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A metamaterial is knowingly a composite medium
of locally resonant structural elements with the wave
properties qualitatively different in the long wave�
length limit from the dynamic characteristics of the
structural elements forming the composite. The num�
ber of objects regarded as metamaterials is constantly
expanding. These include, in particular, artificial insu�
lators and magnets, chiral and omega structures, bi�
isotropic and bianisotropic media, photonic crystals,
etc. [1]. Lapine et al. [2] attempted to take into
account the acoustic continuity and mechanical
degrees of freedom of electromagnetic composite
structures in order to make magnetoelastic metamate�
rials based on such structures [2]. At the same time,
making both electromagnetic and acoustic metamate�
rials with the characteristics that could be smoothly
adjusted by external fields (magnetic, electric, or their
combination) became a problem of recent years. In
this respect, a magnetic medium is of particular inter�
est because it already includes, in the case of a single
crystal, a natural locally resonant structure repre�
sented by the magnetic moment of unit volume. Mag�
nonics is one of the most quickly developing fields of
modern physics of magnetic phenomena. It is based
on the idea of using spin�wave excitations for making
a new class of composite media—magnetic metama�
terials [3–5]. In addition to the inhomogeneous
exchange interaction, an important role among the
interactions forming the dispersion properties of a
magnetic medium is played by the magnetic dipole
field. This long�range interaction induces indirect spin
exchange, which leads, in particular, to the formation
of “exchangeless” spin�wave excitations termed as
magnetostatic spin waves in bounded spatially homo�
geneous magnets [6]. Taking into account the bound�
ary conditions on the surface of a magnet, the dynam�

ics of this class of magnetostatic spin�wave modes is
determined by the set of equations

divB = 0, curlH = 0, (1)

where B and H are the magnetic flux density and the
magnetic field, respectively. Such magnetostatic spin�
wave modes intensively studied in magnonics, prima�
rily in ferromagnetic media [3–5], can be considered
as analogs of magneto�inductive waves formed in
composite electromagnetic metamaterials [7]. Mag�
netoelastic interaction also can be the mechanism of
indirect spin exchange in real magnetic media. Its
influence on spin dynamics in antiferromagnets is
enhanced owing to the exchange effects, which leads
to a phonon mechanism of indirect spin exchange in
the case of a sufficiently weak inhomogeneous spin�
exchange interaction (low�temperature antiferromag�
nets). As a consequence, another class of “exchange�
less” spin�wave modes referred to as elastostatic spin
waves is formed in bounded spatially homogeneous
magnets taking into account the boundary conditions
[8]. Their dynamics is determined by the elastostatic
equations

, (2)

where σik is the elastic stress tensor.

In the general case, the magnetic dipolar and
phonon mechanisms of the formation of magneto�
static magnons in a bounded magnet supplement each
other. At the same time, according to calculations,
neither magnetostatic nor elastostatic bulk spin waves
with the wave vector k ∈ (XY) can be formed or prop�
agate in a uniaxial ferromagnetic or antiferromagnetic
plate with the easy axis directed along the high�order
axis OZ and the sagittal plane (XY). Physically, this is
associated with the fact that the indirect spin exchange
via both the magnetic dipole field and the quasistatic

div σik 0=
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elastic strain field is independent of the direction of
the wave vector within the above sagittal plane.

It is well known, however, that, under certain sym�
metry conditions imposed on the magnetic structure,
an antiferromagnet exhibits the piezomagnetic inter�
action [9]

, (3)

where γijk is the piezomagnetic tensor and ujk is the
elastic strain tensor. According to calculations, this
interaction can lead to the impossibility of indepen�
dent propagation of shear elastic and electromagnetic
waves even within the plane with the normal along the
high�order axis coinciding with the direction of the
antiferromagnetic vector l || OZ. Consequently, the
degeneracy with respect to the direction of k ∈ (XY) in
such a piezomagnet can be lifted already in the elec�
trostatic limit owing to anisotropic interaction (3)
between the quasistatic magnetoelastic strain field and
the magnetic dipole field. This allows expecting the
possibility of the formation of a previously unexplored
class of traveling nonexchange spin�wave modes near
the magnetic resonance frequency. However, the spin
dynamics of piezomagnetic antiferromagnetic plates
with the inclusion of this issue has not been discussed
so far.

