)
and λ is the wavelength in free space.

It is assumed that radius a of the cylinder is small
compared to the wavelength,

(2)

and the permittivity of the cylinder satisfies the con�
dition

(3)

Selection of the problem parameters in the neighbor�
hood of the point ka = 0 and ε = –1 is associated with
the fact that this point is singular. The problem has no
solution at ka = 0 and ε = –1.

The solution to the problem is known in the static
limit (ka = 0). The electric field inside the cylinder is
uniform and

(4)

Let us add the field of the electric dipole to external

uniform field  outside the cylinder (at r > a).
This field is created by bound charges on the surface of
the cylinder. The charge density is

(5)

Expressions (4) and (5) tend to infinity at ε = –1.
Note that the permittivity of the medium cannot be
negative in electrostatics. However, in electrodynam�
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ics , the value of the complex permittivity ε =
ε' – iε'' can be unrestrictedly close to minus one.

It is more convenient to perform numerical study
of the diffraction problem using z�component of the
magnetic field:  =  The boundary�value
problem for function  is scalar.

Total field  satisfies the Helmholtz equation,

(6)

where
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Fig. 1. Geometry of the problem.
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The boundary conditions for function  have
the form

(8)

In the case of a plane wave, the incident field is given
by the function

(9)

Outside the cylinder (at r > a), the total field con�
sists of incident field U0 and scattered field U s fields:

(10)

The scattered field in the far zone must satisfy the
radiation condition,

(11)

where Φ(ϕ) is a scattering pattern.
Components of the electric field can be expressed

using function 

(12)

The analytical solution of problem (6)–(11)
obtained via separation of variables is well known (the
Rayleigh series [1]). In particular, when ka → 0 the
scattered field is given by the formula

(13)

where  is the Hankel function. Expressions for
the case kr → 0 are obtained from (12) and (13). These
expressions coincide with the solution to the electro�
static problem:

(14)

Equation (13) is obtained under the assumption of
ka → 0. However, if, at the same time,  expres�
sion (13) cannot be calculated. In [2], it is shown that,
in this case, there are multipole resonances. These res�
onances occur at frequencies

(15)

The azimuthal dependence of the near field at the res�
onance frequencies will contain only one harmonic

 However, this effect can be realized only in
the case of sufficiently small heat loss of the medium.

The aim of this work is to determine requirements
on the loss of the medium under which multipole res�
onances become possible. Let us mention papers
devoted to close subjects [3, 4] in which the dipole res�
onances of solid and hollow plasma cylinders were
used for amplification of the radiation of a short linear
antenna.
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2. NUMERICAL RESULTS

All numerical calculations of wave fields were per�
formed using a modified method of discrete sources
[5–7], which was previously applied in the study of
allied problems [8–11].

Figure 2 shows a family of curves depicting the
dependence of absolute value  of the field on dimen�
sionless parameter ka at coordinates r = a, ϕ = 0
located on the shady side of the cylinder for ε'= –1 and
different values of ε''. It is seen that the field increases
monotonically with decreasing radius of the cylinder.

Now let  Figure 3 shows a similar family of
curves for the case ε'= –1.04. While the value of ε'
changes only slightly, curves in Figs. 2 and 3 differ sub�
stantially. The curves in Fig. 3 contain resonance peaks
at frequencies ka = 0.11, 0.32, and 0.55. The lowest fre�
quency corresponds to the dipole resonance (m = 1), and
the following frequencies correspond to multipole res�
onances (m = 2, 3). Let us note that approximate for�
mula (15) gives the following values of resonance fre�
quencies:  and  When ε'' = 0 and
ε'' = 0.001, resonance values of  are by a factor
of several tens greater than the amplitude of the inci�

dent plane wave  (curves 1, 2). Resonance m = 3
practically disappears at the loss ε'' = 0.01 (curve 3).

The results shown in Figs. 2 and 3 characterize the
behavior of the near field of the cylinder. Figure 4
shows the frequency characteristics of total scattering
cross sections σ for the same values of ε as in Fig. 3.
The value of σ was calculated using the formula

(16)
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Fig. 2. Amplitude–frequency characteristics of the cylin�
der made of a material with  at different values of
loss. Curves 1, 2, and 3 correspond to ε'' = 0, 0.001, and
0.01, respectively.
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Curve 1 corresponds to the case of zero heat loss,
ε'' = 0, and curves 2 and 3 correspond to ε'' = 0.001 and
ε'' = 0.01, respectively. It follows from the asymptotics
of the Rayleigh series at ka → 0 and ε'' = 0 that, at res�
onance frequencies satisfying  the total scatter�
ing cross section is determined by a simple universal
formula containing only the wavelength:

(17)

The magnitude of the resonance peak of the lowest
oscillation  agrees with this formula with a
high accuracy  The quality factor increases
with increasing number m. Consideration for the loss
(curves 2, 3) leads to weakening of resonance phenom�
ena. This is primarily true for oscillations with greater
quality factors. As can be seen from Fig. 4, all far�field
resonances disappear at ε'' ≈ 0.01.

