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INTRODUCTION

The development of methods and technologies for
production of inhomogeneous nanocomposite mate�
rials has stimulated interest in the comprehensive
analysis of their properties and specific features [1, 2].
There has been considerable recent interest in granu�
lated nanocomposites that contain metal (including
magnetic) nanoparticles in a dielectric matrix [3].
Such structures can be employed in data processing
devices, and it is expedient to study the corresponding
physical properties that can be used to implement new
design principles and stimulate progress in fundamen�
tal physics. The  amorphous
nanocomposite films make it possible to study
quantum processes of conduction and magnetiza�
tion and the remaining properties in a wide range of
compositions below and above the percolation
threshold [3–6]. Below the percolation threshold,
the  layered struc�
tures exhibit relatively high permeability (up to several
hundreds) at frequencies of up to 50 MHz due to the
formation of magnetically ordered structure of ferro�
magnetic granules [7]. A typical size of the granules of
the aforementioned films ranges from 3 to 5 nm,
depends on the film thickness, and linearly depends on
the metal concentration [8, 9].

Most works on granulated nanocomposites are
devoted to the nature of electric properties, in partic�
ular, interpretation of the law of one second for the
temperature dependence of conductivity. The models
of activated tunneling through dielectric barriers
(Sheng–Abeles) [10–12], thermally activated hop�

( ) ( )1x x−45 45 10 2 3Co Fe Zr Al O

[( )xCoFeZr 1( ) ( )]x n−

α −2 3Al O SiH

ping conduction with allowance for the spread of the
size of granules [9], and inelastic resonance tunneling
[13, 14] have been proposed. Note that the depen�
dence is strongly manifested at low temperatures in the
interval 250–350 K and provides a variation in con�
ductivity (or resistivity) by 1.1% relative to the mean
level in the interval. Thus, the effect is insignificant at
room temperature.

Note several specific features of amorphous nano�
composites at room temperatures. For microwave pro�
cesses, the bandwidth of ferromagnetic resonance
(FMR) anomalously (by about two orders of magni�
tude) increases in comparison with the bandwidth for
pure metals [15]. Electron transport, which is studied
using the methods of spin�wave spectroscopy, exhibits
several anomalous features [16–18].

Many works have been published but the electrody�
namic properties of granulated nanocomposites at rel�
atively high frequencies (several or several tens of giga�
hertz) are insufficiently characterized. In particular,
note insufficient experimental and theoretical data on
the relationship of the static and dynamic parameters
of the films. Only simultaneous comparative measure�
ments of the static and microwave properties can be
helpful.

In this regard, this work is devoted to the experi�
mental study of the conduction of thin nanocomposite
films using the dc current flow and the reflection of
microwave electromagnetic radiation and the model
interpretation of the experimental effects. Several pre�
liminary results can be found in [19], and we present
further developments in this work.
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1. PARAMETERS OF FILMS
AND MEASUREMENT PROCEDURES

We study the  (series A)
and  (series B) films (0.3 ≤ x ≤
0.6) that contain granulated amorphous ferromagnetic
nanoclusters [3]. The films are grown with the aid of
ion�beam sputtering on a lavsan substrate with a thick�
ness of 0.5 mm. To stabilize the amorphous structure,
we add 10% of amorphization agent (zirconium) to
the ferromagnetic atoms (iron and cobalt). The MgO
and Al2O3 matrices exhibit thermal stability in a rela�
tively wide temperature interval. We exactly determine
the composition of the composites using the electron�
probe X�ray microanalysis (JSM�6400 microscope).
The thickness of the films that is measured using an
MII�4 interferometer ranges from 0.8 to 1.3 μm. The
details of production technology and the results on the
static properties of the films can be found in [3, 19].

In this work, we concentrate on the study of con�
ductivity using two methods that involve the measure�
ments of resistivity in the presence of dc current and reflec�
tion coefficient of microwave radiation. An EF�13A ter�
aohmmeter is used to measure the resistivity of the
films in the presence of the dc current with the aid of
two�probe potentiometric procedure. We study the
reflection of electromagnetic waves in the frequency
interval 8–70 GHz using a set of waveguide microwave
spectrometers based on sweep generators (GKCh�61,
65, and 68) and an Ya2R�67 standing�wave ratio and
attenuation indicator. The reflection coefficients of
the films are measured using the method that was used
in [20, 21] for metal films. The reflectance of the
microwave radiation from the substrate material is no
greater 5%. We monitor the surface morphology of the
films using an AFM. The X�ray structural analysis is
used to prove the amorphous character of the films [4].

