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INTRODUCTION

There has been considerable recent interest in the
excitation of ultrasonic oscillations using magneto�
strictive transducers [1–4]. In conventional applica�
tions (hydroacoustics, defectoscopy, and ultrasonic
technology), such transducers are used for excitation
of low�frequency (up to hundreds of kilohertz) elastic
oscillations. Note interest in the excitation of hyper�
sonic oscillations at frequencies of up to tens of giga�
hertz, which makes it possible to develop high�effi�
ciency devices for data processing in the microwave
range (f ~ 109–1011  Hz). Yttrium�iron garnet (YIG) is
a promising material, since the Q factor of the corre�

sponding acoustic resonators amounts to 

Experimental results on the excitation of hyper�
sound with the aid of the YIG magnetoacoustic trans�
ducers [4–7] yield relatively high efficiencies and rel�
atively low decay of ultrasonic pulses: series of more
than 100 rereflected pulses were observed at a fre�
quency of 500 MHz (the number of pulses is signifi�
cantly greater than that for quartz) [4]. However, such
results can be achieved only at an input signal power of
no greater than 1 mW [4, 7]. At higher powers, the loss
substantially increases due to parametric decay of uni�
form precession into exchange spin waves [8–11].

In accordance with the results of [12–14], the
parametric decay can be suppressed using an appropri�
ate configuration of the transducer. In the optimal
configuration, the lower frequency of the ferromag�
netic resonance (FMR) of a normally magnetized thin
disk coincides with the bottom of the spectrum of
exchange spin waves, so that the parametric excitation

710 .

of such waves and the corresponding loss vanish. The
analysis of such a configuration in [15] shows that the
amplitude of the excited hypersound can be increased
by more than two orders of magnitude.

In the above works, the oscillations of magnetiza�
tion are excited at a relatively high power of the micro�
wave oscillator. Efficient excitation of magnetic oscil�
lations at the FMR frequency is possible in the
absence of such an oscillator due to magnetization
reversal of a spherical ferrite sample in the presence of
a stepwise field, which makes it possible to generate
high�power microwave pulses. However, the working
regime of such an oscillator can presumably be dis�
turbed due to parametric excitation of exchange spin
waves that may lead to an avalanche�type increase in
the temperature of the sample and, hence, its destruc�
tion. Note that the suppression of exchange waves
using appropriate configuration of the sample has not
been considered. The analysis of excitation of elastic
oscillations under such conditions due to magne�
toelastic properties of ferrite is also missing.

In this work, we study the excitation of high�power
microwave hypersound under pulsed magnetization
reversal of ferrite in the configuration with a normally
magnetized disk.

1. CONFIGURATION UNDER STUDY
AND BASIC EQUATIONS

Figure 1 illustrates the configuration of the prob�
lem that coincides with that of [15]. A plane�parallel
plate with thickness d exhibits magnetic, elastic, and
magnetoelastic properties. External static magnetic
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field  is exerted orthogonally to the plate plane. We
solve the problem using the Cartesian coordinates

: the  plane coincides with the plate plane
and the  , and  axes are parallel to the edges of
the cube of crystallographic cell. Origin of coordinates
is located at the center of the plate, so that 
are coordinates of the plate planes. Figure 1 shows

magnetization vector  and orientations of the axes
of the cubic crystallographic cell.

We assume that total energy density  of the plate

in the presence of the field  =  is equal to a
sum of the magnetic, elastic, and magnetoelastic
energy densities [15]. Thus, we obtain the following
expression that contains significant terms:

(1)

Here,  =  is normalized magnetization vector,
 is saturation magnetization,  is elasticity con�

stant (modulus), and  is the constant of magne�
toelastic interaction.

Using the approach from [15], we derive the system
of equations and boundary conditions that contains

(i) equations for magnetization

 (2)
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where effective fields are represented as

(5)

(6)

(7)

(ii) equations for elastic displacement

(8)

 (9)

and boundary conditions

(10)

(11)

Here,  is gyromagnetic constant ( ),  is decay
parameter of magnetization,  is density of plate mate�
rial, and  is decay parameter of elastic displacement.

The system of equations is used to solve the prob�
lem under study. The solution and transformations
that are needed for numerical analysis can be found in
[15]. Below, we present the results.

2. GENERAL SCENARIO OF THE EXCITATION 
OF HYPERSOUND UNDER

MAGNETIZATION REVERSAL

In the initial state, static field H0 that is higher than
the demagnetization field (  where  is
saturation magnetization of the magnetic plate) is ori�
ented along the negative direction of the  axis. The
magnetization vector is oriented along the field and
the same negative direction of the axis.

