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Abstract—An impedance cylinder covered by a metamaterial layer is considered. The 2D problem of excita-
tion of the cylinder by a magnetic-current filament is analyzed. High-Q surface-wave resonances formed in
cylinders of small (as compared to the wavelength) dimensions are investigated. The effect of degeneration of
oscillations with different indices m in the law cos(m), which describes the azimuthal dependence of reso-
nance fields, is discovered. The spatial and frequency characteristics of degenerate oscillations are numeri-

cally investigated on the basis of rigorous methods.
DOI: 10.1134/S106422691503002X

INTRODUCTION

Artificial media with negative relative permittivity €
and permeability p are today conventionally called
metamaterials [1]. Electromagnetic fields excited by
sources located near metamaterial bodies exhibit a
number of extraordinary properties [2—5]. In studies
[6, 7], high-Q resonances are discovered in solid and
hollow metamaterial cylinders that have electrically
small dimensions and are characterized by the values
of € and p approaching minus unity. Such cylinders
can be considered as ring resonators supporting sur-
face waves propagating over the metamaterial bound-
ary. In this situation, the field is described by the only
azimuthal harmonic cos(m@). It is shown in [8] that
the effect of degeneration of quasi-static resonances
can be observed in a chiral anisotropically conducting
cylinder filled by a metamaterial. In particular, this
effect manifests itself in that the resonance field is
described by the function cos(m) with different val-
ues of index m in the near and far zones. In this study;,
we demonstrate that the effect of degeneration of
high-Q quasi-static resonances also occurs in imped-
ance cylinders covered by a metamaterial layer. Here,
we deal with a scalar diffraction problem that leads to
results similar to those obtained from the solution of
the vector problem studied in [8] but differs from the
latter in the subject of investigation and by a simpler
mathematical apparatus.

1. FORMULATION OF THE PROBLEM
AND THE METHOD OF SOLUTION

An impedance circular cylinder covered by a
metamaterial layer with parameters ¢ <0 and p < 0 is

considered. The 2D problem of excitation of the cyl-
inder by a filament is analyzed. The case of the TM
polarization is studied in cylindrical coordinates
(r, ¢, 7). The time dependence of the fields is chosen
to be exp(ip?), and it is assumed that the source is sit-
uated outside the cylinder on the ray ¢ =  at the point
r=r, (Fig. 1).

The diffraction problem under study is reduced to

determination of scalar function U(r,¢) = H (r, @) sat-
isfying the inhomogeneous Helmholtz equation
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where k is the wavenumber in free space and functions
€(r) and p(r) are specified as follows:
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We assume that the boundary conditions of the third
kind are fulfilled on the cylinder’s surface r = a:

0% a,¢) = U@, 3)
or

where w is a dimensionless real parameter propor-

tional to the impedance of the surface. On the bound-

ary r= b, function U(r, ) satisfy the conditions
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Fig. 1. Geometry of the problem.

Field U(r, ¢) should also satisfy the radiation condi-
tion at infinity.

The field beyond the cylinder (» > b) can be repre-
sented as the sum of the incident and scattered fields
U(r,@) = U"(r,0) + U(r, 9). (5)

It follows from Eq. (1) that the field of the incident
cylindrical wave is specified in the form

UO(r, Q) = Héz) (k\/r2 + roz + 2rry cOs (p), (6)

@)
0

where H,” is the Hankel function.