2. STATIC RESISTIVITY OF THE FILMS

The dots in Fig. 1 show the experimentally mea�
sured dependences of the resistivity of the films on the
concentration of the conducting phase for the A and B
series. For the films of both series, the resistivity
monotonically decreases with an increase in the con�
centration of conducting phase as in the experiments
of [3, 19]. Note a greater slope for the films of the B
series. At relatively small concentrations  of
no greater than 0.55 the resistivity of the A�series films
is lower than the resistivity of the B�series films. The
inverse relationship is observed if  is greater
than 0.55. Apparently, this result is due to the fact that
the resistivity of the MgO matrix (A series) is lower
than the resistivity of Al2O3 matrix (B series) by
approximately two orders of magnitude. Presumably,
the level x ~ 0.50–0.55 corresponds to the percolation
of the conducting phase when the dielectric conduc�
tion is changed by metal conduction. The level is close
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to the result  that was obtained in [3] from the
analysis of temperature dependences.

For the calculation of the reflection of electromag�
netic waves from the films, we need an analytical
dependence of resistivity on the concentration of con�
ducting phase. Following the approach of [19], we
analyze the possibilities for construction of empirical
dependences based on the concept of differential con�
ductivity

(1)

In the simplest case, two variants are possible.

(i) The power dependence on the concentration of
conducting phase is valid for the differential conduc�
tivity:

(2)

where A and α are constants.

In this variant, the resistivity is represented as

(3)

(ii) The differential conductivity is proportional to
the conductivity:

(4)

where B is constant.

Then, the resistivity is written as

(5)

Figure 1 demonstrates the empirical curves that are
calculated using expressions (3) and (5). A coefficient

~ 0.41x
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Fig. 1. Plots of the specific resistance of (1) and (1')
A�series and (2) and (2 ') B�series films vs. concentration of
conducting phase: (dots) experimental results and the
results of calculations using (solid lines) formula (3) and
(dashed lines) formula (5).
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of 10–7 is used for scaling in all formulas. For the films
of the A series, we use the formulas

(6)

 (7)

to calculate curves 1 and 1', respectively.
For the films of the B series, we use the formulas

(8)

 (9)

to calculate curves 2 and 2 ', respectively.
It is seen that both formulas can be used to approx�

imate the experimental results with a relatively high
accuracy (no less than 50% with allowance for the log�
arithmic scale). Thus, we choose the formula for the

7
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calculation of reflection based on the simplicity of the
corresponding computer procedures.

3. TOPOLOGICAL MODEL 
OF STATIC RESISTANCE

An alternative interpretation of the experimental
dependence of the resistivity on the concentration of
conducting phase is based on the topology of the com�
posite structure [19].

We assume that the film consists of a dielectric
matrix with embedded conducting domains. Such
domains can be represented as identical spheres with
radius R. We also assume that the conducting domains
are uniformly distributed in matrix space at identical
distances from each other. Let b be the distance
between the centers of conducting spheres. The con�
ducting domains do not contact each other when

, and the conductivity is zero. The medium
exhibits conductions when the spheres are in contact
with each other (b = 2R). When parameter b further
decreases (b < 2R), the spheres are partly overlapped
and the conductivity increases with an increase in the
overlapped area.

Figure 2 illustrates such overlapping and shows the
projection of two spheres on a plane. Points A and B
are the centers of spheres, and b is the distance
between these points. The spheres are in contact along
the CD line. The contact area is a circle whose radius
is CE or DE. For right triangle ACE, we have

(10)

The area of the contact is calculated as

 (11)

Assuming that the conductivity σ is proportional to
the contact area, we obtain

(12)

With allowance for the fact that resistivity ρ is inversely
proportional to conductivity, we have

(13)

We consider the dependences of conductivity and
resistivity on the concentration of metal phase in the
films on the assumption that the conducting domains
represent fragments of granules filled with metal atoms
and that each granule contains such a domain. In gen�
eral, the conduction of the medium is determined by
the distance between such domains.

