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1. FORMULATION OF THE PROBLEM 
AND THE METHOD OF SOLUTION

The axially symmetric problem of excitation of a
metamaterial sphere by magnetic and electric dipoles
oriented along the z axis and located on this axis at
point z = r0 beyond the sphere (Fig. 1) is investigated.
The Gaussian system and the time dependence
exp(iωt) of the fields are used.

In spherical coordinates (r, θ, ϕ), the spatial distri�
butions of the permittivity and permeability are speci�
fied as follows:

(1)

where a is the radius of the sphere. Assume that the sur�
face of the sphere r = a exhibits anisotropic electric con�
ductivity along spiral lines with constant lead angle ψ.
The two�sided boundary conditions

(2)

(3)

are fulfilled on the surface r = a. Here, the plus and
minus signs refer to the exterior, r > a, and interior, r <
a, sides of the sphere, respectively. For the sake of def�
initeness, helical lines (loxodromes in the case consid�
ered) are assumed to be right�handed 
Boundary conditions (2) and (3) describe wire helices
in the case when the distance between the axes of
neighboring conductors is much smaller than the
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wavelength and the gap dimension is within a certain
interval [1].

The problem of diffraction of a plane wave by a
chiral sphere filled with an ordinary magnetodielectric

 is considered in studies [2, 3]. It was first( )ε > μ >0, 0
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shown in [2] that, when ψ � 1,  resonance phenomena
can be observed in a sphere small as compared to
wavelength λ . The excitation of a sphere by a
radial electric dipole is considered in [4]. The purpose
of this study is to investigate the specific character of
low�frequency resonances excited by radial magnetic
and electric dipoles in a metamaterial sphere

The primary field of dipoles can be expressed in
terms of the only nonzero z components of the Hertz

magnetic and electric vectors  and  [5]:

(4)

where

(5)

and  is the wavenumber in free space. Quan�
tities A1 and A2 are proportional to the dipole moments

of the sources. The knowledge of vectors  and 
makes it possible to determine the electromagnetic
field in free space [5]:

(6)

We describe the axially symmetric electromagnetic

fields  in the problem under consideration with

the help of Hertz magnetic and electric potentials
 and  [6]. To make the representation

more compact, we use vector symbols in the notation of
two�component quantities containing indices 1 and 2:

(7)

The Hertz potentials satisfy the equation

(8)

The components of the electromagnetic field can be
expressed through the Hertz potentials as

(9)

Note that quantities U1/r and U2/r are known as the
Debye potentials [7].
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Primary field (4)–(6) is associated with Hertz

potentials  and  determined from the formula [4]

(10)

where  are the Legendre polynomials, 

are the Riccati–Bessel functions, and  are the
Riccati–Hankel functions [8].

With the use of the Hertz potentials, an analytical
solution to the formulated problem can be obtained by
means of the standard method of separation of vari�
ables [4]. We present the final expressions for the wave

fields. Let us introduce 2D vectors  and 

and scalar 
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The prime in formulas (11)–(14) denotes differentia�
tion of functions with respect to the argument.

The field inside the sphere is associated with the
Hertz potentials
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The field in the exterior of the sphere (r > a) con�

sists of two terms: incident and scattered fields  and

. The scattered field is associated with the Hertz
potential

(19)

where

(20)

(21)

Note that the term from (19) that contains vector 
is the field formed in the case of scattering by an iso�
tropically conducting sphere. Formulas (11)–(21) for�
mally are similar to the expressions obtained in [9],
where the problem of excitation of an anisotropically
conducting cylinder by electric� and magnetic�cur�
rent filaments is considered. The corresponding for�
mulas coincide accurate to the replacement of func�

tions  and  by Bessel functions

 Hankel functions  and the trigonomet�
ric functions 

From relationships (9) and (19), we can obtain the
following formulas for the azimuthal components of
the electromagnetic field scattered by the sphere:

(22)

where  is the associated Legendre polyno�
mial [8],

(23)

The far electric field scattered by the sphere has the
form
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The components of the vector scattering pattern can
be determined from the formulas

(25)

2. QUASI�STATIC RESONANCES

Let us consider only electrically small objects
whose parameters satisfy the conditions

(26)

Expressions (16) and (19) for the Hertz potentials

contain resonance denominators  determined
by formula (14). Let us analyze the frequency depen�
dence of these denominators. Expression (14) is a
complex function of the parameter ka and does not
vanish for real values of ka. When conditions (26) are
fulfilled, the real part of expression (14) substantially
exceeds its imaginary part. The real parts of the
denominators vanish at the points that are resonance
frequencies. Thus, the equation for the resonance fre�
quencies has the form

(27)

At the resonance frequency, the only meridional har�
monic  dominates in decompositions (16)
and (19).