Scattered field US in the far zone (kr — o) can be
represented as

Us(r, ) = CI)S((p)(Z/nkr)l/2 exp(—ikr +in/4), (7)

where ®5(o) is the scattering pattern. Then, the pat-
tern of incident field U°(r, @) has the unit amplitude:

@' (p) = exp (—ikr, cos(¢)). (8)

The formulated diffraction problem can be solved
by means of the method of separation of variables
(involving the Rayleigh series [9]). Let us present the

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 60

basic formulas of the Rayleigh method. We introduce
the notation

A, (kb) = J,(Nkb)J , (kb) — 1 NJ, (Nkb)J, (kb),
e

B, (kb) = H2(Nkb)J ., (kb) — L NH (NKkb)J , (kb),
€

C, (kb) = J,(NkbyH (kb) — L NJ' (NKkb)H 2 (kb), )
€

D, (kb) = HO(NkbyH ? (kb) — L NH? (NkbyH ® (kb),

€
L, (ka) = wJ,(Nka) — NkaJ, (Nka),
M, (ka) = wH P (Nka) — NkaH? (Nka),

where

N =ep, (10)
J,, are the Bessel functions, and the prime denotes the
differentiation with respect to the argument.
The scattered field outside the cylinder (» > b) has
the form

US(r,0) = ) (=1)"3,,H,) (kny)
m=0 (11)
o My (k@) A (kD) = Ly(k@)BykB) vy s oo
L,(ka)D,,(kb) — M, (ka)C,,(kb)
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where
I, m=0
8 — ) ) 12
" {2, m>1. {2
The field in the layer (a < r < b) is
Utr.9) = =23 (-1)"8, H}) k)
S (13)

M, (ka)J ,(Nkr) - L, (ka)H? (Nkr)
L, (ka)D,,(kb) — M ,(ka)C,,(kb)

cos(mo).

The formula for scattering pattern ®S(¢p) can be
obtained from expression (11) through replacing Han-

kel function H(kr) by (i)™

2. LOW-FREQUENCY RESONANCES

The Raylegh series contain resonance denomina-
tors L, (ka)D,,(kb) — M ,,(ka)C,,(kb). Let us analyze the
frequency dependence of these denominators assum-
ing that

2m
kb <1, Nkb<1, (%) <l +l<1. (14

When conditions (14) are fulfilled, the real parts of the
denominators substantially exceed their imaginary
parts. The real part of a resonance denominator van-
ishes at the point kb,,, which is a resonance frequency.
In order to determine resonance frequencies, we apply
the known asymptotic expansions of cylindrical func-
tions for small values of the argument. We use two
terms of the expansion in positive powers of the argu-
ment for the Bessel functions and two terms in nega-
tive powers for the Hankel functions. Taking into
account conditions (14), we obtain the following
expression for resonance frequencies:

2m(m® — 1)
I—p+ml+

2m
x [(1+l)+(1—l)m_w(‘—z) }, m>2.
€ e/m+w\b
In the case of the TM polarization, the permeability
affects the resonance frequencies only slightly. There-
fore, for definiteness, we assume below that p=—1. At

the resonance frequency kb,,, the only azimuthal har-
monic cos(m@) dominates in field U(r, @).

(kb,)* =
(15)

Evidently, the above formulas can be applied for the
solution of the diffraction problem when an imped-
ance cylinder is replaced by a cylinder with the perfect
electric (w = 0) or magnetic (w = o0) conductivity of
the surface.
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Fig. 2. Trajectories of the resonance parameters of the

modes with the index m in the w—e plane for % =0.81;kb=
0.2, and p=—1.

3. DEGENERATION
OF LOW-FREQUENCY RESONANCES

A case is possible when parameters €, L, w,g, and

kb have resonance values simultaneously for two dif-
ferent azimuthal indices m. A set of dispersion curves
describing the coupling between resonance values of w
and g foru=—1,a/b=0.81, and kb = 0.2 is displayed in
Fig. 2. The curves, corresponding to different values of
index m, are plotted according to formula (15). As is
seen from the figure, all of the curves intersect, a cir-
cumstance that indicates the degeneration phenome-
non. The point on the parameter plane (w, €) where
the dispersion curves with different indices m intersect
is below referred to as a degeneration point, for exam-
ple, the 3—4 degeneration point.

Let us present results of calculation of the wave
fields under the conditions of quasi-static resonance
degeneration. In the subsequent calculation (with the
exception of the last example for w < 0), it is assumed
that u = —1, a/b = 0.81, and r, = 1.2b. The only vari-
able parameters are €, w, and kb.

