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INTRODUCTION

A two�dimensional problem of excitation, by a fil�
amentary magnetic current, of two identical hollow
cylinders made of a material whose permittivity ε and
permeability μ are negative is considered (Fig. 1). The
following designations are used: a is the radius of the
inner cavities, b is the outer radius of the cylinders, and
d is the distance between the centers of the cylinders.
The special case of a = 0 corresponds to solid cylin�

ders. Two polar coordinate systems are used: 
and  They are associated with the centers of the
left and right cylinders, respectively. The case of the
TM polarization is under study, for which the two�
dimensional wave field  =  has
the sense of the z component of the magnetic field:

The source of the cylindrical wave is located on the
straight line connecting the centers of the cylinders. In
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Fig. 1. Geometry of the problem.



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 60  No. 5  2015

COUPLED QUASI�STATIC OSCILLATIONS IN TWO CYLINDERS 481

variables  and , the exciting field is
defined as

(1)

where  is the Hankel function and k is the free�
space wave number.

The problem of excitation of solid and hollow sin�
gle cylinders made of a metamaterial is considered in
studies [1, 2]. It has been found that, at the values of ε
close to minus unity, high�Q resonances exist in the
cylinders of small electrical radius . Under the
resonance condition, the wave field is described by
single azimuthal harmonic  In this case, the
field is localized near the cylinder surfaces r = b and
r = a. These cylinders can be considered as ring reso�
nators based on the use of strongly slowed surface
waves propagating along the boundary of the metama�
terial.

The objective of the study is to investigate the reso�
nance phenomena in the structure containing two
identical cylinders. The interaction of their resonance
fields results in the structure’s frequency response
whose shape is characteristic of a system of two cou�
pled resonators. The parameter that determines the
coupling between the resonators is distance d between
the cylinders. The region of values of d that corre�
sponds to the critical coupling at which the structure’s
frequency characteristic has a dip has been deter�
mined.
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Among the studies that are close to the research
area under consideration, the investigations of cou�
pled plasmon oscillations of two spherical nanoparti�
cles can be mentioned (e.g., see monograph [3] and
the literature therein).

1. NUMERICAL RESULTS

The numerical calculations of the wave fields have
been performed with the use of the modified discrete�
source method [4], which is used in the investigations
of the resonance properties of single cylinders made of
metamaterials in [1, 2].

Let us present the results obtained for solid cylinders
(a = 0). In all calculations, it is assumed that 
The metamaterial parameters are the following:

(2)

The frequency response of the structure will be
characterized by the values of the magnitude of the
wave field at points   and  
which are located at the boundaries of the cylinders.
Figure 2 shows the amplitude–frequency characteris�
tics (AFCs) of the structure for a small distance
between the cylinders (d = 2.1b). There are several reso�
nance peaks on curves 1 and 2. The lowest resonance
frequency is kb = 0.33…. Figure 3 shows the AFC of a
single cylinder  with the above�mentioned
material parameters. A comparison of the curves given
in Figs. 2 and 3 indicates that the resonance frequen�
cies of the two�element structure significantly differ
from the resonance frequencies of a single cylinder.
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Fig. 2. Amplitude–frequency characteristics of a structure consisting of two solid cylinders at d = 2.1b: (1)  and
(2)
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Figure 4 shows the distribution of the magnitude of
the field  along the boundary of the right cyl�
inder at the resonance frequency kb = 0.33…. The
calculations show that the resonance fields on the left
and right cylinders satisfy the relation  =

 to a high degree of accuracy. An unusual

2 2( , )U b ϕ

1( , )U b ϕ

π − ϕ2( , )U b

property of these complex distributions is the presence
of ultrafast oscillations in the regions  and

 These regions correspond to the points of the
closest approach of the boundaries of the cylinders.

