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Abstract—The nonlinear problem of excitation of hypersound in a normally magnetized structure is consid-
ered. The structure consists of two ferrite layers, its elastic properties are constant across the entire structure
thickness, and the magnetic properties of the layers can be different. The equations of motion and boundary
conditions for the magnetization components and elastic displacement are obtained for the case of an arbi-
trary angle of the magnetization vector precession. Using the decomposition in eigenmodes, the problem is
reduced to a system of an infinite number of second-order differential equations. In the case when the first
elastic mode is excited, the complete problem is reduced to a system of thirty nonlinear first-order differential
equations solved numerically by means of the Runge—Kutta method. The time evolution and amplitude—{fre-
quency characteristics of excited oscillations are considered. Conditions under which the amplitude of non-
linear-mode elastic vibrations exceeds the amplitude of linear-mode elastic vibrations by a factor as large as
70 and the bandwidth increases by a factor as large as five are revealed.

DOI: 10.1134/S1064226914040135

INTRODUCTION

Excitation of ultrasonic vibrations with the help of
magnetostrictors [1—4] is widely applied in hydroa-
coustics, defectoscopy, ultrasound processing, medi-
cal equipment, and other fields. Vibrations at compar-
atively low frequencies (not exceeding hundreds of
kilohertz) are usually used. The application of magne-
tostrictors is rather promising in acoustoelectronics,
where the high mechanical Q factor of ferrite trans-
ducers (which can reach 107 with yttrium iron garnet
(YIG) employed) enables the development of highly
efficient devices for microwave data processing (f ~
10°—10'" Hz).

Even in the first experimental studies devoted to
ultrasound excitation with the help of magnetoacous-
tic transducers based on the ferromagnetic-resonance
(FMR) in YIG [5, 6], the high efficiency of excitation
combined with the low attenuation of acoustic pulses
was revealed. However, it was soon found [4, 7] that
the admissible power of the fed signal is limited by a
level of about 1 mW, a circumstance related with the
parametric decay of the uniform precession and exci-
tation of exchange spin waves [8—11].

On the basis of experimental and theoretical data,
it was shown in [12—16] that the parametric decay
could be prevented through choosing the geometry of
atransducer in the form of a normally magnetized thin
disk such that the lowest frequency of its FMR coin-
cided with the bottom of the spectrum of exchange
spin waves.
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The historically first theory of hypersound excita-
tion with the help of a magnetoacoustic transducer
based on a normally magnetized ferrite disk was devel-
oped in [3, 4]; however, because of its linear character,
the maximum excitation efficiency in the presence of
a high-intensity signal could not be estimated.

Certain estimates obtained in [17, 18] were mainly
qualitative.

In [20], a nonlinear theory was developed and a
quantitative estimate was obtained with the use of data
from [12—15]. According to this estimate, the ampli-
tude of hypersound excited in the nonlinear mode can
exceed the linear-mode hypersound amplitude by a
factor not less than 30. However, the analysis per-
formed in those studies was primarily oriented toward
reaching the maximum excitation amplitude and dis-
regarded the frequency spectrum of the excited hyper-
sound. In [21], the authors attempted to solve partly
the problem for a double-layer structure; however, the
analysis performed in that study was incomplete: only
the time evolution of vibrations was obtained, but their
properties were not studied and or compared to the
properties of vibrations in a single-layer structure.

This study develops the results obtained in [20, 21].
Our main task is to reveal new possibilities of excita-
tion of magnetic oscillations and elastic vibrations in a
double-layer structure. These possibilities are due to
the different magnetic parameters of the layers form-
ing the structure.
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Fig. 1. General geometry of the problem on a double-layer structure.

1. GEOMETRY OF THE PROBLEM
AND THE ENERGY DENSITY

The general geometry of the problem is similar to that
assumed in [21]. It is displayed in Fig. 1. A double-layer
structure consists of two adjacent infinitely extended
elastic-ferrite plates. The thicknesses of the first and sec-
ond layers are p and d, respectively, and the total thickness
of the entire structure is p + d = 2g. The origin is chosen
to be at the center of the entire structure; i.e., the upper
and lower surfaces correspond to coordinates g and —g,
and interface between the layers corresponds to the coor-
dinate —g + p. The magnetic and magnetoelastic param-
eters of the layers are different and, below, are supplied
with indices p and d. The elastic parameters of the layers
are identical and, therefore, have no indices.