We describe the behavior of the field within a fre-
quency interval with the help of the amplitude—fre-
quency characteristic (AFC) that is considered to
mean the frequency dependence of the absolute value
of the field on the boundary of the structure under
study at the point r = b, ¢ = T.

Figure 3 depicts the AFC of the cylinder for the
parameters

€ =0.9478999730915, w =2.98, (16)
which correspond to the degeneration of the reso-
nances with azimuthal indices m = 4 and m = 6. The
AFC is a resonance curve with the maximum at the
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Fig. 3. The AFC of a cylinder covered by a metamaterial at
the 4—6 degeneration point for € = —0.947899973091;

p=—1;w=2.98; % =0.81,and ry = 1.25.

point kb, = 0.18877423.... We find approximate val-
ues of the parameters responsible for oscillation
degeneration with the help of the plot from Fig. 2.
Next, we apply the numerical method of successive
iterations to determine their exact values. We take into
account that deviations of parameters € and w from
their actual values result in AFC splitting.

The computation shows that, at the resonance fre-
quency kb, ¢, the field distribution over the boundary
and the scattering pattern are described by one higher

order harmonic: U(b,p) = Az cos(6p) and (I)S((p) =

B, cos(6¢), where A ~ 10" and B, ~ 10*. The distri-
bution of the absolute value of the field over the radial
coordinate along the direction @ = 0 is depicted in
Fig. 4. The curve contains two sections—k7 < 6 and
kr> 10—where the field decreases according to the

laws |U] ~ (kr)™® and U] ~ (kr)”"%. These sections cor-
respond to the near and far zones of the diffraction
field, respectively.

The AFC of the considered structure is displayed in
Fig. 5 for the case when the quantity € = —0.94789995
differs from value (16) in the digit in the seventh deci-
mal place. The curve contains two maxima spaced by
a dip. The frequencies corresponding to the AFC
maxima are rather close: kbs = 0.18875964 and kb, =
0.18877076. In other words, the degeneration disap-
pears; and, in addition, a deep dip at the frequency
kb =0.188767015 is formed. The near and far fields at
resonance frequencies kbs and kb, are described by one
azimuthal harmonic: cos(6¢) or cos(4g); in this case,

As ~ 10", A4, ~10°, B, ~2x10°, and B, ~ 2x10".
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Fig. 4. Distribution of the absolute value of the field over
the radial coordinate beyond an impedance cylinder cov-

ered by a metamaterial for e = -0.9478999730915; p=—1;
w=2.098; % =0.81; 7= 1.2b, and kby s = 0.18877423398.

The curve from Fig. 5 can be considered as the fre-
quency characteristic of a complex resonance consist-
ing of two coupled oscillations. Varying the frequency
within narrow interval (kb,, kb,), we can obtain any
relationship between the amplitudes of the azimuthal
harmonics with the indices m = 4 and m = 6 forming
resonance field U(b, @). The distribution of the abso-
lute value of field U(b, @) at the frequency of the AFC
dip is depicted in Fig. 6. The zero value of the field in
the directions of the angles @ = 0 and ¢ = 7 is
explained by the fact that this distribution is formed as
a result of an antiphase combination of two even har-
monics having equal amplitudes:

U(b, ) = A(cos(4p) — cos(6¢)) = 2A4sin @sin(5¢). (17)
In this situation, the scattering pattern is described by

the lower order azimuthal harmonic: CDS((p) =

Bcos(4p), where B ~ 10°.