Let us now show that this behavior of the field is
due to the presence of two closely spaced interfaces

1 0ϕ �

2 .ϕ π�
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Fig. 3. Amplitude–frequency characteristic of a single solid cylinder.
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Fig. 4. Distribution of the magnitude of field  along the boundary of the solid left cylinder at the resonance frequency
kb = 0.33… for d = 2.1b.
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Fig. 5. Amplitude–frequency characteristics of a structure consisting of two solid cylinders: (solid lines)  and (dashed
lines)  d = (1) 10b and (2) 7.7b.
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between the metamaterial and free space. It is physi�
cally obvious that, in the region of the closest
approach of the cylinders  , the geometry
of a composite body can be presented in a simplified
form as a plane�parallel gap of the thickness 
that separates two half�spaces with material parame�
ters ε and μ. At the values of ε and μ determined by for�
mula (2), in the small�thickness gap, there exists an
even surface mode whose propagation constant h sat�
isfies the condition  [5]. The curve in Fig. 4 has
been calculated for the parameters kb = 0.33… and

 This means that the electrical thickness of
the gap is kδ = 0.033… With a knowledge of quantities
kδ, ε, and μ, from the corresponding dispersion rela�
tions (see [5]), we obtain  As a result, the
field of the standing surface wave in the region 

 is described by the function  ≈
 The oscillation period of the field 

near the direction  (see Fig. 4) agrees with the
estimate obtained from the above�mentioned formula.
Note that, in the case of a single cylinder, the reso�
nance field is described by a single azimuthal har�
monic 

Thus, from the above�mentioned results, it follows
that a structure consisting of two closely spaced cylin�
ders, as well as a single�cylinder structure, exhibits res�
onant properties in the lower�frequency region. How�
ever, spatial frequency characteristics of the resonant
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fields differ fundamentally from the corresponding
characteristics of the fields of a single cylinder.

It is obvious that, if the distance between the cylin�
ders is sufficiently large, the interaction of the partial
quasi�static fields (each field is concentrated in the
neighborhood of the corresponding cylinder) decreases.
In this case, near�cylinder fields  and 
have the same spatial structure and differ only in ampli�
tudes. As a result, the structure AFC  has the
same shape as the AFC of a single cylinder.

It is of interest to investigate the intermediate
region of distances d in which the interaction between
the cylinders results in a qualitative change in the
AFC. Figure 5 shows the AFCs for d = 10b  and d =
7.7b (curves 1 and 2, respectively). The computational
results are presented for a narrow frequency band cor�
responding to the forth�harmonic resonance. In this
frequency band, the field at the boundaries of the cyl�
inders are very accurately described by functions

 This is illustrated by Fig. 6, which shows
functions  and  for d = 7.7b. As dis�
tance d increases, the accuracy of the approximate
description must improve, which is confirmed by the
numerical calculations. It follows from Fig. 5 that at
d = 10b the resonance curves have a single peak,
whereas at d = 7.7b a dip is formed on the resonance
curves.
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Fig. 6. Distribution of field magnitudes (1)  and (2)  along the boundaries of solid cylinders at the resonance
frequency kb = 0.7075 at d = 7.7b.

1 1( , )U b ϕ 2 2( , )U b ϕ

Figure 7 illustrates the behavior of the field magni�
tude along the line connecting the centers of the cylin�
ders at the coupling between the partial resonators that
is below the critical level (d = 10b, curve 1) and at the
coupling exceeding the critical value (d = 7.7b, curve 2).
The calculations were performed for the central fre�
quencies of the corresponding resonance curves. It can
be seen that at d = 10b the amplitude of the field at the
left cylinder is higher than at the right one, whereas at
d = 7.7b the ratio between the amplitudes is reversed.
Note that the level of the field at the boundaries of the
cylinders is much higher than the level of the field at
the gap midpoint 

Figure 8 shows the magnitude of the scattering pat�

tern  for two cylinders spaced by the distance
d = 7.7b. The scattering pattern is determined by the
formula

(3)

where  is the scattered field in coordinate sys�
tem 

It should be noted that the scattering pattern of a
composite object with a total length of the order of a
wavelength is a complex lobed one, with the lobe
amplitudes considerably exceeding the level of the pri�
mary�field pattern  These “superdirectivity”
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properties are characteristic of the scattering by high�
Q resonant objects [6].