Scattering patterns corresponding to the loss ε'' =
0.001 at resonant frequencies  are
shown in Fig. 5. While the cylinder has small dimen�
sions, the patterns have multilobe structure. The num�
ber of lobes (2m) depends on the number of the reso�
nance.

Figure 6 illustrates the distribution of absolute
value  of the field along the surface of the cylinder at
resonance frequencies ka = 0.11, 0.32, and 0.55
(curves 1–3) at ε'' = 0.001. As in the case of far fields,
the angular dependences of near fields at the resonant
frequencies contain 2m clearly defined lobes like in the
case of far fields.
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The information on the spatial structure of the near
field at resonance frequency ka3 is presented in Fig. 7,
which shows the lines of constant level of function  for
ε'' = 0.001. The resonance oscillation with azimuthal
index m is a standing surface wave whose field is localized
in the vicinity of the boundary r = a. In this case, the rate
of decrease of the field with distance from the boundary
increases with increasing index m [10]. Therefore, oscil�
lations with large values of index m are weakly excited by
a plane wave. They are efficiently excited by only the
sources located close to the boundary r = a.

Figure 8 shows distributions of fields magnitudes
 at three resonance frequencies in the case of exci�

tation of the plasma cylinder by a filament of magnetic
current located near the boundary at the point
(  ). In this case, the incident field has
the form of a cylindrical wave:

(18)

It is seen that, at frequency ka3, field U can be approx�
imated with a good accuracy by function 
(curve 3). Such a high degree of closeness of the reso�
nance field to the field of an eigenmode oscillation are
not observed in the case of excitation of the cylinder by
a plane wave (see Fig. 6). Oscillations with smaller azi�
muthal indices are less sensitive to the cylinder excita�
tion method (curves 1, 2 in Figs. 6, 8).

It follows from the above results that multipole res�
onances of surface waves appear only at sufficiently
small losses of the medium (ε'' = 0.001). Such losses
are characteristic of the rarefied ionospheric plasma at
an altitude of ~200 km [12]. The complex permittivity
of the plasma is determined from the formula

(19)

U

U

0 1.2 ,r a= ϕ = π0

0 (2) 2 2
0 0 0( , ) ( 2 cos ).U r H k r r rrϕ = + + ϕ

cos(3 )ϕ

ω

ε = −

ωω − ν

p
2

1 ,
( )i

ka0.60.2 0.4

1

2

3

|U(a, 0)|

0

102

101

100

10–1

Fig. 3. Amplitude–frequency characteristics of the cylin�
der made of a material with  at different values of
loss. Curves 1, 2, and 3 correspond to ε'' = 0, 0.001, and
0.01, respectively.
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Fig. 4. Frequency dependence of the total scattering cross
section for the cylinder made of a material with 
for different values of loss. Curves 1, 2, and 3 correspond to
ε'' = 0, 0.001, and 0.01, respectively.
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where ωp is the plasma angular frequency of electrons
and ν is the frequency of collisions between electrons,
ions, and neutral molecules. If we assume that

 then, at frequency ω ≈  cor�− −

ν ω −p
3 4~ 10 10 , ωp 2

responding to the HF band, we obtain values of ε that
are required for realization of multipole resonances:

(20)ε ≈ − ε ≈ ν ωp' "1; 2 2 .
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Fig. 6. Distribution of field magnitude  along the
surface of the cylinder made of a material with parameters
ε' = –1.04 and ε'' = 0.001 at different resonance frequen�
cies. Curves 1, 2, and 3 correspond to ka = 0.11, 0.32, and
0.55, respectively.
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Fig. 5. Scattering patterns of the cylinder made of a material with parameters ε' = –1.04 and ε'' = 0.001 at different resonance
frequencies. Curves 1, 2, and 3 correspond to ka = 0.11, 0.32, and 0.55, respectively.
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Fig. 7. Spatial distribution of the field for the cylinder
made of a material with parameters ε' = –1.04 and ε'' =
0.001 at the resonance frequency ka3 = 0.55.
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Since the permittivity of plasma depends on fre�
quency ω, the plots in Figs. 2–4, which describe the
dependences of the field characteristics on dimen�
sionless parameter ka, should be considered as func�
tions of cylinder radius a.

Well�conducting metals have the properties of
plasma in the optical wave band [13]. Thus, the condi�
tion  is fulfilled for silver at room temperature at
the wavelength λ ≈ 340 nm. In this case, ε'' ≈ 0.3 [14].
As the temperature lowers to 90 K, the loss level
becomes several times lower [15]. This level is insuffi�
cient for implementation of multipole resonances.

Thus, multipole resonances of surface plasmons in
a cylinder are possible only at very low levels of the
heat loss in the medium (ε'' = 0.001).

' 1ε ≈ −
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ε' = –1.04 and ε'' = 0.001 at different resonance frequen�
cies. Curves 1, 2, and 3 correspond to ka = 0.11, 0.32, and
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