To simplify Eq. (27), we use the known asymptotic
expansions of the Riccati–Bessel and Riccati–Hankel
functions for small values of the argument [8]
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Assume that the condition
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is fulfilled. This condition ensures the existence of
low�frequency magnetic oscillations in a metamaterial
sphere in the absence of a wire helix [10]. With the help
of formulas (28)–(30), we obtain from Eq. (27) the
following expression for resonance frequencies:

 (31)

( )

( )

1 (2) ( ) ( ) 1
0 2 22

0 1

1 (2) ( ) ( ) 1
0 1 12

0 1

1( ) (2 1) ( ) (cos ),

1( ) (2 1) ( ) (cos ).

m m m
m m

m

m m m
m m

m

F i m h kr C D P
r

F i m h kr C D P
r

∞

−
θ

=

∞

−
ϕ

=

θ = + + θ

−
θ = + + θ

∑

∑

1, 1.ka nka� �

( )( )mW ka

( )Re ( ) 0.mW ka =

θ(cos )mP

1 2

( ) 1 ... ,
(2 1)!! 2(2 3)

m

m
x xj x

m m

+ ⎡ ⎤
= − +⎢ ⎥+ +⎣ ⎦

2
(2) (2 1)!!

( ) 1 ... .
2(2 1)

m m

i m xh x
mx

⎡ ⎤−
= + +⎢ ⎥−⎣ ⎦

+
+

µ

1 1mm �

( ) ( )

⎛ ⎞++ ψ⎜ ⎟μ⎝ ⎠=
ε ε+ ψ + + ψ

− + +

2

2

2 2

( )

1 sin

.
1 1sin cos

2 1 2 3 1

ka

mm

m m m m



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 60  No. 1  2015

LOW�FREQUENCY RESONANCES OF A CHIRAL SPHERE FILLED 15

Recall that this expression is valid only under the con�
dition  Formula (31) can also be applied to a
sphere made from an ordinary material 
However, the expected result  can be obtained
in this case if the inequality

 (32)

is fulfilled. The first term from the denominator in for�
mula (31) can be neglected. Then, expression (31)
becomes the formula for resonance frequencies
obtained in [4].

In this study, we do not require that inequality (32)
should be fulfilled as a necessary condition for the
existence of low�frequency resonances. In the case of
metamaterials, the right�hand side of relationship (31)
can be small owing to condition (30). In this case, for�
mula (31) can be applied to structures with arbitrary
lead angles of conductivity lines. In particular, when

, expression (31) coincides with the formula
for the resonance frequencies of quasi�static magnetic
modes in a sphere with no lattice of conductors on its
surface [11]. The coincidence is explained by the fact
that the electric field of magnetic modes has only
component  These modes do not interact with a
wire lattice, because, at , the conductors of the
lattice are orthogonal to the electric field of a mode. 

Let us analyze the amplitude–frequency charac�
teristic (AFC) of the sphere. Here, the AFC is consid�
ered to mean the dependence of absolute values 
and  of the potentials at the point

 on the dimensionless parameter ka,
which is proportional to the frequency. 

Figure 2 shows the AFCs for the case
 The curves have a
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resonance character, and the resonance Q factor is a
value on the order 104. Curves 1 and 2 correspond to

two excitation conditions  and  It
follows from the comparison of the curves that the effi�
ciency of the excitation by an electric dipole is lower
than the efficiency of the excitation by a magnetic
dipole by an order of magnitude. The figure shows
only the plots for the  component. The values of the

 component are less than U1 by an order of magni�
tude.

Absolute value  of the scattering pattern and the
distribution of absolute value  of the Hertz poten�
tial over the spherical surface at the resonance fre�
quency are depicted in Fig. 3. These dependences can
be described with a graphical accuracy by the func�

tions  and  which correspond to the
meridional harmonic with  It is seen from the
figure that the directions of the maximal radiation cor�
respond to the zeros of the Hertz potential (see (23)).