The wave fields of other pairs of degenerate reso-
nances exhibit similar properties. Consider the case

€ =-0.932015347, w=2.3217, (18)

which corresponds to degeneration of the oscillations
with the azimuthal indices m = 3 and m = 6. Field

U(b, ¢) and pattern ®5(¢) at the resonance frequency
kbys = 0.18357102492 are described by the higher
order harmonic cos(6¢) with the amplitudes 10'3 and
10°, respectively. In the presence of a slight deviation
of the permittivity (e = —0.932012), the AFC resem-
bles the curve depicted in Fig. 3; in this case, the reso-
nance peaks are associated with the frequencies kb, =
0.181185 and kb; = 0.183365. Figure 7 shows the field
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Fig. 5. The AFC of an impedance cylinder covered by a metamaterial in the neighborhood of the 4—6 degeneration point for

£=-0.94789995 p=—1; w=2.98; % =0.81,and ry = 1.2b.
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Fig. 6. Distribution of the absolute value of the field over the boundary » = b of an impedance cylinder covered by a metamaterial
in the neighborhood of the 4—6 degeneration point for € = —0.94789995; p = —1; w = 2.98; % = 0.81; ry = 1.2b, and kb =
0.188767015.
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Fig. 7. Distribution of the absolute value of the field over the boundary » = b of an impedance cylinder covered by a metamaterial

in the neighborhood of the 3—6 degeneration point fore =-0.932012; p=—1; w=2.3217; % =0.81;ry=1.2b,and kb =0.182873.

distribution over the cylinder’s boundary at the fre-
quency kb =0.182873, which corresponds to the AFC
dip. In this case, the dip is formed due to an in-phase
combination of an even harmonic and an odd har-
monic. This distribution can be approximated by the
function

U(b, ) = A(cos(3p) + cos(6))

=2Acos(39/2)cos(99/2). (19

As in the previous example, the scattering pattern at
this frequency contains only a lower order harmonic:

®%(¢) = B, cos(3p), where B; ~ 30.

Consider the field formation at the 3—4 point,
where the oscillations with azimuthal indices m = 3
and 4 degenerate. For this point, we have

e =-0.8687104, w =1.79449. (20)
At the frequency point kb;, = 0.1807376, the field on
the boundary r = b has the form Acos(4p) with

A~ 107, i.e., the higher order harmonic dominates.
The scattering pattern in this case is Bcos(4p) with
B ~10% In the presence of a slight deviation of the
permittivity (¢ = —0.8688) from the above point, the
AFC is transformed into a curve with two resonance
peaks at the points kb; = 0.18672 and kb, = 0.1969 and
a deep dip at the frequency kb = 0.190517. The abso-
lute value of field U(b, ¢) at the dip frequency is shown
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in Fig. 8. It is seen that this distribution is the superpo-
sition of two harmonics

U(b, ) = A(cos(3p) + cos(49))
_ 1 7
=24 005(2 (p)cos(2 (p).

The degeneration effects are observed for negative
values of w as well. Let us discuss the peculiarities of
this case considering, as an example, a resonance con-
taining the azimuthal harmonics with the indices
m =3 and m =4. Assume that a/b=0.663, u=—1, and
ry=1.2b. Then, the degeneration occurs for the values

w=-4.97519, €=-2.04579262 (22)

at the frequency kb;, = 0.1466443765. The corre-
sponding frequency characteristic is depicted in Fig. 9
(curve ). A slight deviation of € from the value indi-
cated in (22) results in formation of two resonance
peaks in the AFC at the close frequencies kb; =

0.1431388 and kb, = 0.15241413 (see Fig. 10). The
field distribution |U] over the boundary » = b is shown
in Fig. 11 for the frequency kb = 0.14775, which cor-
responds to the AFC minimum from Fig. 10. It is seen
that function U(b, @) is the sum of two harmonics

U(b,p) = A(cos(3p) — cos(49))
(1) (7 (23)
= 2Asm(— )sm(— )
2 ® 2 ®
In contrast to similar distributions (17), (19), and (21),
obtained for w > 0, field U(b, @) in the considered case