This work is aimed at finding the conditions under
which only the interference of the phonon and mag�
netic dipole indirect spin�exchange mechanisms leads
to the formation of a new class of traveling nonex�
change spin waves in a low�temperature piezomag�
netic plate.

As an example, we consider the two�sublattice
model of an easy�axis (the OZ axis) exchange�col�
linear antiferromagnet [8] (M1 and M2 are the magne�
tizations of the sublattices, |M1| = |M2| = M0), the elas�
tic properties of which are thought to be isotropic for
simplicity and clarity of calculations. The respective
thermodynamic potential density with the inclusion of
the Dzyaloshinskii interaction (WD) can be expressed
in terms of the ferromagnetic (m) and antiferromag�
netic (l) vectors as

(4)

Here, δ, b, and γ are the intersublattice exchange,
easy�axis anisotropy (b > 0), and isotropic magne�
toelastic interaction constants, respectively; λ is the
compression modulus; μ is the shear modulus; m =
(M1 + M2)/2M0; l = (M1 – M2)/2M0; and h is the
reduced magnetic field. Below we restrict ourselves to
the following structures of the Dzyaloshinskii–Moriya
interaction (d is the interaction constant):

, (5)

Wpm γi jkHiujk=

W δ
2
��m2 b

2
�� lx

2 ly
2+( ) WD mh–+ +=

+ γlilkuik
λ
2
��uii

2 μuik
2

.+ +

WD d mxly mylx±( )=

. (6)

The magnetoelastic dynamics of model (4)–(6)
neglecting the fact that the propagation velocity of the
electromagnetic wave is finite is described by the
closed set of equations including the Landau–Lifshitz
equations for the vectors m and l, the basic equation of
the mechanics of a continuous medium, and the mag�
netostatic equations

(7)

,

where ρ is the density; u is the elastic displacement
vector; g is the gyromagnetic ratio, which we will
assume to be equal for both sublattices [9]; and Hr ≡
⎯δW/δr is the effective field with r = m, l.

In the case of a shear wave with u || OZ, k ∈ (XY),
the material relations for the antiferromagnet with the

structure  (the plus sign in Eq. (5)) can be written
as

(8)

where B is the magnetic flux density; ϕ is the magne�
tostatic potential (h ≡ –∇ϕ); c⊥ is the effective elastic
modulus; β14, β41, and  are the effective piezomag�
netic moduli; μ⊥ are the components of the permeabil�
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ity tensor;  =  is the activation energy
of the spin wave induced by uniaxial anisotropy; and

 is the magnetoelastic gap [9].

Since this work is aimed at studying the magne�
toelastic dynamics of a piezomagnetic antiferromag�
netic plate with the thickness 2L and the sagittal plane
(XY), the set of dynamic equations under consider�
ation must be supplemented by the respective elastic
and electromagnetic boundary conditions. Below we
will restrict ourselves to the case of n || [100] assuming
that the set of boundary conditions has the form [10]

. (9)

According to Eq. (8), we find the following charac�
teristic equation of the boundary�value problem spec�
ified by Eqs. (7)–(9) for the shear wave with u || OZ

propagating along the OY axis (  ≡ ,  ≡
μ/ρ, k = {k||, k⊥, 0}):

,

. (10)

This implies that the spatial distribution of both the
shear elastic displacement field and the magnetostatic
potential in the antiferromagnetic plate under consid�
eration correspond to the two�partial wave

, (11)

,

. (12)

Thus, the calculation already in the elastostatic

limit (for which one has to proceed to the   0
limit on the right�hand side of Eq. (10)) yields the fol�
lowing expression for the spectrum of the normal bulk
modes propagating along the piezomagnetic plate

under consideration (κν ≡ πν/2L,  ≡  + ):

(13)

The derived relation determines the dispersion
properties of nonexchange bulk spin�wave modes with
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k⊥ || OY, n || [100] propagating along the piezomagnetic
plate. In contrast to the previously known types of
nonexchange (both dipolar and elastostatic) magnons,
the present class of exchangeless spin waves can be
termed elasto�dipolar magnons, since, as follows from

Eq. (13), they possess dispersion only if  ≠ 0
(i.e., only at the simultaneous inclusion of the mag�
netic dipole and phonon indirect spin�exchange
mechanisms in the bounded piezomagnet under con�
sideration).