Let us assume that density U of the energy of the

structure in the presence of the field H = {h,;h,; H} is
equal to the sum of the densities of the magnetic, elastic,
and magnetoelastic energies of the layers and retain only
the constants that are important for the further analysis:

U = _Mpohxmpx - Mpohympy - MpoHOmpz

2 2

P 2 2 2 2 2
+2nM ,ym,, + K, (mpxmpy +mym,, + mpzmpx) n
2

+ 2C44 (u pxy

2 2
+ Uy, + upzx) + 2B, (mymp,u .,

+ m,m,u

pyMpUpyz + mpzmpxupvc) + U(d) >
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where H, is the external static field, 4, , are the alter-

nate field components, 71, , = M »d / M, 4 are the lay-
ers’ magnetization vectors normalized by corre-
sponding saturation magnetizations M, ,; u, ;. are
the components of the deformation tensor
(i,k = x,y,z) that correspond to elastic displace-
ments u, ., K,, are the cubic magnetic anisotropy

constants, ¢4, are the elastic constants (identical for

both layers), B, ,, are the magnetoelastic interaction
constants, and U(d) are analogous terms with index d
substituted for index p.

2. BASIC EQUATIONS
AND BOUNDARY CONDITIONS

Energy density (1) enables us to obtain for each
layer the complete equations of motion for the magne-
tization and elastic displacement vectors as well as the
boundary conditions that express the absence of elas-
tic stresses on the exterior surfaces of the entire struc-
ture and the equality of stresses and displacements on
the layer interface.

By analogy with [20, 21], we assume that magneti-
zations m, , are uniformly distributed inside the layers.
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The equations of motion for the magnetization com-
ponents in layer p have the form

om X Y
a_tp = _1 2 [(mpy + Omepxmpz) H,,.
+ (X,p

()
2 2
- (mpz - apmpymPX) Hpey —Op (mpy + mpz) HpeXi"
and the equations for m,, and m,, can be obtained
from (2) via cyclic permutation of x, y, and z. Here, a,,

is the attenuation constant and the effective fields are
as follows:

Hpex = hx + lelx’ (3)
Hyp =h,+ Hy,, C))
H, =H,-4M m, + H,,, (&)
where
2K
H,, =-="m, (m§ + mzz)
0
(6)
_ B, {m,,y (6qu . 8upyj im, (6upz . 6ul,xﬂ
M, oy  Ox ox 0z
and H ,,, and H ,,, are obtained via cyclic permutation
of x, y, and z.

The equations of motion for the magnetization
components in layer d are obtained from (2)—(6)
through replacing index p by d.

By analogy with [20, 21], we assume that there are
no elastic displacements perpendicular to the plane of
the structure, i.e., u,,, =0, and that displacements
u, . and u, 4 in the plane of the structure are uniform,
ie., Ou,gy,[0x,y =0.

The equation of motion for the x component of the
elastic displacement in layer p has the form

O

2 2
Ol _ 55, 10 i
or’ o p o7
where  is the attenuation parameter and p is the
material density, which is the same for both layers.
This is a wave equation that makes it possible to reduce
the coordinate dependence to a set of eigenfunctions
of the homogeneous problem when the boundary con-
ditions in coordinate z are specified. As a result, the
main task becomes the determination of the evolution
of the oscillation process in time, a problem that is
solved below.

The equation of motion for the y component of the
elastic displacement in the same layer p is obtained
from (7) through replacing index x by y. By virtue of
the above assumptions, there is no equation of motion
for the z component. The equations of motion for the
same components of the elastic displacement in layer
d are similar to (7) with index d substituted for p.