(21)
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Fig. 8. Distribution of the absolute value of the field over the boundary » = b of an impedance cylinder covered by a metamaterial

in the neighborhood of the 3—4 degeneration point for e = —0.8688; u=—1; w=1.79449; % =0.81;rp=1.2b,and kb =0.190517.
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Fig. 9. The AFC of an impedance cylinder covered by a metamaterial at the 3—4 degeneration point for e = —2.04579262; u = —1;

0.1464 0.1466 0.1468 0.1470
kb

w =-4.97519; ;—’ =0.663, and ry = 1.2b: w" = (curve 1) 0, (curve 2) 1077, and (curve 3) 107°.
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Fig. 10. The AFC of an impedance cylinder covered by a metamaterial in the neighborhood of the 3—4 degeneration point for

£=-2.0457; p=—1;w=—4.97519; % =0.663, and ry = 1.2b.
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Fig. 11. Distribution of the absolute value of the field over the boundary r = b of an impedance cylinder covered by a metamaterial
in the neighborhood of the 3—4 degeneration point for ¢ = —2.0457; p = —1; w = -4.97519; % = 0.663; ry = 1.2b, and kb =
0.14775.
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Fig. 12. Distribution of the absolute value of the field over

the radial coordinate of an impedance cylinder covered by
a metamaterial for ry = 1.2b, p = —I: (curve 1)

€=-0.947899973091, w = 2.98, and Lbl = 0.81 (the 4—
6 degeneration point) and (curve 2) € = —2.04579262, w =
—4.97519, and % = 0.663 (the 3—4 degeneration point).

does not vanish at ¢ = w. Therefore, the curve from
Fig. 10 differs from the analogous characteristic from
Fig. 5 by the absence of a sharp dip between resonance
peaks.

It is interesting to compare the behaviors of the res-
onance fields as functions of the radial coordinate for
positive and negative values of w. Curves 7/ and 2 in
Fig. 12 show the normalized radial dependences of the
fields calculated for parameters (16) and (22), which
cause strict degeneration of the oscillations at the
points m = 4 and 6 and m = 3 and 4. It is seen that the
fields monotonically decrease as the observation point
moves from the boundary (r = b) deep into the layer.

Ur,0)

The function is positive when w > 0, and the

b

field vanishes at a certain point when w < 0. The com-
parison of curves / and 2 shows that, when w < 0, field
U(r, 0) concentrates not only near the metamaterial
boundary r = b but also near the surface of the imped-
ance cylinder = a. This result can be attributed to the
fact that an impedance boundary with w < 0 can sup-
port surface waves.

Beyond the layer (» > b) normalized fields U(r, 0) in
the static proximity to the boundary decrease accord-

—-m

ing to the law (r/a)™, where m is the number of the
higher order degenerate harmonic. When kb < 1 and
m > 1, the standing wave field is characterized by
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oscillations along the metamaterial boundary that are
frequent on the wavelength scale. This very slow sur-
face wave is formed by both the medium interface and
the impedance surface of the cylinder.

Let us assess the influence of the heat loss on the
resonance Q factor. When g, i, and w are real quanti-
ties, the Q factor of resonances is determined only by
the radiation loss, which turns out to be quite low, a
circumstance that necessitates calculation of the reso-
nance parameters with a high accuracy. The heat loss
in impedance cylinders can be taken into account
through setting w = w' + iw'"", where w" > 0. The influ-
ence of this loss on the resonance Q factor is illustrated
by curves 2and 3 from Fig. 9. It is seen that, even when
w" = 1077, the heat loss exceeds the radiation loss.
When w" = 10~ (curve 3 from Fig. 9), the Q factor of
the resonance is O ~ 350.

CONCLUSIONS

The effect of degeneration of high-Q quasi-static
oscillations can be observed in an impedance cylinder
covered by a metamaterial layer. Under the degenera-
tion conditions, the wave field is a superposition of two
azimuthal harmonics. Slight deviations of the problem
parameters from the resonance values result in a sub-
stantial change in the relationship between of the
amplitudes of these harmonics. The considered elec-
trodynamic structure has a frequency response typical
of a system of two coupled resonators.
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