Figure 3 shows how such a distance is determined.
Rectangles with thick border lines simulate neighbor�
ing granules. We assume that the length of each rectan�
gle is unity. The length of conducting (crosshatched)
domain is x. The distance between the neighboring
conducting domains is 
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Fig. 2. Overlapping of conducting domains.
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Fig. 3. Formation of distance between the conducting
domains.
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We assume that distance b between the centers of
conducting spheres (Fig. 2) is determined similarly to
distance g between the neighboring conducting
domains (Fig. 3), so that  or  Using
expression (12), we derive the relationship of conduc�
tivity σ and concentration of conducting phase x

(14)

and the corresponding relationship for resistivity ρ

(15)

We also take into account the finiteness of conductiv�
ity of the conducting phase, so that finite resistivity ρ0
is obtained when the system under study is filled with
conducting phase. Thus, the dependence of resistivity
on the concentration of conducting phase is repre�
sented as

(16)

In this expression, parameters R and ρ0 are a priori
unknown and can be determined using the condition
for the best agreement of the calculated and experi�
mental results. Figure 4 demonstrates the depen�
dences of the resistance of the A�series films on the
concentration of conducting phase. Curves 1 and 2 are
calculated using formulas (6) and (7), respectively.
Curve 3 is calculated with the aid of model formula (15)

with the empirical parameter 

(17)
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Curve 4 is calculated using model formula (16) with

the parameters  and 

(18)

It is seen that empirical (1 and 2) and model (3 and 4)
curves show a decrease with increasing concentration
and exhibit downward convexity in agreement with the
experimental results. Curve 1 provides the best
approximation of the experimental data, and the
approximation quality of curve 2 is nearly the same.
Both curves are calculated using the empirical model
in the absence of model analysis. Curve 3, which is cal�
culated using the proposed model with disregard of the
finite resistance of conducting phase, lies under the
experimental points. Curve 4, which takes into
account the resistance of conducting phase is shifted
downward (upward) relative to the experimental
points by no greater than 40% (5%) at the interval

 (0.48 < x < 0.60).
Thus, we assume that the model based on the con�

tact of domains with conducting phase with allowance
for the finite resistance of such a phase allows qualita�
tive approximation of the experimental dependence
with an accuracy of about 40%.

4. REFLECTION OF ELECTROMAGNETIC 
WAVES FROM THE FILMS

In addition to resistivity, we experimentally study
the reflection of electromagnetic waves from the films
versus the concentration of metal phase [19]. Figure 5
shows the curves of the reflection coefficient with

2 0.124,R = 0 30 :ρ =

( ){ }
12 70 1 4 30 10 .x

−

−⎡ ⎤ρ = − − + ×⎣ ⎦.124
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4

Fig. 4. Plots of the specific resistance vs. concentration of
conducting phase: (dots) experimental results and the
results of calculations using (1) formula (6), (2) formula
(7), (3) formula (17), and (4) formula (18).
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Fig. 5. Plots of the microwave reflection coefficients of
(1) A�series and (2) B�series films vs. concentration of
metal phase: (solid lines) calculated and (dots) experimen�
tal results.
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respect to energy at a frequency of 14 GHz for the A
and B series. It is seen that the A�series films exhibit
higher reflectance in comparison with the B�series
films, apparently, due to higher conductivity. At rela�
tively low concentrations (  for series A and

 for series B), the reflection coefficient is
slightly varied in the interval 0.1–0.3. At higher con�
centrations, the reflection coefficient sharply
increases and approaches unity at x ~ 0.47 and 0.55 for
series A and B, respectively.

A stepwise increase in the reflection coefficient in
the interval 0.40 < x < 0.50 is observed in the absence
of similar variations in the resistivity (Fig. 1), presum�

ably, due to the transition from dielectric type of wave
propagation to the metal type (see [22] for details).

It is seen that the transition takes place at the con�
centration 0.40 < x < 0.50, which is slightly less than the
concentration corresponding to the percolation transi�
tion from the dielectric conduction to metal conduc�
tion in the presence of dc current (0.50 < x < 0.55). This
circumstance indicates the difference of the effects that
are responsible for conduction in the presence of the dc
current and in the microwave regime.

Figure 5 also shows the dependences of reflection
coefficient with respect to energy R on the concentra�
tion of conducting phase that are calculated using the
following formula for the layer in free space [23–26]:

(19)

where   and k1 are permittivity, permeability, and
wave number in free space, respectively;   and k2

are permittivity, permeability, and wave number in the
layer, respectively; and d is layer thickness. We take
into account conductivity σ as an imaginary contribu�
tion to the permittivity:

 (20)
Here, εr is the permittivity of the layer in the absence
of conduction, σ is the conductivity of the later, ω is
frequency, and ε0 is dielectric constant.

We use the frequency  s–1 (14 GHz);
  and  m–1 in free space; 
 and  m–1 in the film material in the

absence of conduction; the film thickness d = 1 μm; and
electrodynamic constants ε0 = 8.842 × 10–12 F m–1 and

 H m–1.
The conductivities are calculated using empirical

formulas (6) and (8) for resistivities of the A� and
B�series films (Fig. 1). The dashed lines in Fig. 5 show
the calculated results. It is seen that the calculated
curves are shifted downward and to the right�hand side
relative to the experimental points.