The magnetization is uniform, and, therefore, it is
unnecessary to impose boundary conditions for it. The

pdx

(7
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boundary conditions for the x components of the dis-
placements in layers p and d have the form

Ol 5,

+ B,,m, m, =0 (8)

Cyq

=g
on the lower surface of the structure, at 7 = —g;

ou
Ca4 ;x + B,,m,m,,
5 )
u
=y —= + Bymgm,, ,
az =—g+p
upx|Z=—g+P - udx|z:—g+p (10)
on the interface between the layers, at z = —g + p;
ou
Caq dx 4 B,mymg, =0 (11)
0z g

on the lower surface of the structure, at z = g.

The boundary conditions for the y components of
the displacements in the same layers have a form sim-
ilar to (8)—(11) with index x substituted for y.

Thus, the complete system contains six first-order
equations without boundary conditions for the mag-
netization components and four second—order equa-
tions with eight boundary conditions for the elastic
displacement components.

We can see that the equations of magnetization
oscillations and elastic displacement vibrations in
each of the layers are mutually independent and cou-
pled only through boundary conditions (9) and (10).
This circumstance enables us to consider the entire
problem as a boundary value problem for the elasticity
where the magnetizations of the layers are parameters
depending only on time.

At the same time, the problems for the x and y com-
ponents of the elastic displacement (the equation
combined with the boundary conditions) in each of
the layers are mutually independent; i.e., it suffices to
consider only one problem, for example, for the x
component. Then, a solution for the y component can
be obtained through replacing index x by y. Therefore,
below, we consider the problem for both layers in
aggregate but only for the x component.

3. THE COMPLETE FORMULATION
OF THE PROBLEM FOR THE ELASTICITY

The complete problem for the x component of the
elastic displacement in both layers can be represented
in the form of the equation (with index x dropped)

62up 6%_%82% _

0, (12)
or’ ot p o7
2 2
0 ll2d %_aﬁa—uzd =0, (13)
ot ot p oz
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and the boundary conditions can be represented as
ou B

4 p2 _
+_mpxmpz - Oa (14)
0y Caa
au B au B
p p2 _ a 0
T My, = — +=L2mymy,, (15)
Ol gip Cas 0Zl=gip Caa
u1’|z=*g+p - ud'z:—g+p ’ (16)
ou B
Z7d +£mdxmdz =0. (17)
0zli=g  Ca4

This is a problem for elastic displacement functions
u, and u,, satisfying second-order wave equations with
the zero right-hand sides (i.e., homogeneous equa-
tions). The problem is considered in combination with
the boundary conditions for the same displacement
functions containing, as parameters, time-dependent
functions of the magnetization components (i.e., the
boundary conditions that are inhomogeneous with
respect to the displacements). In order to solve this
problem, we follow [22] and separate it into a homo-
geneous part and an inhomogeneous part by analogy
with the case of a single layer [20].

4. SEPARATION OF THE PROBLEM
FOR THE ELASTICITY INTO TWO PROBLEMS

Since complete problem (12)—(17) for the elastic-
ity contains, as parameters, magnetizations, we sepa-
rate this problem into two ones. In the first problem,
only the boundary conditions depend on the magneti-
zation; and, in the second problem, only the equations
depend on the magnetization.

To this end, we represent u, and u, in the form
u,(z,1)=U,(z,1) +v,(z1), (18)

uy(z,0) =Uy(2,1) + vy (2,1), (19)

where U, and U, are assumed to solve the homoge-
neous equations and satisfy the boundary conditions
depending on the magnetization and v, and v, are
assumed to solve the inhomogeneous equations where
the character of inhomogeneity is determined by func-
tions U, and U, but the boundary conditions are inde-
pendent of the magnetization.

Substituting (18) and (19) into (12)—(17), we sepa-
rate complete problem (12)—(17) into two individual
problems.