Figure 4 shows the distribution of absolute value
 of the Hertz potential along the radial coordinate

in the direction  The curve contains two sections
 and  where the Hertz potential can be

described by the functions  and
 The first and second sections correspond

to the near and far fields, respectively.
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3. THE FIELD 
IN THE QUASI�STATIC REGION

Let us study the spatial and polarization structures
of the near resonance field. The discussed resonances
are quasi�static ones:  The electromagnetic
field is localized in the region  and rapidly
decreases as the distance from the spherical surface
grows. From formulas (11), (13), (16), (19), (28), and
(29), we can obtain the following expressions for the
Hertz potentials of eigen oscillations in the region

(33)

(34)

If the quantities  and  are assumed to be on
equal orders, the comparison of formulas (33) and
(34) implies the inequality  Therefore, the
field structure of the eigen oscillation in the highest (in
the parameter ka) order is the same as the field struc�
ture of magnetic modes.
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and Hθ, the difference being on the order .
We can conclude from expressions (39) and (40)

that the electric field vector tangent to the spherical
surfaces r = const is linearly polarized and that
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the electric and magnetic field components lying in
the azimuthal planes  are linearly polarized
and parallel. Field lines r(θ) of these 2D vector fields
can be found from the differential equation

(43)

Taking into account the relationship [8]
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we obtain from (42) and (43)
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the zero of the function 
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son formula  which determines the reso�
nance frequency of an LC contour.
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4. CIRCULARLY POLARIZED OSCILLATIONS

The interest in an anisotropically conducting
sphere has been aroused mainly owing to its property
to selectively respond to circularly polarized fields
with different directions of rotation [2–4]. The appli�
cation of metamaterials opens new possibilities of
realizing devices that use quasi�static resonances with
a circularly polarized field. Let us find the conditions
under which the scattered field at the resonance fre�
quency is circularly polarized.

Let  and  denote the contributions of

harmonics  to vector scattering patterns 
and  determined by formulas (25). We obtain
from formulas (11), (21), and (25)

(48)

It follows from expression (48) that, at the frequency
satisfying the condition

(49)

the scattered field harmonic  is counter�

clockwise�polarized,  and this har�
monic is not excited by clockwise�polarized field

 because 

In the case under consideration , condi�
tion (49) can be fulfilled only when  If small
quantities ka and ψ are coupled by relationship (49),
formulas (35)–(37) imply that components Hr, Hθ,
and Hϕ are commensurable. Some of the formulas
were derived in the previous section with the case

 disregarded. As a result, formula (31), which is
derived with disregard of component  (see (47)) is
inaccurate.

Consider in more detail the case when the lead
angle is small and the constitutive parameters satisfy
the condition

(50)

It follows from formula (14) and (27) that the equation
for the determination of resonance frequencies at

 has the form

(51)

( )( )mFθ θ
( )( )mFϕ θ

1(cos )mP θ ( )Fθ θ

ϕ θ( )F

ϕ

θ

= − = −

ψ
= ψ ≈ −

'

( ) ( ) ( )
1 1

( ) ( ) ( )
2 2

(2)

(2)

( ) tan
tan .

( )

m m m

m m m

m

m

F D L

F D L

h ka m
i i

kah ka

= ψtan ,ka m
1(cos )mP θ

( ) ( )( ) ( ),m mF iFϕ θθ = − θ

{ }1, ,A i=

�

( ), 0.M A =

� �

( )1ka �
1.ψ �

1ψ �
Hϕ

11 .
m

ε = μ ≈ − −

ε = μ

⎧ ⎫
⎪ ⎪⎡μ ψ⎣⎪ ⎪
⎪ ⎪⎤+ ψ =⎨ ⎬⎦⎪ ⎪

⎡ ⎤⎪ ⎪× −⎢ ⎥⎪ ⎪μ⎩ ⎣ ⎦⎭

' '

''

(2) 2

(2) 2

(2) (2)

( ) ( )cos

Re ( ) ( )sin 0.

( ) ( ) ( ) ( )

m m

m m

m m m m

h ka j nka

nh ka j nka

n h ka j nka h ka j nka



18

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 60  No. 1  2015

ANYUTIN et al.

With allowance for asymptotic expansions (28) and
(29), vanishing of the first factor from (51) yields the
equation

(52)
This equation has a real solution only in the case of
ordinary media ( ):

(53)

Expression (53) coincides with formula (24) from [4]
under the assumption that  For metamaterials
( ), Eq. (52) has no real solutions.

The second factor from (51) yields the equation

(54)

Expression (54) coincides with the dispersion equa�
tion for the resonance frequencies of both magnetic
and electric modes in a sphere with no lattice of con�
ductors on its surface [11]. Thus, when , we
observe degeneration of the axially symmetric modes
each of which contains only three components of the
electromagnetic field:  and  The
presence of a lattice of conductors on the sphere’s sur�
face results in the formation of a linear combination of
these modes at a resonance frequency. At r = a, this
combination satisfies the boundary conditions

 As follows from expressions (36),
(37), and (50), the jumps of the tangent components

of the magnetic field on the sphere’s surface 

2 2 2( ) cos ( 1)sin 0.ka m mμ ψ − + ψ =
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+
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, ,rE H Hϕ θ , , .rH E Eϕ θ

cos sin .E Eϕ θψ = ψ

H H+ −

θ θ−

and  are negligibly small. This means the
absence of currents flowing along the conductors of
the lattice under the resonance conditions.