Correction coefficients of 1.8 and 4.0 are introduced
into the formulas for the A� and B�series films, respec�
tively, to reach better agreement between the calculated
and experimental results. Thus, the formulas for the cal�
culations of conductivity are represented as

 (21)

 (22)

for the A� and B�series films, respectively.

The solid lines in Fig. 5 show the curves that are
calculated with allowance for corrections.

It is seen that the deviation of curve 2 ' (series B)
is no greater than 0.05 of the saturation level, where
R ~ 1. For series A (curve 1 '), the deviation is also no
greater than 0.05 when x ranges from 0.34 to 0.42 and
is no greater than 0.20 elsewhere. The difference of the
calculated and experimental curves is presumably due
to the fact that the substrate, which represents an addi�
tional reflecting layer, is not taken into account. This
effect is significant in the range of dielectric conduc�
tion (at a relatively low concentration of conducting
phase).

Thus, the approximation using the correction coef�
ficients shows that the dynamic conductivity of the
films, which is responsible for the reflection of the
microwave radiation, is significantly (by a factor of up
to 4) higher than the static conductivity, which is
responsible for the resistance of the films in the pres�
ence of the dc current.

5. POSSIBLE INTERPRETATIONS 
OF THE DYNAMIC CONDUCTION

The experimental results from the previous section
show that the resistivity resulting from the measure�
ments of the reflection of electromagnetic wave from
the film is significantly lower than the resistivity result�
ing from the measurements using the dc current. We
consider the possible interpretations of these results.

Apparently, the most probable reason for a decrease
in the resistivity in the presence of ac current is the
shunting of the active resistance of the film by a capac�
itance, whose impedance with respect to dc current is
infinitely high and decreases with increasing fre�
quency of the ac current. Another possible reason is an
increase in the absolute value of the effective permit�
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tivity of the film due to filling of the dielectric matrix
with conducting metal clusters. Note also the effect of
intracluster currents that form the reflected microwave
radiation.

5.1. Capacitive Shunting

To analyze the possibility of the capacitive shunting
of the active resistance of the film, we consider the
model of microscopic structure.

The film consists of relatively small conducting
granules that are embedded in the matrix with low
conductivity. Most granules have almost spherical
shapes. In general, the granules can be concentrated in
conducting clusters that consist of several granules
separated by poorly conducting material. Note the
possibility of almost spherical clusters and the clusters
whose shape substantially differs from the spherical
shape. In the course of percolation, conducting chan�
nels are formed between the clusters. The configura�
tion of the channels can be tortuous and the topology
can be close to fractal.

The dc�current measurements are performed using
contacts that represent fragments of rectilinear wires
imposed on the opposite edges of the film. The mea�
surements of the reflected wave are carried out in a
waveguide in the transverse cross section of which the
film is pressed using flanges. In both cases, current (ac
or dc) flows between the conducting contacts that are
placed on the edges of the film.

Thus, capacitances of two types can be used for
shunting: capacitances between granules or clusters
and the capacitances between contacts. In this regard,
we consider two effects that can be related to the
dynamic conduction due to capacitance.

First, we assume that the resistance of the film can
be calculated as the resistance of series�connected
cells each of which represents a conducting cluster and
a series�connected poorly conducting intercluster
layer that is shunted by the intercluster capacitance.

In the second case, we consider active impedance
of the film and the reactive component that is provided
by the capacitance between contacts. Such a capaci�
tance increases due to the presence of conducting
clusters between the contacts, since the free intercon�
tact layer decreases.

5.1.1. Chain model of the film. The geometrical and
electrodynamic structures of the granulated composite
film are difficult to analyze. Therefore, we approxi�
mately estimate the difference between dynamic and
static conductivities using a simplified model that can
be considered as a chain model in accordance with its
geometrical structure.

We assume that the film consists of identical recti�
linear parallel chains that are placed on a plane in
close contact with each other. Each chain contains
conducting clusters that are separated by poorly con�
ducting intercluster layers. The interaction of the clus�

ters of the neighboring chains is disregarded. Thus, the
chains are independent.

Figure 6 (top view) illustrates the positions of con�
ducting and poorly conducting domains of the film.
Open fragments (A) correspond to conducting clus�
ters, and crosshatched fragments (B) correspond to
poorly conducting intervals. The Oxyz Cartesian coor�
dinate system is oriented in such a way that the Oxy
plane is parallel to the film plane, the Oz axis is per�
pendicular to the film plane, and the Ox axis coincides
with the orientation direction of the chains.