For problem no. 1forU ,(z,t)and U, (z,t), the equa-
tions have the form

o’U
=0 (20)
4
2
Y=o @1
Z
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and the boundary conditions are as follows:

oU B

. S My Mz (22)

az =-g Caq

ou
> +_1’2m xm = aUd +£mdxmd 3(23)
pxpz 2
0% | egip  Caa 0% liegip Cay

p|z=—g+p = d|z:—g+p > (24)
aUd = _@ mdxmdz- (25)

02 o= Cyq

For problem no. 2 for v,(z,t) and v,(z,t). The
equations have the form

2 2 2
0 V;p.g. 6%_%6 VZP:_a []217_286UP’ (26)
ot o p oz ot ot
ﬁzv;d_'_ %_cﬂazv{, =—82L£d_258Ud, (27)
ot o  p oz ot ot
and the boundary conditions are as follows:
0
=, (28)
07 | =g
0
Al 7 (29)
OZ | oegip  O%l=gup
VP|Z=7g+p = Vd|z:—g+p > (30)
07 | =g

Problem no. 1 does not contain functions v, , and,

therefore, can be solved independently. Functions U, ,
obtained as a result of the solution of this problem
should be substituted into problem no. 2. The com-
plete solution to the entire problem is determined by
formulas (18) and (19). First, let us consider problem
no. 1 for U,(zt) and U,(z7). Integrating twice
Egs. (20) and (21) and substituting the obtained solu-
tions into boundary conditions (22)—(25), we arrive at
a system of four equations for the determination of
four integration constants. Only three equations in this
system are independent. Assuming that the z-inde-
pendent component of function U, is zero, we obtain a
solution to problem (20)—(25) in the form

U =—%m m,,z (32)
» px! T pz%s
Cyq
B _
Ud = _imdxmdzz -=£ P
Cas Cas (33)

X (szmpxmpz - Bd2mdxmdz)~

As is seen, both of these expressions linearly depend
on coordinate z and they coincide when z = —g + p.
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Let us introduce the notation

_ B/ﬂ
w=—Pm m,, (34)
2y
= __mdxma’zs (35)
2c4y
—-p
Y= (gc—)(BpZmpxmpz Bd2mdxmdz) (36)
44
Then, we obtain
Lo < 7 <
p:2azwhen g=z7=—-g+p, (37)
0 when -g+ p<z<g,
0 when g <z<—g+p,
q= (38)
2(Bz+7y) when g+ p<z<g

Thus, problem no. 1 is solved, and we can pass to
problem no. 2 (26)—(31). However, since this problem
is inhomogeneous (having the nonzero right-hand
side of Egs. (26) and (27)), its solution can be repre-
sented only in the form of a series of the eigenfunc-
tions of the coordinate part of the corresponding
homogeneous problem with the zero boundary condi-
tions for the entire structure [22]. Accordingly, func-

tions U, and U, entering the right-hand sides of

Egs. (26) and (27) also should be decomposed in a
series of the same eigenfunctions.

5. THE EIGENFUNCTIONS
OF THE COORDINATE PART
OF THE HOMOGENEOUS PROBLEM
FOR THE ENTIRE STRUCTURE

Consider the coordinate part of the homogeneous
problem for the entire structure. According to the gen-
eral geometry of the problem (see Fig. 1), the origin is
at the center of the structure and its total length is 2g,
i.e., the beginning and end of the structure have equal
absolute values of coordinates: z;, = —gand z, = g.

We have the following even and odd eigenfunc-
tions:

1 f19/]
¥, = ——=CO0Ss 39)
NP ( g j
and
v, = \/—lgsin E(n + %) x}, (40)

respectively, where # is an arbitrary integer.

6. DECOMPOSITION OF FUNCTION U, ,(z)
IN A SERIES OF THE EIGENFUNCTIONS
OF THE HOMOGENEOUS PROBLEM

Consider the decomposition of function U od (z) in
a series of eigenfunctions (39), (40). Complete func-
tion U (z) is represented by a broken curve consisting
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of two straight-line sections. According to the general
technique of decomposition in a Fourier series [23],
first, such a function should be represented as a sum of
two partial functions. Each of these functions is repre-
sented by a straight-line section and equals zero on
both sides of this section. Next, each partial function
should be represented as a sum of an even part and an
odd part. After that, each of these parts is separately
decomposed in series of even and odd eigenfunctions.

Original function U (z) is the sum of all of these series.