At the initial moment, static field H0 is switched
from the negative to positive direction, so that the
magnetization becomes opposite to the external field.
The equilibrium of the magnetization along the direc�
tion that is opposite to the field is unstable, and minor
transverse fluctuations of the magnetization vector can
lead to the rotation of this vector toward the direction
of the field (i.e., the positive direction of the  axis).
Thus, the magnetization is orientationally switched
from negative to positive direction of the  axis.
Owing to the gyrotropic properties of the magnetic
medium, the magnetization vector exhibits the helical
motion [17]. Such motion induces similar motion of
the elastic displacement owing to the magnetostrictive
effect, so that the hypersonic oscillations are excited.

We consider the development of oscillations of mag�
netization and elastic displacement that result from the
activation of the static magnetic field. Figure 2 illustrates
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Fig. 1. Configuration of the problem.
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the general scenario and presents the time dependences
of the normalized components of magnetization  and

 displacement  and precession portraits of magnetic
 and elastic  oscillations.

In the calculations, we employ the material parameters
that are typical of the YIG single crystal:  = 1750 G,

 =  erg cm–3;  = 7.64 × 1011 erg cm–3, and
 g cm–3. The curves are well resolved when the

orientation transition corresponds to no greater than 30–
50 periods of oscillations. Thus, we choose the following
decay parameters of the magnetic and elastic subsystems:

 and  s–1, which are slightly greater than
the values typical of the YIG crystal (  and

 s–1). For such decay parameters, the relaxation

times are  s and  =  s for
magnetic and elastic oscillations, respectively. The
remaining parameters are chosen in such a way that the
resonance frequencies of the uniform precession and
the first mode of elastic oscillations coincide for the linear
oscillations in the absence of magnetoelastic coupling
(the frequencies are 2800 MHz and the corresponding

period is  s). In this case, the static field is
2750 Oe and the thickness of the magnetic plate is
0.6865 µm. The initial components of the normalized
magnetization are  = 7 × 10–5,  =  and  =

 The initial components of the elastic displace�
ment are zeros. We consider the development of oscil�
lations at time interval 0–10–8 s with a step of

 s. The fourth�order Runge–Kutta proce�
dure is employed [18].

We detect elastic oscillations on the surface of the
magnetic plate at . The opposite�phase oscilla�
tions with the same amplitude are observed at .

Figure 2 illustrates the development of magnetic
and elastic oscillations. The inset to Fig. 2b shows the
scheme of sequential variations in the orientation of
magnetization vector.

Typical times that correspond to the minimum
amplitudes of magnetic oscillations tg and  (Fig. 2c)
are measured at a level of 0.01 of unity. Typical times of
elastic oscillations tk and tp (Fig. 2e) are measured at a

level of  cm. At time moments  and 
(Fig. 2a), quantity  differs from unity by 0.01.The
characteristic times are 

Time instant t × 10–8, s 

ta 0.17
tb 0.26
tc 0.56
tg 0.10
th 0.88
tk 0.09
tm 0.24
tn 0.32
tp 0.97

xm
,zm xu
( )y xm m ( )y xu u

04 Mπ

2B 66 96 10×. 44c
5ρ = .17

0 05α = . 1110β =
0.001α =

610β =
80.114 10m

−

τ = × eτ
80.001 10−

×

−

×
103.571 10

xsm ysm 0.00, zsm
1.00.−

1210t −

Δ =

= 2z d
2z d= −

ht

0 −

×
10.05 10 at ct

zm

We use the above data in a detailed analysis of vari�
ations in magnetization and elastic displacement in
the course of orientation transition.

3. STABILIZATION OF MAGNETIZATION
IN ORIENTATION TRANSITION

The time dependence of quantity  (Fig. 2a) and
the scheme of sequential variations in the orientation
of magnetization vector (Fig. 2b) illustrate the stabili�
zation of magnetization in the orientation transition.
At the initial and final moments, the magnetization is
oriented along the negative and positive directions of
the  axis, respectively.

Figure 2a shows that the rotation of the magnetiza�
tion vector is started with delay  relative to the acti�
vation of the field. Magnetization vector passes
through the  plane at moment  and almost
reaches the positive direction of the  axis at moment

 The times of the first and second parts of the rota�

tion are  =  s and  =  s,
respectively. The difference between the time intervals
is due to the fact that the force providing the rotation
of the magnetization vector toward the field increases
at the first stage when the deviation of the magnetiza�
tion vector from the field direction increases. At the
second stage, the deviation and, hence the force
decrease to zero. Therefore, the first stage of the orien�
tation transition is shorter than the second stage.

An important feature of the orientation transition
lies in the fact that the rotation of the magnetization
vector is delayed relative to starting moment  and

the delay (  =  s) is comparable with the
time of the remaining part of the transition  =

 s. Below we analyze such a delay.