The geometrical sizes of the clusters are identical
and the intercluster intervals are equal to each other.
We assume that the clusters represent rectangular par�
allelepipeds whose edges are oriented along the Ox,
Oy, and Oz axes. Note that the cluster lengths along
the axes are close to each other.

The chains are aligned in several layers, so that the
total thickness of the film with respect to the z coordi�
nate can be significantly greater than the thickness of
one film, which is determined by the thickness of one
cluster. Conducting contacts S1 and S2 are located at
the edges of the film. The resistance of the contacts is
disregarded.

We consider a single chain in detail. Figure 7a
shows the configuration of the chain that consists of
conducting clusters A and poorly conducting layers B
that are located one after another on a substrate. The
plane of the chain is the Oxy plane. In general, the
structure represents a periodic chain of identical cells
consisting of adjacent conducting and poorly con�
ducting fragments. The cell length is  The
structure simulates an 1D chain of clusters that is
bounded along all directions. Therefore, the sizes
along the Oy and Oz axes must be determined. Let Lg

and Lh be the widths of the chain along the Oy and Ox
axes, respectively.

.a bL L+

AS1

0 x

y

S2A A A A AB B B B B

Fig. 6. Scheme of the chain model of the film with hori�
zontal thick lines that show a single chain: (A) clusters,
(B) gaps between clusters, and (S) contacts.
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5.1.2. Total resistance of the film that is determined 
by intercluster capacitances. First, we consider the
dynamic conduction of the film related to the inter�
cluster capacitances using the chain model (Fig. 7).
Active resistances of conducting clusters  and
poorly conducting fragments  are such that the fol�
lowing condition is satisfied:  The resistance
of one cell is written as

(23)

Active resistances  of the B fragments are shunted by
capacitances  so that the resistance of one cell with
respect to ac current at frequency ω is represented as

(24)

The total resistance of the chain between the contacts
is calculated as a sum of resistances of series�con�
nected cells:

(25)
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Using chain length Ls, and transverse sizes Lg and
 we find the resistivity of the film that contains

clusters:

(26)

Resistances  and  in this expression can repre�
sented in terms of resistivities of cluster  and inter�
cluster  materials:

(27)

(28)

We substitute expressions (27) and (28) in formula (26)
and separate the dynamic component:

(29)
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Fig. 7. Scheme of a single chain: (a) general configuration of the chain (La, length of clusters A; Lb, length of interval B; and Ls,
total length of the structure between contacts) and equivalent circuits that take into account (b) intercluster and (c) intercontact
capacitances.
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This expression shows that the resistivity of the film
that is determined by the intercluster capacitances
decreases with increasing frequency.

5.1.2.1. Estimation of the interchain interaction. The
above analysis is based on the simplifying assumption
that the cluster chains are independent. Below, we
consider the effect of interaction of the neighboring
clusters on the conduction of the films. Figure 8a
schematically demonstrates the positions of clusters of
the neighboring chains. Chains CD and EF are located
in the vicinity of the main chain AB. The electric field
is applied in such a way that the current flows along the
AB chain. The current partly flows to the CD and EF
chains. Assuming that resistance of clusters Ra is neg�
ligibly small in comparison with resistance Rb of the
intercluster intervals, we obtain the equivalent circuit
(Fig. 8b) with resistances Rb. In accordance with the
Kirchhoff law [27], the symmetry of the circuit yields
the absence of current along the direction that is per�
pendicular to the AB direction at the central point of
the circuit. Thus, the circuit can be modified (Fig. 8c).
The resistance of the circuit between points A and B is
calculated as  [28]. Thus, the interaction
between the chains leads to a variation in the resis�
tance by 20%. The estimations show that resistance 
additionally decreases (by a factor of no greater than 2)
if the 3D configuration of the chains is taken into
account. The above calculations are valid for both dc
and ac currents but the parallel connection of resis�
tances Rb and capacitances Cb must be taken into
account in the latter case.

With allowance for significant difference of the
contributions to the dynamic conduction of the film,
we assume that that the intercluster interaction is
insignificant in the first approximation.

5.1.3. Total resistance of the film determined by the
intercontact capacitance. The second effect that is
involved in the formation of the dynamic resistance of
the film takes into account the intercontact capaci�
tance. In the analysis, we use the above chain model.