Following this procedure, we obtain the decomposi-
tion of function U, in the form

U,=U,, +2Upvncos(MzJ

n=1 g
(41)
. ZUW [ n(2n—1) }
2g
where
UpVO - (XV pv0s (42)
Upon =0V, (43)
Upwn = anwna (44)
with
g —
Voo = _M’ (45)
2g
Vo = 2_32’%{(_1)”_1 + cos{—n(g —7) n:l
mn J (46)
+ {n(g — p)n}sin [n(g _p)n}},
g 4
8g 1

pwn

7 (2n-1) {(_l)n_l_sm{n(gz—‘g_p)(2n_l)}
N {M@n _ 1)}0{M(zn _ 1)}. “n

2g 2g

In a similar manner, we decompose function U,;:

Ud = UdVO + ZUdV” CcoS (sz

. (o) i (48)
.| m(2n—
+ ;wan sin [—2g z},
where
Uavo = BVavo +YWaos (49)
Uion = BVaon +YWasn, (50)
Uain = BVawn + Y Warn (51)

2014



446
with
Vo = £ (2§g_ ?), (52)
Wi = Ma (53)
g
Vi =25 iz{(—l)” - cos[ (gg_ ?) n}
~ (e — (54)
e an 2
o tefn] o
don = i(znl_ 0 cos [Tc(gzg 2) (2n - l)} (57)

Now, consider problem no. 2 for v,(z¢) and

vy (z,t) of form (26)—(31). We seek for a solution to the
problem in the form of a decomposition in the eigen-
functions of homogeneous problem (39), (40) for layer p:

0
n
vy = ot Y cos(_ zj

8

B " (58)
. |m(2n—1)
+ ) v,msin| ——2z|,
Zomin| X5
where functions v, v,,,, and v,,, depend on time

only and are to be determined. Replacing index p by d,
we obtain a similar solution for layer d. The solutions
represented in this form automatically satisfy bound-
ary conditions (28)—(31).

The substitution of functions v, and U, into (26)
yields an equation whose left-hand side contains a free
term, the z-depending sines and cosines involved in
the eigenfunctions, and the zero right-hand side. This
equation can be satisfied only when the free terms and
the coefficients of the sines and cosines are zero. A
similar equation is obtained from (27) for layer d.

As result, we arrive at the equations for the decom-

position coefficients of functions v, and v, for layers p
and d.
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We have the equations

anp 0 OV o (82 Gaj
S+ 2—L= =V, +28 , 59
ot ot "\or T o %)
2
pvn
or’ at p g (60)
-V, (5—0‘ +28 aaj
o’ ot
OV OV yon ¢ n(2n—1) 2
e el HEA
(61)
_— (5 a5 50‘]
o’ ot
for layer p and
2
0 Vawo +268Vdv0 V0 0 B+25 B
or’ ot or’ ot
(62)
W, (a v, 25‘97],
or’ ot
2 2
a Vidvn + 288Va'vn +%(Mj v,
2 vn
ot ot p\Lg (63)
= V|2 B+25aB Wi ay+26a
or ot or ot)
2
azden + 26avdwn + Cﬁ|:7[(2/’l — 1):' v,
2 'wn
ot ot P 2¢g (64)

2 2
den B +2 aB den a_’zy + 28@
or’ 8t ot ot

for layer d.

Thus, problem no. 2 is solved. The complete system of
equations for the original problem includes the equations
for magnetization vector components m,, ;. ,, . of form (2)
in combination with equations (59)—(64) for functions
V ,ax,- HOWwever, the obtained system does not enable
us to find in a pure form the sought time dependences
of magnetizations and displacements, because effec-
tive fields (3)—(6), entering the equations for magneti-
zations, and time derivatives of functions a, 3, and y
(34)—(36), containing the same fields, involve at this
stage coordinate derivatives Ou, 4, / 0z of displace-
ments and these derivatives are not yet determined. In
order to remove the indeterminacy, we follow study
[20] and use the z-averaged values of these derivatives.
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We retain their time dependences using the derivatives
in the form

% =20 — zvpvnspsn + ZVPW"CPS”’ (65)

< n=1 n=1
% = 2B - ZvdvnSdsn + Zvdwncdsnﬂ (66)