The spectrum of nonexchange bulk elasto�dipolar
magnons specified by relations (13) is two�band in the
ω – k⊥ plane. Below we conditionally divide it into the
low�frequency (c⊥ < 0) and high�frequency (μ⊥ < 0)
bands. Found dispersion relations (13) in each band
for the chosen orientation of the normal n include
both the long wavelength (formally at k⊥  0) and
short wavelength (formally at k⊥  ∞) spectrum con�

densation points degenerate in frequency: ω2 =  if

c⊥ < 0 and ω2 = (  + )(1 + ε) if μ⊥ < 0. The spec�
trum of the nonexchange spin�wave mode with the
given mode index ν at k⊥ =  ≠ 0 has the critical point
determined by the condition

. (14)

Such a point in the low(high)�frequency band cor�
responds to the maximum (minimum) (at n || [100]) of
the respective dispersion curve. Respective dispersion
curve (13) changes the type of mode with the given
mode index ν and the chosen band if the transverse
wavenumber of the mode becomes greater than critical
value (14). The type of mode in the low� and high�fre�
quency bands changes with an increase in k⊥ from for�
ward (k⊥∂ω/∂k⊥ > 0) to backward (k⊥∂ω/∂k⊥ < 0) and
vice versa, respectively. In addition, at k⊥ ≠ 0, there
exists a spectrum degeneracy point for each pair of
modes with the given indices ν and τ belonging to the
same band of spectrum (13). This point corresponds to
the crossing of the respective dispersion curves (more
specifically, one mode is necessarily forward and the
other one is backward). From the physical point of
view, this is the exchangeless elasto�dipolar mecha�
nism of the formation of an inhomogeneous spin–spin
resonance. It can be regarded as an analog of the well�
known spin–spin resonance in magnetic plates with
the participation of magnetostatic and exchange spin
waves [6]. It is also worth mentioning that the number
of both extreme and degeneracy points in the spec�
trum of spin�wave excitations under consideration
forms an infinite countable set in the exchangeless
limit.

Similar to the magnetostatic spin wave, which
belongs to the slow branch of the spectrum of normal
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spin�electromagnetic modes in a bounded magnet [6],
the discovered class of nonexchange elasto�dipolar
magnons is a part of the slow branch of the spectrum
of shear elastic waves in a bounded piezomagnetic of
the type under consideration.

Let us study the basic dispersion effects caused by
the finiteness of the propagation velocity of the shear
elastic wave polarized along the equilibrium antiferro�
magnetic vector (l || OZ) in the sagittal plane (XY). If
again n || [100], we can use for calculations character�
istic equation (10) assuming now that its right�hand
side is nonzero. The solution of the boundary�value
problem can be structurally sought again in the form
similar to Eqs. (11) and (12). As a result, the respective
relation for the spectrum of normal shear elastic bulk
modes propagating along the piezomagnetic plate with
allowance for the magnetoelastic and magnetic dipole
interactions can be expressed as (κν ≡ πν/d)

,

. (15)

According to the analysis, the finiteness of the
propagation velocity of the elastic waves leads to a
finite number of extreme and degeneracy points. This
number depends on the mode index and the plate
thickness and decreases to zero with an increase in the
thickness.

The point c⊥ = 0 for shear elastic bulk modes with
k⊥  0 is a spectrum condensation point, but only at
ω  ω0 – 0. The long wavelength spectrum com�
pression points at k⊥/κν  0 found in the elasto�
dipolar approximation will be absent at k0 ≠ 0 in both
high�frequency (μ⊥ < 0) and low�frequency (c⊥ < 0)
ranges. For the short wavelength spectrum condensa�
tion points at k⊥/κν  ∞, one still has μ⊥  0 if
μ⊥ < 0 and c⊥  0 if c⊥ < 0.

Taking into account the retardation, the relations
for the spectrum degeneracy points become (κτ ≡
πτ/2L)

;

. (16)

According to the analysis, additional spectrum
degeneracy points can arise (in the same frequency
range c⊥μ⊥ < 0) for certain initial mode indices at a
plate thickness below the critical one (and the points
existing in the elastostatic approximation will be
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shifted in both frequency and wavenumber). These are
the crossing points of two forward modes.