4. MAGNETIC OSCILLATIONS

A variation in the orientation of the magnetization
vector is accompanied by its precession around the 
axis owing to the gyrotropic properties of the magnetic
medium. Figure 2c shows that the magnetic oscilla�
tions are started at moment  which is slightly less
than  and are terminated at moment  which is
greater than  Such a difference is due to the fact that
transverse component of magnetization  is no
greater than 0.2 at time intervals between  and ta and
between  and , so that the longitudinal component
of magnetization is  (i.e., such variations
are insignificant in Fig. 2a). The magnetic oscillations
reach maximum at moment tb when the magnetiza�
tion vector passes through the plane. Such motion
corresponds to full�scale circular precession on the
Oxy plane.
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Figure 2c shows that the period of magnetic oscil�

lations (about  s) is significantly less than
the resonance period when the full�scale precession is
not reached. However, the period increases and

becomes equal to the resonance period (  s)
after several (three or four) oscillations when the max�
imum is reached at moment tb.

Such evolution of the period is due to the fact that
both external and demagnetization fields are exerted
along the same direction (the positive direction of the

 axis) when the oscillations take place in the lower
half�plane, whereas the external and demagnetization
fields are exerted along the positive and negative direc�
tions of the  axis, respectively, in the upper half�
plane. The precession frequencies in the lower and
upper half�planes are given by [19]

(12)

 (13)

respectively.
The periods that are calculated using these formu�

las (  and  s, respectively) are in
good agreement with the values in Fig. 2c.

Figure 2c shows the oscillations of only x compo�
nent of the magnetization vector, since the  compo�
nent exhibits similar oscillations that are phase�shifted
by 90°. Under such conditions the phase portrait in
Fig. 2d represents almost regular concentric rings. The
concentration of the trajectories on the portrait in the
vicinity of zero corresponds to the initial stage of oscil�
lations up to moment ta when the variations in ampli�
tude are relatively slow and the period is significantly
less than the resonance period.

Figure 2c shows that the magnetic oscillations are
delayed relative to starting moment t = 0 and the delay

is  s. Such a delay is similar to the delay
of the rotation of the magnetization vector (Fig. 2a). A
minor difference between times  and tg is apparently
due to insufficient measurement accuracy of the initial
levels of both processes.

5. ELASTIC OSCILLATIONS

In the presence of magnetostriction, the oscilla�
tions of magnetization induce the oscillations of elas�
tic displacement (Fig. 2e). Elastic oscillations are
started at moment tk that is close to ta and evolve in two
stages: first, the oscillations emerge with a period

(  s) that is equal to the period of magnetic
oscillations and an amplitude that increases and

reaches a maximum level of  cm at moment ,
then, the amplitude decreases to zero at moment tb.
After that, the amplitude sharply increases and reaches
a level of 3.0 × 10–11 cm at moment tn. Then, the
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amplitude gradually decreases and tends to zero at
moment  which is substantially greater than 

The comparison of Figs. 2c and 2d shows that the
decay of elastic oscillations at time greater than  takes

place with the time constant (  s) that is
equal to the decay time of magnetic oscillations. The
reason for such equality lies in the fact that relaxation
time of elastic oscillations τe is significantly less than
relaxation time of magnetic oscillations  for the
above decay parameters, so that elastic oscillations fol�
low the magnetic oscillations in the quasi�stationary
regime. When the elastic oscillations are induced,
their period follows the period of magnetic oscillations
also due to the quasi�stationary character of the pro�
cess. In our opinion, a delay in the development of the

elastic oscillations up to moment  s is
caused by the same reason as a similar delay of mag�
netic oscillations is, since the elastic oscillations com�
pletely reproduce the magnetic oscillations at the
above decay parameters.

Note almost regular shapes of the precession por�
traits, which indicate identity of elastic oscillations
with respect to the x and y axes with a phase shift of
90°. The concentration of the trajectories in the vicin�
ity of zero also corresponds to the initial stage of oscil�
lations where the period is less than the resonance
period.

An important difference between the elastic and
magnetic oscillations is the amplitude minimum at
moment  where the magnetization vector passes
through the  plane and its precession occurs in this
plane. Below, we analyze this minimum.