Figure 7c illustrates the formation of the general
resistance of the film that is measured between the
contacts. The total resistance of the film with respect

( )4 5e bR R=

eR

to the dc current is formed due to the parallel connec�
tion of the chains each of which has resistance Rsa
given by formula (25). The total number of the chains
results from the division of the film area in the Oyz
plane by the area of a single chain in the same plane:

(30)

Based on the parallel connection of the chains, we
obtain the total resistance of the film between the con�
tacts:

(31)

This resistance is shunted by intercontact capacitance
Cs. Thus, the total resistance of the film between the
contacts is represented as

(32)

where Rs is calculated using formula (31).
The total resistance of the film determined by the

intercontact capacitance is given by

(33)

where Rs is also calculated using formula (31). When
this formula is substituted in expressions (32) and (33),
we derive cumbersome expressions. On the other
hand, the frequency dependence is contained in
expression (33). Thus, we neglect the frequency
dependence of resistance Rs in the first approximation
and use inequality  In accordance with
expression (31), we obtain

(34)

Substituting this expression in relationship (33) with
allowance for formula (28), we derive

(35)
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Fig. 8. Scheme of the chain interaction: (a) positions of clusters of neighboring chains and (b) and (c) equivalent circuits with
intercluster resistances.
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This expression shows that an increase in the fre�
quency leads to a decrease in the resistivity of the film
determined by the intercontact capacitance.

5.1.4. Formation of capacitance between clusters
and contacts. Formulas (29) and (35) show that the
dynamic resistivity of the film in both cases is deter�
mined by the capacitance between clusters Cb or con�
tacts Cs. We estimate these capacitances assuming that
the intercluster capacitances are formed by the gaps
between the side surfaces that are perpendicular to the
film surface. Similarly, the capacitance between the
contacts is formed by the side surfaces of the contacts.
The area of side surfaces in the film plane is limited by
planar size of the clusters and contact lengths in the
first and second cases, respectively. We assume that the
side surfaces of both clusters and contacts are plane
and perpendicular to the film surface. In such a con�
figuration, we approximately assume that the gaps
between the clusters and the intercontact space are

formed by two finite�length conductors that belong to
the film surface.

5.1.4.1. Capacitance between conductors in the film
plane. For estimations, we consider the formation of
capacitance between the edges of two conductors
(Fig. 9). The Oxyz Cartesian coordinate system is ori�
ented in such a way that the Oxy plane is parallel to the
film surface, the Oz axis is perpendicular to this plane,
and the Ox axis is perpendicular to the direction of the
gap. The edges of conductors are represented as paral�
lel conducting circular cylinders. Figure 9b shows two
such cylinders with lengths d, radii a and b, and dis�
tance l between centers A and B.

In accordance with [27], the capacitance of such a
structure is given by

(36)
( )

0

1 2

,
2 ln

b
dC

ab d d

ε ε
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a a

B

y

x0
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Fig. 9. Scheme that illustrates the formation of capacitance between neighboring conductors.
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where

(37)

 (38)

and  is permittivity of the medium between the cyl�
inders.

5.1.4.2. Capacitance of the gap between clusters. For
clusters with identical thicknesses (Fig. 7a) we have

  and  so that the
capacitance of the intercluster gap is given by

(39)

Here, quantities   and  are on the same order
of magnitude.

5.1.4.3. Capacitance of the intercontact gap. Let the
contact lengths along the Oy axis, the intercontact dis�
tance along the Ox axis, and the size along the Oz axis
be Lc, Ls, and Ld, respectively. In this case, we have

  and . Thus, the inter�
contact capacitance is given by

(40)

In real experiments, we normally have  The
expansion of the square root in the Taylor series in the
vicinity of zero yields

(41)

This expression is derived under the condition that
the film space between the contacts is filled with insu�
lator with permittivity εb (i.e., conducting clusters are
absent). In the presence of clusters, the capacitance
between the contacts increases due to the fact that the
gap is partly filled with conducting metal. The system
under study is similar to a plane capacitor with a con�
ducting layer that is placed between the plates. Thus,
we assume that the factor by which the intercontact
capacitance increases is equal to the factor that char�
acterizes the filling of the gap with conducting clus�
ters. In this case, quantity Ls in formula (41) must be
changed by the difference between Ls and the total
length of the clusters along the Ox axis:

(42)
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Substituting expression (42) in formula (41), we obtain

(43)

In the absence of clusters, we have La = 0 and for�
mula (43) is transformed into formula (41). The per�
colation corresponds to  However, quantity Lb

cannot be less than quantity  in the above
approximation ( ). When quantity Lb tends to
the ratio, capacitance Cs tends to infinity and we
obtain the metal conduction.

5.1.5. Numerical relationships. We estimate the real
numerical ratio of the dc and ac components of con�
ductivity using typical experimental parameters. We
use the parameters of cluster structure La = Lb = Lg =
Lh = 5 nm; parameters of the film and the contacts
Ls = Lc = 1 cm; and the permittivity of the intercluster
gaps εb = 5.