It should be mentioned that this “additional” type
of spectrum degeneracy points associated with the
inclusion of the finite propagation velocity of elastic
waves is dissimilar to fast magnetoelastic modes stud�
ied quite thoroughly by the example of homoge�
neously magnetized ferromagnetic plates [11]. If we
formally set to zero the magnetoelastic interaction in
the case of [11], fast magnetoelastic waves are reduced
to the emergence of degeneracy points on the (fre�
quency–transverse wavenumber) plane between the
dispersion curves corresponding to the spectrum of
traveling magnetostatic modes and the dispersion
curves specifying the spectrum of bulk elastic modes of
the plate. In our case, the dispersion of elasto�dipolar
magnons results from hybridization of the dipolar and
magnetoelastic interactions; if the latter is set to zero,
there is no crossing of the spectra of magnetostatic and
elastic waves.

Bulk modes in a plate knowingly result from inter�
ference of plane elastic waves reflected from its sur�
faces. This gives us the opportunity to find correspon�
dence between the geometry of the cross section of the
surface of wave vectors of a normal shear elastic wave
by the sagittal plane in the infinite piezomagnetic
under consideration and the structure of the shear bulk
mode found above and propagating along such a pie�
zomagnetic plate. The shape of the cross section of the
surface of wave vectors by the sagittal plane (XY) can
be represented as

(17)

At  < ω2 < (  + )(1 + ε) (i.e., in the region
of elasto�dipolar magnons), the surface of wave vec�
tors transforms from a closed surface to an open one.
There appear the angle intervals (sectors) of the width
ϕ = 2ϕc (1 = |K2|sin22ϕc) in the sagittal plane, inside
which only evanescent waves with the appropriate fre�
quency can exist in the antiferromagnet. At c⊥ < 0, the
bisectrices of such sectors are orthogonal to each other
and directed along the coordinate axes (ϕ = 0, ±π/2),
whereas at μ⊥ < 0 they coincide with the directions ϕ =
±π/4, ±3π/4. The outward normal to curve (17) deter�
mines the direction of the average energy flux carried
by the wave. As follows in particular from comparison
of Eqs. (13) and (17), the backward elasto�dipolar bulk
modes at c⊥μ⊥ < 0 correspond to the presence of
regions with a negative Gaussian curvature in the cross
section of the surface of wave vectors by the sagittal
plane. In the opposite case, the bulk mode propagating
in the antiferromagnetic plate is the forward one.

So far, we restricted ourselves to the analysis of the
conditions of the formation of bulk elasto�dipolar
magnons only in the antiferromagnetic plate, in which
the Dzyaloshinskii–Moriya interaction is given by
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Eq. (5) with the plus sign. At the same time, according
to calculations, a similar type of excitations can take
place also in the antiferromagnetic plates with invari�
ant (6). One has to take into account only that invari�
ants (5) with the plus sign and (6) with the minus sign
transform to one another under the rotation of the used
reference frame by an angle of π/4 with respect to the
OZ axis. Thus, all relations found above hold also in the
case of an antiferromagnetic plate with invariant (6)
with the minus sign under boundary conditions (9) if
n || [110], (XY) is the sagittal plane, and l || OZ. All
other combinations of signs in Eqs. (5) and (6) do not
lead to the formation of the discussed type of
exchangeless bulk elasto�dipolar magnons in an anti�
ferromagnetic plate. Already a weak deviation from
the above boundary conditions results in disappear�
ance of spectrum degeneracy points (16) found above.
Instead, the dispersion curves corresponding to differ�
ent modes of the spectrum are pushed apart and
exhibit bottlenecking in the vicinity of the degeneracy
points. In this case, if the degeneracy point was formed
by the forward and backward modes, the additional
critical points ∂ω/∂k⊥ = 0 corresponding to the maxi�
mum and minimum appear in pairs on the dispersion
curves when the degeneracy is lifted. Owing to a strong
dependence of the dispersion properties of the normal
shear wave with u || OZ on the propagation direction in
the (XY) plane, which follows from Eq. (10), the spec�
trum of exchangeless elasto�dipolar magnons investi�
gated in this work appears to be ultimately sensitive to
the orientation of the surface normal of the antiferro�
magnetic film within the sagittal plane.

The effect of the orientation of n within the sagittal
plane on the structure of the spectrum of bulk elasto�
dipolar magnons and the effects of inhomogeneous
exchange interaction will be considered in more detail
separately.
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