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The necessity of creating new types of smart mate�
rials with dynamic properties easily varying in the
acoustic frequency range by an external field has
recently initiated a sharp increase in the number of
studies of the dynamic properties of composite struc�
tures involving piezomagnetic media [1–3]. The wave
characteristics of such structures are closely related to
the conditions of localization of elastic oscillations
and their transmission through the interface between
contacting materials. The calculation of the condi�
tions of the formation of shear elastic surface waves in
magnetically ordered media is traditionally based on
the use of one of two fundamentally different (for the
essence of this work) theoretical approaches. One of
them is applied in the case of an acoustically gyrotro�
pic medium, e.g., an easy axis ferromagnet [4–7],
whereas the second approach is used in the case of an
acoustically nongyrotropic magnetic medium (com�
pensated easy axis antiferromagnet in the absence of
an external magnetic field) [8–11].

Beginning with pioneering works [4, 5], the spec�
trum of the shear elastic surface wave propagating
along the mechanically free surface of an easy axis fer�
romagnet magnetized by a static external magnetic
field along the tangent to the surface of the ferromag�
net is traditionally calculated with the inclusion of
only the magnetoelastic interaction:

, (1)

where M is the magnetic moment per unit volume, uik

is the elastic strain tensor, and γme is the isotropic mag�
netoelastic coupling constant. However, in this
approach, the interaction between the elastic sub�
system and magnetic dipole field is taken into account
indirectly (through the spin subsystem of the magnet).
Consequently, in the high�frequency range, the effect
of the indicated interaction on the condition of the

Wme γmeMiMkuik=

localization of an SH wave almost vanishes with an
increase in the frequency as compared to the effects of
the quadratic magnetostriction interaction:

, (2)

where γms2 is the isotropic quadratic magnetostriction
constant and H is the magnetic field.

A fundamentally different (than the acoustic of
magnetically gyrotropic media) approach is used to
calculate the spectrum of shear elastic surface waves in
a magnetically compensated medium (in particular,
easy axis antiferromagnets in the collinear phase in the
works cited above). As a mechanism of the localization
of a shear elastic wave near the mechanically free sur�
face of an antiferromagnet, the authors of [8–11] tra�
ditionally considered only the piezomagnetic interac�
tion (also called linear magnetostriction) whose struc�
ture has the form

, (3)

where  is the piezomagnetic constant tensor. This
interaction can already exist in the absence of sponta�
neous magnetization of the medium and, therefore,
quadratic magnetostriction (e.g., in the magnetically
compensated phase of an easy axis antiferromagnet).
However, it is known that the necessary conditions of
the formation of the magnetostriction interaction
under consideration in the antiferromagnetic crystal
impose certain symmetry constraints on the allowable
equilibrium spin configuration [12]. At the same time,
in the magnetically compensated phase of the
exchange collinear antiferromagnet at any spin con�
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figuration, there is the magnetoelastic interaction of
the form

, (4)

where  is the magnetoelastic constant tensor and l is
the antiferromagnetism vector (for the two�sublattice
model of the antiferromagnet). The analysis of the
magnetoelastic dynamics of the unbounded easy axis
antiferromagnet [13] indicates the possibility of reso�
nance between the amplitude of small oscillations of
the vector li near the equilibrium orientation and indi�
vidual components of the elastic strain tensor uik

(magnetoacoustic resonance). This allows the
assumption that the inclusion of magnetoelastic inter�
action (4) in addition to linear magnetostriction (3)
will result in the possibility of the fundamental trans�
formation of the previously known spectrum of shear
elastic waves in a semibounded piezomagnet [8–11].
However, such an analysis has not yet been performed.

The aim of this work is to study the anomalies of the
spectrum of the shear elastic surface wave propagating
along the mechanically free surface of a piezomag�
netic crystal with the simultaneous inclusion of linear
magnetostriction and magnetoelastic interactions
induced by the spin system of a magnetic.

As an example, we consider a two�sublattice model
of an easy axis (the OZ axis) exchange collinear antifer�
romagnet (with the magnetizations of sublattices M1

and M2, |M1| = |M2| = M0) [8]. For simplicity and clar�
ity of calculations, we assume that its magnetoelastic
and elastic properties are isotropic. As a result, the cor�
responding density of the thermodynamic potential
with allowance for linear magnetostriction Wms1 and
Dzyaloshinskii interaction WD can be represented in
terms of  ferromagnetism vectors l in the form

(5)

Here, δ, b, and γ are the intersublattice exchange, easy
axis magnetic anisotropy (b > 0), and isotropic magne�
toelastic interaction constants, respectively; λ and μ
are the bulk modulus and shear modulus, respectively;
m = (M1 + M2)/2M0 and l = (M1 – M2)/2M0 are the
ferromagnetism and antiferromagnetism vectors,
respectively; and h is the reduced magnetic field.