6. MINIMUM OF ELASTIC DISPLACEMENT

Formula (51) from [15] shows that the x compo�
nent of elastic displacement in the approximation of
the first elastic mode is represented as

(14)

where  is auxiliary function that satisfies the follow�
ing equation (see formula (53) in [15]):
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tions show that such a relationship is satisfied more
accurately when both decays are slower. We assume
that quantity  remains constant and the magnetiza�
tion and elastic displacement are represented as

(17)

(18)

Then, Eq. (15) is represented as

(19)

Thus, we obtain

(20)

Substituting this expression in formula (16), we derive

(21)

We do not analyze the structure of this expression
but it is seen that the elastic displacement is related to
the components of the magnetization:

(22)

Here, A is time�independent constant.
Therefore, the elastic displacement reaches mini�

mum when the magnetization vector passes through
the  plane (i.e., magnetization component  is
zero). However, quantity  differs from zero on both
sides of the minimum and repeatedly tends to zero
when the magnetization is oriented along the  axis
(i.e., transverse component of magnetization  is
close to zero). Thus, the dependence of amplitude 
of elastic displacement on time must tend to zero at
moments  and  th and be equal to zero at moment 

Note also that the amplitude of elastic displace�
ment is proportional to magnetization component mx

and exhibits resonance dependence on frequency in
accordance with expression (21).

7. EMPIRICAL MODEL BASED
ON EXPONENTIAL FUCNTIONS

Figure 2 shows similarity of time dependences of
magnetic and elastic oscillations. Thus, we employ an
approximation in which the envelopes of both depen�
dences are described using identical exponential func�
tions and construct an empirical model of such depen�
dences.
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We assume that the envelopes of the time depen�
dences of the normalized components of magnetiza�
tion and elastic displacement can be approximately
represented as

(23)
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The solid lines in Fig. 3 show the time dependences
of the envelopes of magnetization and elastic�dis�
placement components that are calculated using the
above formulas. The dashed lines show the same
dependences that are calculated with the aid of equa�
tions of motion.

It is seen that the empirical dependences coincide
with the dependences that result from the solution to the
general problem with an accuracy of several percents.

8. MODEL OF THE QUASI�STATIC ROTATION 
OF THE MAGNETIZATION VECTOR

In accordance with the configuration of the prob�
lem, the field is directed along the positive direction of
the  axis. In the initial state, the magnetization vec�
tor is opposite to the field (i.e., directed along the neg�
ative direction of the axis). At a minor deviation from
the  axis, the force that is exerted on the magnetiza�
tion vector provides the rotation of this vector from
negative to positive direction. The orientation transi�
tion involves such a rotation. We consider a relatively
slow quasi�static rotation in which the gyrotropic
properties of the magnetization vector are not mani�
fested and it rotates in the plane that contains the

axis as a magnetic dipole that contains two charges. 
We use a coordinate system whose  plane coin�

cides with the plane of rotation of the magnetization
vector.

We also introduce a spherical coordinate system
whose polar axis coincides with the  axis and the
azimuth angle is counted from the Ox axis. The Carte�
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sian components of normalized magnetization vector
 that rotates in the  plane are represented as

(29)

(30)

(31)

where  is the polar angle of vector  (the angle
between this vector and the  axis).

In the presence of the field, the moment that is
exerted on the magnetization vector is written as [20, 21]

(32)

The configuration of the problem shows that this
moment is directed along the  axis. Based on the
properties of the vector product, we obtain

(33)

In accordance with the law of rotational motion [22],
we have

(34)

where  is the moment of inertia and  is the angular
velocity.

The angular velocity of the magnetization vector is
related to polar angle :

(35)

Substituting expressions (33) and (35) in formula (34),
we derive the following equation for time variations in
angle :

(36)

where
(37)

In general, we obtain a periodic solution to this
equation but we consider only the time interval that
corresponds to one half of the first period, since the
magnetization vector is reoriented over this interval. In
the absence of an exact expression for the moment of
inertia of the magnetization vector, we choose coeffi�
cient G in such a way that a variation in the longitudi�
nal component of normalized magnetization vector

 given by Eq. (36) is almost identical to a variation
that is calculated using Eqs. (2)–(11). Figure 4 dem�
onstrates the corresponding solution to Eq. (36).
Figure 4a shows extremely slow rotation of the mag�
netization up to moment , since the rotating force is
small in the vicinity of the antiparallel orientation of
the magnetization and field. Then, the rotating force
increases in the interval from  to  when the magne�
tization is reoriented. The most significant variations
correspond to the transition through the  plane
(moment ) when the rotating force reaches maxi�
mum. After moment , the rotation becomes slower

�

m Oxz

sin ;xm = θ

0;ym =

cos ,zm = θ

θ m
�

Oz

.P M H= ×⎡ ⎤⎣ ⎦
� � �

Oy

0 sin .P M H= θ

( ),P J d dt= ω

J ω

θ

.d dtω = θ

θ

2

2
sin 0,d G

dt
θ
− θ =

0 .G M H J=

zm

at

at dt

Oxy

bt

dt

0.8

0.6

0.4

0.2

–0.2

–0.4

–0.6

–0.8

–1.0

mz, rel. units

1.00.80 0.40.2 0.6
t, s × 10–8

tc

tb

ta

1.0

0

0.8

0.6

0.4

0.2

–0.2

–0.4

–0.6

–0.8

–1.0

mx, rel. units

1.00.80 0.40.2 0.6
t, s × 10–8

th

tb

ta

1.0

0

0.8

0.6

0.4

0.2

–0.2

–0.4

–0.6

–0.8

–1.0

ux, rel. units

1.00.80 0.40.2 0.6
t, s × 10–8

tp

tb

ta

1.0

0

(a)