Taking into account asymptotic expansions (28)
and (29) and condition (50), we can obtain from
Eq. (54) the following expression for resonance fre�
quencies:

(55)

Thus, the resonance frequency does not depend on
angle ψ. However, the relationship between compo�

nents  and  depends on ψ. Choosing the value
of ψ according to formula (49), we can provide for the
circular polarization of the scattered field. For exam�

ple, for the harmonic , the circular polariza�
tion is realized for the parameters  and

 at the resonance frequency 
Figures 5–7 illustrate rigorous computation of the

AFC and scattering pattern for a sphere with the
parameters  Lead angle ψ is selected so
as to provide for a strictly circularly polarized scattered
field at the resonance frequency. Quantities ψ and ka
turn out to be rather close to the values obtained from
approximate formulas (49) and (55). The patterns
from Figs. 6 and 7 correspond to the clockwise and
counterclockwise excitations  and 
respectively. It is seen from Fig. 7 that, in the latter
case, there is no resonance. In this situation, scattered
field (19) is mainly determined by the nonresonance

term containing vector  and differs from the pri�
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Fig. 5. Amplitude–frequency characteristic of a chiral
sphere filled by a metamaterial. The results are obtained for

   A1 = 1, and A2 = –i

at the resonance frequency 
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Fig. 6. Absolute values of the scattering patterns of a chiral
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mary field of elementary dipoles only slightly. It fol�
lows from Fig. 7 that  This result
matches the formula

(56)

following from expressions (20), (28), and (29).
Note that, in the case of ordinary materials (ε > 0

and μ > 0), low�frequency resonances can be inter�
preted as the resonances of the wave of a current flow�
ing along a helical conductor [2]. When , total
length l of the loxodrome between the poles θ = 0 and

 is  and we have  for the circu�
larly polarized oscillation with the index m = 1. In the
case considered in this section, the resonance fre�
quency is determined by formula (55) rather than
being related with the loxodrome length.

5. DEGENERATE OSCILLATIONS

The case may occur such that parameters ε, μ, ψ,
and ka have simulataneously resonance values for two
different values of index m. Figure 8 displays the set of
dispersion curves describing the relation between the
resonance values of ψ and μ at ka = 0 and ε = –4.
Different curves are associated with different values
of index m. The curves from Fig. 8 are plotted
according to formula (31). It is seen that all of the
curves intersect, a circumstance that corresponds to
the degeneration effect. Thus, at the point

, the curves correspond�
ing to the indices m = 3 and m = 7 intersect. Figures 9

( ) 2 ( ) .F Fθ ϕθ ≈ θ
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2 2
(1)

11
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= −
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and 10 depict the distributions of potential  over the

surface of the sphere  and in the far zone

 for the parameter values that lead to the

degeneration of the harmonics  and .
It follows from Figs. 9 and 10 that the harmonics

 and  dominate on the spherical sur�
face and in the far zone, respectively. The distribution
of the absolute value of Hertz potential  along the
radius in the direction  is depicted in Fig. 11. It is
seen that, in the near zone, the curve contains two sec�
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Fig. 8. Dispersion curves  for a chiral sphere filled by a
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tions in which it decreases as  and

 respectively.
In the considered example, lead angle ψ is small

and  Therefore, potentials  and  are com�
mensurable, and the plots from Figs. 9–11 qualita�
tively describe the behavior of potential U2 as well.

Thus, quasi�static resonances have been revealed
and investigated. Their characteristics and the region
of existence substantially differ from the characteris�
tics of resonances in an anisotropically conducting
sphere filled with an ordinary magnetodielectric. It
has been shown that, depending on the values of the
constitutive and geometric parameters of the struc�
ture, the resonance fields can be linearly or circularly
polarized. The values of parameters providing for the
chiral properties of the electrodynamic structure have
been found. These chiral properties are as follows: the
scattered field is circularly polarized and a resonance
occurs only for the specific direction of the rotation of
the incident field polarization. The effect of eigen
oscillation degeneration has been discovered. This
effect consists in that different meridional harmonics
of the resonance field dominate on the sphere’s sur�
face and in the far zone. An approximate analytic
description of quasi�static resonances has been pro�
posed.
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