Similar to [8–11], the analysis below will be
restricted to the surface magnetoelastic dynamics of
the antiferromagnet under consideration in the col�
linear phase (l || OZ) under the assumption that the
(XY) plane is sagittal and the elastic displacement vec�
tor in a shear wave is directed along the OZ axis. If the

spin structure of the piezomagnet is  according to
[12], the following components of the linear (piezo�

Wme γmelilkuik=

γ

W δ
2
��m2 b

2
�� lx

2 ly
2+( ) WD Wms1+ + +=

– mh γlilkuik
λ
2
��uii

2 μik
2

.+ + +

4z
–2d

–

magnetic) interaction are of the most interest for the
type of propagating elastic waves under consideration:

. (6)

The invariant corresponding to Eq. (6) that deter�
mines the Dzyaloshinskii interaction has the form

, (7)

where d is the coupling constant.
If the finiteness of the propagation velocity of an

electromagnetic wave is disregarded, the magnetoelas�
tic dynamics of the model given by Eqs. (5)–(7) is
described by a closed system of equations including
the Landau–Lifshitz equations for the vectors m and l,
the basic equation of continuum mechanics, and
equations of magnetostatics [13]:

(8)

Here, ρ is the density; u is the elastic shift vector; g is
the gyromagnetic ratio, which is taken the same for
both sublattices; Hr ≡ –δW/δr is the effective field; r =
m, l; and σik is the elastic stress tensor.

The calculation shows that the material relations
for the shear wave with u || OZ, k ∈ (XY) in the easy axis
antiferromagnet characterized by Eq. (5) with the

structure  can be represented in the form

(9)

(10)

where B is the magnetic induction; ϕ is the magneto�
static potential (h ≡ –∇ϕ); c⊥ is the effective elastic
modulus; β15, β24, and β* are the effective piezomag�
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netic moduli; μ⊥ are the components of the magnetic

permeability tensor;  = g2 (δb – d2) is the uniax�
ial�anisotropy�induced active energy of the spin wave;

and  is the magnetoelastic gap [9].

Since the aim of this work is to study the conditions
of the formation and propagation of the shear elastic
wave with u || OZ and k ∈ (XY) near the mechanically
free surface of the piezomagnet specified by Eqs. (9)
and (10) with the normal n, the system of dynamic
equations under consideration should be supple�
mented with the corresponding elastic and electrody�
namic boundary conditions. Below, we will assume
that the boundary conditions on the outer surface of
the semibounded easy axis antiferromagnet have the
form [10]

(11)

(where ζ is the current coordinate along n) and repre�
sent the requirement of localization of the shear wave
near the outer surface of the easy axis antiferromagnet
under consideration in the form

(12)

The calculation shows that, owing to Eqs. (9) and
(10), for the propagation of the shear wave with u || OZ
along the OY axis for the boundary value problem
specified by Eqs. (11) and (12) at n || OX, the following
characteristic equation is valid:

(13)

where  ≡ μ/ρ,  ≡ ω2/ ,  ≡ c⊥/μ, and k = {k||,
k⊥, 0}. (For convenient comparison of the relations
obtained with [8–11] when determining the magneto�
mechanical coupling constant, we retain the notation
κ2. However, it can be negative in our case owing to
dispersion.)

For such an elastic wave to be surface in the piezo�
magnetic medium specified by Eqs. (9) and (10) at
given external parameters of the frequency and trans�
verse wavenumber, the following system of inequalities
should be satisfied:

(14)

or
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(15)

In both cases, the spatial distribution of the field,
shear elastic displacements, and magnetostatic poten�
tial in a piezomagnet that satisfies condition (12) cor�

responds to the two�partial wave ( )

(16)

The solution of the boundary value problem specified
by Eqs. (11) and (12) gives the following expression for
the spectrum of the shear surface wave with the elastic
displacement vector u || OZ that propagates along the
OY axis in the semibounded piezomagnet specified by
Eqs. (9) and (10) with the mechanically free surface
(n || OX):

(17)

where

;

.

The exactly solvable particular case of Eq. (17) at
η = 0 corresponds to the spectrum of the shear elastic
surface wave propagating along the (piezomagnet–
ideal diamagnet) sliding interface:

. (18)

According to Eq. (18), such a surface SH wave in
the piezomagnet specified by Eqs. (9) and (10) does
not exist in the absence of magnetoelastic interaction
(γ = 0). Spectrum (18) consists of two branches. These
branches lie in the frequency range determined by the

conditions x < 1 and μ⊥c⊥ + 4π  < 0 (see figure).
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In the limit γ → 0 (i.e., the magnetoelastic interac�
tion in Eq. (5) is neglected), Eq. (17) is transformed
into the “piezomagnetic” variant of the Tseng equa�
tion for the spectrum of the shear two�partial elastic
wave [11]:

(19)

The joint analysis of Eqs. (9), (10), and (17) shows
that the following relation in both the low� and high�
frequency limits is valid:

. (20)

As a result, the dispersion curve of the shear surface
wave given by Eq. (17) in these frequency ranges
almost coincides with Eq. (19), but the coefficients in
Eq. (19) are determined from material relations (10),
in contrast to [11].