(c)

(b)

Fig. 3. Curves of (a) and (b) components of magnetization
vector and (c) elastic displacement vs. time that are calcu�
lated using (solid lines) exponential approximation and
(dashed lines) equations of motion (see table for charac�
teristic times of the processes).
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and the magnetization direction slowly reaches the
field direction, since the rotating force decreases and
tends to zero at the parallel orientation of the magne�
tization and field. Note symmetric dependence 
with respect to point , so that  = 

The solid line in Fig. 4b shows the dependence of
longitudinal component of magnetization  that is
calculated using dependence  (Fig. 4a). The dashed
line shows the corresponding dependence that is calcu�
lated with the aid of equations of motion (2)–(11). It is
seen that the dependences almost coincide in time
interval from  to . Then, the dependence that is cal�
culated using the equations of motion becomes sub�
stantially slower and the value  is reached only

( )tθ

bt b at t− .d bt t−

zm
( )tθ

at bt

1zm =

at moment tc. Note asymmetric dependence mz(t) with
respect to point :  < 

The solid line in Fig. 4c shows the dependence of
transverse component of magnetization  that is cal�
culated using dependence  (Fig. 4a). Similarly to
the remaining curves that are calculated using the
model, this curve is symmetric with respect to point .
The dashed line shows the corresponding dependence
that is calculated using the equations of motion. Note
the absence of symmetry in this case. In the time inter�
val from  to , the curve that is calculated using the
model of quasi�static rotation corresponds with a rela�
tively high accuracy to the envelope of the positive half�
periods of the dependence that is calculated using the
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Fig. 4. Curves of (a) orientation angle, (b) and (c) components of magnetization vector, and (d) elastic displacement vs. time that
are calculated using (solid lines) the model of quasi�static rotation and (dashed lines) equations of motion. The inset to panel
(a) shows the scheme of rotation of the magnetization vector. The model parameters are G = 1.2 × 10–8 s–2, mx0 = 7 × 10–4 (initial
displacement) and ta = 0.20 × 10–8 s (see table for the remaining characteristic times of the processes).
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equations of motion. Then, the curve that is calculated
with the aid of equations of motion becomes substantially
slower and approaches zero only at moment  which is
significantly greater than  (  ≈ 10).

The solid line in Fig. 4d shows the dependence of
the transverse component of magnetization mx that is
calculated from dependence  (Fig. 4a). The
dashed line shows the dependence of transverse com�
ponent of elastic displacement ux that is calculated
using equations of motion and normalized to unity. Up
to moment , dependence  reasonably coincides with
the envelope of the positive peaks of curve . Then,
dependence  and a similar dependence of the magnetic
component (Fig. 4c) become significantly slower and
tend to zero at moment  which is significantly greater
than  and close to  so that  ≈ 11.

Thus, we conclude that the model of the quasi�
static rotation reasonably well describes the envelope
of oscillations at the first stage of the rotation of mag�
netization toward the  plane. Then, the decay of
oscillations becomes substantially slower and the
decay time that is calculated using the model is less by
a factor of 10–11.

Slower decays of quantities  and  in com�
parison with the decay of quantity  that is calcu�
lated with the aid of the model of quasi�static rotation
can be due to the following reasons. The magnetiza�
tion vector rotates under the action of an increasing
force in the interval from  to  and directly follows
the force, since it is relatively large. Then, the force
decreases and the motion of the magnetization vector
becomes close to the free motion and the correspond�
ing decay is determined by the natural relaxation time
(i.e., the time of a decrease by a factor of 

is  s). (Figure 2e shows that the time

of a decrease to a level of about 0.37 is  s.)
Such almost free motion causes an increase in time 
relative to time  In this case, the elastic oscillations
almost follow the magnetic oscillations owing to the
smallness of the relaxation time of elastic oscillations
in comparison with the magnetic relaxation time
( ). Thus, time  is significantly greater than
time 

9. DEPENDECNE OF THE LONGITUDINAL 
COMPONENT OF MAGNETIZATION
ON MAGNETIC DECAY PARAMETER

We consider the dependences of the characteristic
times of magnetization and elastic�displacement
components on the corresponding decay parameters
and the initial deviation of the magnetization vector
from the field direction.