2. APPROXIMATE ANALYTICAL 
DESCRIPTION OF COUPLED RESONANCES

From the numerical results given in the previous
section, it follows that, if the distance between the cyl�
inders is sufficiently large, the structure of the resonant
wave field in the vicinity of each cylinder is close to the
structure of the field considered in the problem of
excitation of a single cylinder. This circumstance
allows us to use the results obtained in studies [1, 2] in
the approximate investigation of the problem under
discussion.

The problem of diffraction of the field

(4)

by a single cylinder has a simple solution [1, 2]. Out�
side the cylinder , a scattered field arises, which
is determined by the formula

(5)

Coefficient of “reflection” Rm for a solid cylinder
(a = 0) is

(6)
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where

(7)

(8)

(9)

and Jm are the Bessel functions, the prime indicating
differentiation with respect to the argument.

For a hollow cylinder, we have

(10)

where

(11)

(12)

The high�Q quasi�static resonances occur at the
frequency determined by the equation

(13)

It follows from formulas (4), (5), and (13) that, at
, the amplitude of the scattered field at the
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boundary of the cylinder is much higher than the
amplitude of the incident field:
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Therefore, it can be assumed that, in a system of two
cylinders that are at a sufficient distance from each
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Fig. 7. Distribution of field magnitude  along the line connecting the centers of the solid cylinders at the resonance fre�
quency kb = 0.7075: d = (1) 10b and (2) 7.7b.
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other, under the condition of the mth harmonic reso�
nance, the total field outside the cylinders consists of
the following three terms:

(15)

Unknown amplitudes αm and βm can be found from
the system of algebraic equations

(16)

(17)

This system follows from relations (4), (5) and the
summation theorems for cylindrical functions [7]

(18)

(19)

(20)

(21)

The solution to system (16), (17) has the form

(22)

(23)

Let us present the results of the investigations of the
structure consisting of two hollow cylinders performed
by the above�described method. Figure 9 shows fre�
quency dependences  and  calculated
with the use of formula (15) for two distances between
the cylinders: d = 7.8b and d = 5.4b. The general view
of the curves in Fig. 9 is identical to that of the AFCs
for solid cylinders (see Fig. 5). Specifically, when the
cylinders are sufficiently close to each other, two peaks
separated by a dip appear on the resonance curve.

Let us show that the splitting of the resonance
curves is related to the existence of symmetric and
antisymmetric oscillations in a structure consisting of
two identical cylinders. Let us consider the case when
the cylinders are excited by two sources and the inci�
dent field has the form (Fig. 10)

(24)

It is obvious that in this case the total field, as well as
the incident field, will be symmetric (plus sign) or
antisymmetric (minus sign) with respect to the mid�
plane  separating the cylinders. Under
the condition of the mth harmonic resonance, the field

outside the cylinders will be determined by formula (15),
in which coefficients αm and βm must be presented in
the form

(25)

(26)

(27)

(28)

It is readily seen that primary cylindrical wave U0

(see (1)) excites the field that is a half�sum of the fields

arising at the symmetric  and antisymmetric 

excitations. Each of these summands is characterized
by its own resonance frequency. Figure 11 shows a

family of curves that describes coefficients  and 
as functions of frequency at various distances d
between the centers of the solid cylinders. It follows
from the figure that, at d = 9b, the resonance frequen�
cies of the symmetric and antisymmetric oscillations
are practically the same. As distance d decreases, the
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resonance frequencies shift in the opposite directions.
When the difference between these frequencies is of
the order of the width of the resonance curves, a dip
appears on the frequency characteristic.

CONCLUSIONS

The coupled oscillations excited by a filamentary
current in a structure consisting of two identical
metamaterial cylinders have been investigated. It is
shown that this structure is characterized by resonant
properties in the lower�frequency region. The wave
fields in structures consisting of solid and hollow cyl�
inders have been calculated by rigorous numerical
methods. The effect of the distance between the cylin�
ders on the spectral and spatial properties of the reso�
nance fields has been considered. It has been found
that, at a certain distance between the cylinders, there
occurs a splitting of the frequency characteristic of the
composite resonator. It is noted that this effect can be
explained by the interference between the symmetric
and antisymmetric oscillations in the two�element
structure.
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