The resistance of the cluster is estimated with
allowance for the fact that it predominantly consists of
iron and cobalt. The bulk resistivities of such metals [29]

are ρ(Fe) = 8.7 × 10–8 Ω m and  Ω m.

For estimations, we use a mean value of  Ω m.
For thin amorphous films, the resistivity is greater than
the bulk resistivity by at least an order of magnitude. In

particular, the resistivity  Ω m was
obtained for iron films in [21].

To estimate the resistance of the gap between the
clusters, we assume that the resistivity of the films
under study is greater than the resistivity of the iron
films from [21] by more than three orders of magni�
tude (ρ ~ (10–2–10–4) Ω m) at the concentration of
metal phase  (i.e., far from the level at which
the intercluster contacts are formed). 

Thus, we use  Ω m and  Ω m.

5.1.5.1. Estimation of capacitances. For given
parameters, we use formula (39) to find the capaci�
tance of the intercluster gap, Cb = 4.3 × 10–20 F. In
accordance with formula (43), for the same dimen�
sions of the cluster and the intercluster gap, the capac�
itance of the intercontact gap Cs = 1.1 × 10–14 F. Thus,
we see that, for typical experimental conditions, the
capacitance of the intercluster gap is six orders of mag�
nitude smaller than the intercontact capacitance. 

5.1.5.2. Estimation of dynamic contribution. Formu�
las (29) and (35) show that the resistivity related to the
intercluster and intercontact capacitances decreases
with increasing frequency. Such a decrease is due to
the frequency�dependent terms that are added to unity
in the denominators of both expressions.
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The denominators for the intercluster (Za) and
intercontact (Zs) capacitances are written as

(44)

 (45)

We determine the frequency at which the dynamic
component of the denominator becomes comparable
with unity. For the intercluster capacitances, we have

(46)

and, for the intercontact capacitance, we have

(47)

For the above parameters, we obtain  and
 GHz. Thus, the effect of the dynamic compo�

nent of conductivity related to the intercluster capaci�
tances becomes significant at frequencies of no less
than 1800 GHz and a similar component related to the
intercontact capacitance must be taken into account
at frequencies of greater than 2.9 GHz provided that
the sizes of clusters and intercluster gaps are identical.
The above experiments were carried out at a frequency
of about 14 GHz, so that the dominant effect is caused
by the intercontact capacitance.

Formulas (39) and (43) show that both capaci�
tances (Cb and Cs) tend to infinity when the percola�
tion is approached. Note that the rate of variations in
capacitances is faster than the rate at which quantity
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Lb tends to zero, since variations in capacitances obey
the logarithmic law and Lb exhibits linear variations.
Thus, both frequencies (  and ) tend to zero but the
effect of contacts remains dominant owing to the dif�
ference of the coefficients of terms LbCb and LbCs in
formulas (46) and (47).

5.2. Effective Permittivity

The above results on the dominant intercontact
effect are obtained on the assumption that conducting
metal contacts are located at the film edges. Such a
system is used in the waveguide experiments. However,
the same effect can be interpreted as an increase in the
effective permittivity of the film material in the
absence of a significant effect of contacts. Such a per�
mittivity can be obtained from a variation in the
capacitance between contacts due to filling of the
intercontact space with the conducting material of
clusters.

We assume that the capacitance of the intercontact
capacitor is proportional to the permittivity of the gap
and employ the ratio of capacitances (43) and (41) to
obtain the effective permittivity

(48)

It is seen that, in the absence of clusters ( ),
the effective permittivity is unity. In the case of perco�
lation ( ) the effective permittivity
infinitely increases, so that the dynamic conductivity
increases.

5.2.1. Estimation of the contribution of the effective
permittivity. Figure 10 shows the results of the numer�
ical estimation of the permittivity using the above film
parameters. It is seen that the permittivity of the film
sharply increases with a decrease in quantity  and
the increase is greater for smaller gaps. However,
experimental parameter  cannot be less than the
characteristic interatomic distance (10–10 m). At this
level, the total percolation takes place in the film if the
possible tunneling effects that may occur earlier are
disregarded. Thus, the effective permittivity related to
the cluster structure may amount to  We assume
that original permittivity of the film ( ) is multi�
plied by the effective permittivity related to the clus�
ters, so that the total permittivity is  Substitut�
ing this result in formula (19), we find that the reflec�
tion coefficient increases by a factor of about 1.5. This
circumstance is in agreement with the experimentally
observed increase in the dynamic conductivity.