,ht

dt ( ) ( )h b d bt t t t− −

( )θ t

bt xm

xu

xu

,pt

dt ,ht ( ) ( )p b d bt t t t− −

Oxy

( )xm t ( )xu t
( )zm t

at bt

2.718...e =

80.114 10m
−

τ = ×

80.12 10−

×

ht
.dt

e mτ τ� pt
.dt

Figure 5 presents the dependences of characteristic
times   and  of longitudinal components of mag�
netization  on magnetic decay parameter α.

We use the following criteria in the calculations of
the characteristic times. At moment  (curve 1), mag�
netization component  differs from –1 by 0.01 (i.e.,

 is –0.99) and the amplitude of magnetic oscilla�
tions  is 0.01. At moment  (curve 2) magnetization
component  passes through zero and amplitude of
magnetic oscillations  reaches a maximum level of
1.00. At moment  (curve 3) magnetization compo�
nent  differs from unity by 0.01 (i.e.,  is 0.99) and
the amplitude of magnetic oscillations  decreases by
about an order of magnitude relative to the maximum
level (i.e.,  is about 0.1). At moment  (curve 4),
magnetization component that is calculated using the
model of quasi�static rotation is  = 0.99.

Figure 5 shows that the characteristic times
decrease with an increase in the magnetic decay. Such
a decrease is clearly manifested at small α that are
close to the decay parameter of YIG (0.001). Note a
linear curve on the double logarithmic scale (see
inset). Control calculations show that the linearity is
maintained when parameter α ranges from 0.001 to
0.005 (i.e., the entire range of magnetic decay typical
of ferrite materials).

Figure 5 also shows that delay time tc –  needed
for the alignment of magnetization along the Oz axis
increases with a decrease in quantity α. This result fol�
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Fig. 5. Plots of characteristic times (1) ta, (2) tb, (3) tc, and
(4) td of variations in longitudinal component of magneti�
zation mz vs. magnetic decay parameter α for the parame�
ters of Fig. 4 (the dots show the results of computer exper�
iments). The inset shows the same curves on the double
logarithmic scale.
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lows from the fact that the magnetization acquires a
unity amplitude when it passes through the  plane
and the precession is started. The greater parameter α,
the longer the precession (the slower a decrease in the
transverse components of magnetization). The longi�
tudinal component is determined by the difference
between unity and a sum of squares of transverse com�
ponents. Therefore, the longitudinal component
slowly approaches unity when the transverse compo�
nents exhibit a slow decay. Thus, the difference
between time  and  increases when decay parameter
α decreases.

10. DEPENDENCE OF THE LONGITUDINAL 
COMPONENT OF MAGNETIZATION 

ON THE INITIAL VALUE
OF ITS TRANSVERSE COMPONENT

Figure 6 presents the dependences of characteristic
times of variations in longitudinal component of mag�
netization  on the initial transverse component of
magnetization mxs. The characteristic times are counted
as in the previous case. 

It is seen that the characteristic times decrease with an
increase in the initial transverse component of magneti�
zation and the decrease is more developed at smaller 
Note linearity of the curves that are plotted on the loga�
rithmic scale of the horizontal axis (see inset) in the

interval –0.1, which corresponds to real ferrite
materials at technically feasible temperatures.

Oxy

ct dt

zm

.xsm

1010 −

Figure 6 also shows that delay time  of the
alignment of magnetization along the  axis remains
unchanged in the entire interval of variation in initial
magnetization . This result is due to the fact that the
conditions for the orientation transition, which are
determined by the initial and final positions of the
magnetization vector and external field, remain
unchanged. At any initial displacement, the rotation
rate of magnetization is determined only by the gyro�
tropic properties of the material and the external field.

11. RELATIONSHIP 
OF THE MAXIMUM AMPLITUDES 

OF MAGNETIC AND ELASTIC OSCILLATIONS 
AND DECAY PARAMETERS

We consider the relationship of the maximum
amplitudes of magnetic and elastic oscillations and
magnetic  and elastic β decay parameters.

When the reorientation takes place, magnetization
vector always passes through the  plane. There�
fore, the maximum transverse component of the mag�
netization always passes through unity regardless of
the magnetic and elastic decay parameters. Thus, the
magnetic oscillations are always started from unity
after passage through the plane and the maximum
amplitude of the oscillations does not depend on the
decay parameters.

At a relatively high elastic decay when the elastic
oscillations follow the magnetic oscillations with a rel�
atively high accuracy, the maximum amplitude of elas�
tic oscillations also does not depend on the magnetic
decay. This conclusion is verified for parameter 
ranging from 0.001 to 0.5. In particular, the maximum
amplitude of elastic oscillations is 3 × 10–1 cm with an
accuracy of about 1% in the entire interval of varia�
tions in parameter  when the elastic decay parameter
is β = 1011 s–1. Such independence of the amplitude of
elastic oscillations on magnetic decay parameter α is
also obtained when elastic decay parameter β ranges
from 106 to 1011 s–1.