If Eq. (20) is not satisfied, according to Eq. (17),
end points can appear in the spectrum of the discussed
shear SH elastic surface wave. According to Eq. (17),
the frequency and wavenumber k⊥ ≠ 0 at these points
are determined by the relations

. (21)
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Since  = 0 and  =  in Eqs. (13)–(16) at x = 1,
x = 1 determines the spectrum of the special wave of
the second type in the piezomagnet under consider�
ation, according to the classification introduced in
[14]. In this case, it is a bulk wave with the energy flux
parallel to a given surface that satisfies boundary con�
ditions (11) and (12) at a certain value k⊥ ≠ 0 only

together with the inhomogeneous wave (  = 0 and

= ). Thus, Eq. (21) can be considered as a result
of the intersection of the spectra of the shear elastic
surface wave (17) and the special wave of the second
type in the semibounded piezomagnet specified by
Eqs. (9)–(12).

If k⊥ = 0, the long�wavelength end points of the
spectrum given by (17) correspond to the frequencies
ω = 0, , and μ⊥(ω = ωμ) = 0. Furthermore, analysis
shows that the spectrum given by Eq. (17) also has the
long�wavelength end point with k⊥ ≠ 0. Its frequency is
determined by the condition 1 + κ2 = 0.

The fundamentally new effect associated with the
magnetoelastic interaction is the possibility of the for�
mation the SH elastic surface wave specified by
Eq. (17) in the short�wavelength (elastostatic, x → 0)
limit:

. (22)

Thus, the resulting relations indicate that, when
the formation of the shear elastic surface wave in the
piezomagnet is possible only owing to linear magneto�
striction, the magnetoelastic interaction can result in
the significant transformation of both dispersion prop�
erties and the conditions of localization of transverse
SH phonons.

It is noteworthy that the formation of the shear sur�
face acoustic wave specified by Eq. (17) with k ∈ (XY)
owing to the hybridization of linear magnetostriction
and magnetoelastic interaction is also possible when
the easy axis antiferromagnet specified by Eq. (5) has

a spin structure of , boundary conditions (11)
and (12) are satisfied, but n || [110]. In this geometry,
the material relations have the form similar to Eqs. (9)
and (10).

According to [12], contributions in Eq. (5) from
linear magnetostriction and Dzyaloshinskii interac�
tion are given by the expressions

(23)

The analysis shows that the magnetoelastic interaction
can lead to the formation of the SH elastic surface
wave in the piezomagnet specified by Eq. (5) even
when its localization near the mechanically free sur�
face specified by Eqs. (11) and (12) only owing to the
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Structure of the spectrum of a shear elastic surface wave at
the piezomagnet–ideal diamagnet given by Eq. (18). The
dashed line corresponds to x(ω → ∞) = 1, μ⊥(ω = ωμ) = 0.

The frequencies Ω± are the roots of the equation 1 + κ2 = 0.
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linear magnetostriction mechanism is impossible. As
an example, we consider the easy axis antiferromagnet
specified by Eq. (5), where the linear magnetostriction
and Dzyaloshinskii interactions have the form

(24)

According to [12], this is possible if the magnet has a

spin structure of  or . The calculation shows
that, in view of Eq. (10), the material relations for the
shear wave with u || OZ, k ∈ (ZY) in this case can be
represented in the form (β14 = β25 = β15 = β24):

(25)

As a result, for the above geometry of propagation of
the shear wave (u || OZ, k = {k||, k⊥, 0}), by analogy with
[15], we obtain the following characteristic equation
for the unbounded piezomagnet model:

. (26)

This means that the spatial distribution of the fields of
shear elastic displacements and magnetostatic poten�
tial in the semibounded piezomagnet (x < 0) corre�
sponds to a single partial surface wave:

(27)

The solution of the boundary value problem speci�
fied by Eqs. (11) and (12) with allowance for Eqs. (10)
and (25) gives the following expression for the spec�
trum of the shear surface wave that is polarized along
the OZ axis and propagates along the OY axis in the
semibounded piezomagnet (n || OX):

. (28)
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The analysis shows that the necessary condition of
the existence of this surface wave is the simultaneous
satisfaction of the inequalities

. (29)

Thus, the magnetoelastic interaction is of signifi�
cant importance for this type of piezomagnetic crystal
in addition to linear magnetostriction. This interac�
tion is responsible for the possibility of the localization
of shear phonons both at the piezomagnet–vacuum
interface and piezomagnet–ideal diamagnet sliding
interface.

The effects caused by electrostriction and qua�
dratic magnetostriction on the localization conditions
and dispersion properties of the shear elastic surface
wave for the types of piezomagnetic crystals under
consideration will be considered in the future.
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