5.3. Intracluster Currents

In real experiments, the effects related to the
capacitive intercluster and intercontact conduction
and the permittivity effects may be supplemented with
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the effect based on the microwave intracluster cur�
rents.

The dc conductivity is zero if the film contains
conducting domains whose sizes are insufficient for
percolation. However, a microwave generates currents
in such conducting domains. The currents that are
localized in the domains generate magnetic fields at
the microwave frequency. Thus, the wave is reflected
from the domains due to circulating currents. There�
fore, the intracluster conductivity leads to an increase
in the reflection coefficient when the percolation
threshold is not reached and the increase is greater for
larger conducting domains.

Apparently, this effect can be classified as geomet�
rical, since the amplitude of the reflected wave is pro�
portional to the total size of the conducting domains.
In this case, the reflection coefficient is given by

(49)

where N is the number of clusters in the fragment of
the film. When  (percolation), reflection
coefficient  tends to unity. The reflection coefficient
tends to zero if . Note that the real dependence
of the reflection coefficient on the cluster size differs
from the linear dependence at the interval from zero to
unity (formula (49)): a slow increase at the initial stage
is changed by a sharp increase in the vicinity of the
percolation threshold. Thus, the contribution of the
above effect in general is not high and a correction
coefficient that is significantly less than unity must be
introduced in formula (49):

(50)

Here, we have  It is important that the reflection
coefficient does not depend on frequency. This cir�
cumstance makes it possible to estimate the contribu�
tion of the effect in the experiments.

6. POSSIBLE EXPERIMENTS

The above model of the formation of the dynamic
conductivity in granulated films shows that the effect
of the intercontact capacitance dominates. In the
experiments, the contacts are formed by the opposite
walls of the waveguide in which the film is pressed
between the flanges. Thus, we obtain a film–contact
system and cannot separately characterize the
dynamic conductivity of the film. It is expedient to
analyze the formation of the dynamic conductivity of
the film in the absence of contacts. However, a dielec�
tric spacer that is placed between the waveguide
flanges and the film under study introduces an addi�
tional capacitive inhomogeneity, which leads to a vari�
ation in the reflection coefficient. Thus, the study
must be performed using a contact�free system (e.g.,
quasioptical open lens or mirror transmission lines
[30, 31]). Such systems are employed in the radio�fre�
quency range in the study of the microwave resonance

,a sR L N L=

,a sL N L→

sR
0aL →

( ) .a sR A L N L=

1.A �

in orthoferrites [32]. The measurements at frequencies
of hundreds or thousands of gigahertz may help to
more accurately interpret the effects of dynamic con�
duction, in particular, the effect of intercluster
regions.

CONCLUSIONS

The static conduction and the reflection of electro�
magnetic waves from thin films of granulated amor�
phous metal–insulator nanocomposites have been
experimentally studied in a wide range of the concen�
trations of metal phase. The resistivity of the films
decreases with increasing concentration of the con�
ducting phase. Empirical effects and a topological
model are proposed to analyze such a decrease with an
accuracy of 5%. The energy reflection coefficient of
the microwave radiation is insignificant at low con�
centrations in the films and sharply increases to unity
at concentrations of about 0.50 due to the transition
from dielectric�type propagation of the wave to the
metal�type propagation.

The dynamic conductivity in the microwave range
is several times higher than the dc conductivity even
far from the percolation threshold of the metal phase.
To interpret the experimental relation of the effective
dynamic and static conductivities, we employ the
effects of capacitive shunting, effective permittivity,
and intracluster currents.

A chain model of the film is used to demonstrate
that the shunting of the resistance of the film by the
intercontact capacitance is stronger than the shunting
by intercluster capacitance by more than three orders
of magnitude in the experimental frequency range.
For typical geometrical and electric parameters of the
films in experiments, the frequencies at which the
intercluster shunting becomes dominant are thou�
sands of gigahertz whereas the shunting by the inter�
contact capacitance is significant at frequencies of
several gigahertz.

The effective permittivity, which is determined by
the filling of the film with clusters of metal phase, plays
a significant role. In the vicinity of the percolation
threshold, the effective permittivity is greater than the
permittivity of the dielectric matrix by a factor of at
least 2, so that the reflection coefficient of electromag�
netic waves increases by a factor of 1.5.

The contribution of the intracluster currents to the
reflection coefficient is estimated. For the approxima�
tion of the experimental dependences, a factor of less
than unity must be introduced in the linear depen�
dence of the reflection coefficient on the concentra�
tion of metal phase.

An increase in the frequency and the application of
quasioptical waveguide lines in the further experi�
ments are proposed for a detailed analysis of the above
effects that determine the dynamic conduction of
composite films.
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