However, such a conclusion is valid only for mag�
netic oscillations whereas the amplitude of elastic
oscillations is not related to a characteristic quantity
that reaches a limiting level in the course of orienta�
tion transition. Thus, the amplitude of elastic oscilla�
tions may exhibit significant variations (see below)
when elastic decay parameter β is varied.

12. SPECIFIC FEATURES 
OF THE EXCITATION OF HYPERSOUND

AT RELATIVELY LOW ELASTIC DECAY

The above analysis of the excitation of hypersound
due to orientation transition with respect to magneti�
zation is valid for a significant decay of the elastic
oscillations. In this case, the elastic oscillations follow
the oscillations of magnetization. Consider specific
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Fig. 6. Plots of characteristic times (1) ta, (2) tb, (3) tc, and
(4) td of variations in longitudinal component of magneti�
zation mz vs. initial transverse magnetization mx for the
parameters of Fig. 4 (the dots show the results of computer
experiments). The inset shows the same curves on the log�
arithmic scale.
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features of the effect at lower decay of elastic oscilla�
tions.

Figure 7 shows the time dependences of normalized
components of magnetization  and mz (panel (a))
and displacement  (panel (b)) for decay parameter

s–1, which is less than decay parameter

s–1 for which similar curves are plotted in
Fig. 2 by two orders of magnitude.

The comparison of Figs. 7 and 2 shows that the mag�
netic oscillations remain almost unchanged (Fig. 7a is
almost identical to Fig. 2a) when the decay parameter
of elastic oscillations decreases by two orders of mag�
nitude. However, the elastic oscillations are substan�
tially modified (Fig. 7b): the maximum amplitude
increases by approximately an order of magnitude and
the envelope of elastic oscillations appears to be signif�
icantly delayed relative to the magnetic envelope. In
particular, time  which corresponds to the maxi�
mum of elastic oscillations, increases by  =

 s and time  which corresponds to a
decrease in the amplitude to a level of 0.01 of maxi�

mum, increases by  =  s (i.e., the devel�
opment of elastic oscillations is delayed relative to the
development of magnetic oscillations).

We assume that such a delay is due to the resonance
properties of the elastic oscillatory system that become
more significant when the decay decreases. Indeed,
the maximum level of oscillations is reached in any
oscillation system after the excitation with a delay
determined by the relaxation time, which is inversely
proportional to the decay parameter. In the system
under study, the amplitude of elastic oscillations must
decrease by a factor of e = 2.71828… at a time of  =

 s =  s but the direct measurements in the time

interval from  to  s show that the
amplitude of elastic oscillations decreases in such a

way in a time interval of  s, which is slightly
greater than the above estimated time. Such a differ�
ence can be due to the fact that the elastic oscillations
that are induced by magnetic oscillations are partly
sustained due to the latter, so that the effective decay
parameter of elastic oscillations slightly decreases.

On the other hand, the delay time of the maximum
of elastic oscillations relative to the maximum of mag�

netic oscillations is  =  s, which is also
greater than the above value. Apparently, such a delay
results from the fact that amplitude of magnetic oscil�
lations decreases after moment , at which the maxi�
mum is reached (i.e., elastic oscillations are excited by
decaying magnetic oscillations).

Time  that corresponds to a decrease in the elastic
oscillations to a level of 0.01 of the maximum is sub�
stantially greater than similar time  which character�
izes a decrease in the magnetic oscillations, so that the
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assume that such a difference is related to the free
decay of elastic oscillations, which is almost indepen�
dent of magnetic oscillations. Indeed, the time of
exponential decrease in the oscillation amplitude from

1.00 to 0.01 at a decay parameter of  s–1 is

 s, which is in good agreement with the
result of measurements.
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13. DEPENDECES OF AMPLITUDE
AND CHARACTERISTIC TIMES 

OF THE DEVELOPMENT OF ELASTIC 
OSCILLATIONS ON DECAY PARAMETER

We consider specific features of the excitation of
elastic oscillations at different decay parameters β.
Figure 8 demonstrates the corresponding depen�
dences for maximum amplitude  and characteristic
times of elastic oscillations   and tb. For conve�
nience, the curves are plotted on the logarithmic scale
of the horizontal axis.

Figure 8 shows that the maximum amplitude
(Fig. 8a) and characteristic times (Fig. 8b) remain

almost unchanged at  s–1 and  s–1. How�

xmu
,nt ,pt

β <
510 9

β > 10

ever, all of the quantities strongly decrease in the inter�

val  ≤  ≤ . Note that characteristic time
 (curve 3 in Fig. 8b), at which the magnetization vec�

tor passes through the  plane remains constant
(i.e., independent of elastic decay).

The constancy of amplitudes and characteristic
times outside the above interval can be due to the follow�
ing reasons. At relatively small parameter β (β < 105 s–1),
the decay of elastic oscillations is insignificant and
depends on magnetic (independent of β) rather than
elastic loss. At relatively large parameter β (β > 109 s–1),
the elastic oscillations become almost aperiodic and
the amplitude of elastic displacements follows the
transverse magnetization, so that the decay of elastic
oscillations is also determined by the magnetic decay.
In the above interval 105 s–1 ≤ β ≤ 109 s–1, the elastic
decay dominates over the magnetic decay and ampli�
tude  and times  and  exhibit significant varia�
tions.

Note that time  is significantly greater than time
 at small , so that the elastic oscillations slowly

decay almost in the absence of contribution of the
magnetic oscillations.

14. REMARKS ON PRACTICAL APPLICATIONS

The curves in Fig. 8 are plotted for a relatively large
magnetic decay parameter α = 0.05, whereas the
decay parameter of YIG is significantly less (0.001).
YIG is the most promising material for hypersonic
excitation in practice, since it exhibits record�low
magnetic and elastic losses. Therefore, it is expedient
to determine the limiting parameters of the excited
hypersound in this material. 

For the real parameters of YIG (α = 0.001 and β =

106 s–1), initial value  = , and magnetic field
of 2750 Oe, which corresponds to a frequency of
2800 MHz, we obtain the following characteristic

times: =  s,  =  s,  =

 s, and  =  s. The amplitude of

the excited hypersound is  =  cm, which
is greater than the amplitude in [15] by a factor of greater
than 2, and the excitation is higher than linear by
three�to�four orders of magnitude.

CONCLUSIONS

The main results are as follows.

Using the configuration of a normally magnetized
ferrite plate that exhibits magnetoelastic properties,
we consider the dynamic behavior of the magnetiza�
tion vector related to the orientation transition from
the direction that is antiparallel to the static field via
the plate plane to the parallel direction.
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(1) tn, (2) tp, and (3) tb of elastic oscillations vs. decay
parameter.
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Such a reorientation of the magnetization vector is
accompanied by its precession around the field direc�
tion. Prior to and after the moment when the magne�
tization vector passes through the plate plane, the pre�
cession frequency is determined by a sum of the exter�
nal and demagnetization fields and the difference of
the fields, respectively.

The reorientation of the magnetization due to
magnetostriction causes the excitation of high�inten�
sity hypersonic elastic oscillations whose frequency
corresponds to the precession frequency of the mag�
netization vector in the presence of the magnetization
reversal. When the magnetization vector is far from the
plate plane, the amplitude of elastic oscillations is pro�
portional to the precession amplitude. When the mag�
netization vector passes through the plate plane, the
elastic amplitude is zero.

The rotation of the magnetization vector and the
development of elastic oscillations are delayed relative
to the field switching, and the delay time is propor�
tional to the relaxation time of magnetic oscillations
and inversely proportional to the initial deviation of
the magnetization vector from the field direction.

At a relatively small decay parameter of elastic
oscillations, the development of such oscillations can
also be delayed relative to the development of mag�
netic oscillations determined by the magnetic relax�
ation time.

We obtain longer decays of magnetic and elastic
oscillations after termination of field switching, which
are determined by a decrease in the force that provides
the rotation of the magnetization vector toward the
field direction with a decrease in the angle between the
two vectors.

Two models are proposed for interpretation of the
effects. An empirical model describes the development
of oscillations using exponential approximation, and a
vector model is based on the quasi�static rotation of
the magnetization vector relative to the field direction.
The accuracy of the exponential approximation of the
amplitude envelopes is several percents when the mag�
netic and elastic oscillations depend on time. The
model of the rotation allows a high�accuracy analysis
of an increase in the oscillation amplitude prior to the
moment when the magnetization vector passes
through the plane. However, the results of the model
are slightly delayed relative to the observed decrease in
the amplitude after passage through the plane. The
delay time corresponds to the relaxation time of mag�
netic oscillations and is determined by the dynamics of
the magnetization vector when it approaches the equi�
librium position.

Possible applications of the effects are discussed. It
is demonstrated that the amplitude of the hypersonic
elastic oscillations excited in the yttrium�iron garnet
in the microwave range amounts to 10–9 cm. This level
is higher than the levels corresponding to the conven�
tional nonlinear and linear excitations by a factor of
greater than 2 and three�to�four orders of magnitude,
respectively.
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