< n=1 n=1

where

Spsn = l{(_1)” — COS {M l’l:|}, (67)

D g
. -1 {(_l)n_l _Sm[m@n _ 1)}, (68)

p 28
Syon = — {(—l)n_1 +cos {Mn}, (69)
(26— p) 8
B 1 0 L Tf(g - P) _

Can = e 0 sin B [ 0

7. THE FORM OF THE SOLUTION
TO THE COMPLETE PROBLEM
FOR THE ELASTICITY

Thus, solution to the complete problem for the
elasticity (18)—(19) takes the form

0
U, =207+ v, + vavn cos{%z)

. " (71)
+ nz_:, V pun SITL [n(%g_l) z}
ug =2(Bz+7y) + vy + ivdvn cos [MZJ
. ’ (72)
+ ZVdWH sin {n(Zng—l) z}

n=l1

The above expressions are obtained for the x com-

ponent of the elastic displacement. For the y compo-

nent, the components corresponding to the y coordi-
nate should be used in these expressions.

8. REDUCTION OF THE COMPLETE
PROBLEM TO A FORM SUITABLE
FOR NUMERICAL SOLUTION

Thus, the complete system of equations for time-
dependent magnetizations and displacements con-
tains six first-order equations for magnetization com-
ponents m,, 4., . of form (2) and 4 + 8n second-order
equations of form (59)—(64) for displacement func-

tions v, 4 ,. We apply the standard procedure of reduc-
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ing one second-order equation to two first-order
equations [23] to obtain from the latter 8 + 16# first-
order equations. Thus, the complete system of first-
order equations for the magnetizations and elastic dis-
placements that is suitable for numerical solution con-
tains 6 + 8 + 16n = 14 + 16n equations, where 7 is the
number of terms in the decomposition in the eigen-
functions of the homogeneous problem.

A test calculation shows that, in the presence of one
term (n = 1), the accuracy of the decomposition is
about 15—20% and five terms (n = 5) ensure an accu-
racy no worse than 5%.

When the series is truncated to one term (n = 1), we
obtain six first-order equations for the magnetizations
and 24 first-order equations for the elastic displace-
ment components, i.e., 30 first-order equations total.
In the study, this system of equations is solved with the
help of the fourth-order Runge—Kutta method [23].
As a result, the time evolution of magnetization oscil-
lations and displacement vibrations excited by an
alternate field is obtained.

9. ESTIMATION OF THE ACCURACY
OF THE OBTAINED RESULTS
AND POSSIBILITY OF ITS ENHANCEMENT

System of equations (2), (59)—(64) has been
derived within a number of approximations applied to
simplify the problem. These approximations to a cer-
tain degree affect the accuracy of the calculation
results. Thus, the magnetic oscillations in both layers
are assumed to be uniform, the elastic displacements
perpendicular to the structure plane are not consid-
ered, and the derivative of the displacement with
respect to the z coordinate is disregarded. In addition,
the numerical computation is performed within the
approximation of the first-mode elastic vibrations;
i.e., all of the subsequent decomposition terms are dis-
regarded.

It is important to assess to what extent the assumed
approximations provide for the sufficient accuracy of
the calculation.

To this end, we consider some limit cases. Thus, a
test has shown that, relative to the splitting of the
structure into layers, the solution is completely specu-
larly symmetric; i.e., when layer thicknesses p and d
are interchanged and, simultaneously, magnetizations
m, and m, are interchanged, the layer magnetization
oscillations are retained and the sum of elastic dis-
placement vibrations on the opposite surfaces of the
structure reverses the sign; i.e., in this context, the sit-
uation is absolutely correct.

For the case when the magnetizations of both layers
are equal, we consider the amplitudes of magnetic
oscillations and elastic vibrations as functions of the
relative change of the layers’ thicknesses, the thickness
of the entire structure being retained. Obviously, the
oscillation and vibration amplitudes should not
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change in this case, because the situation completely
coincides with the case of a single-layer magnetic plate
[20]. However, a certain small change has been
revealed for problem parameters similar to the afore-
mentioned ones.

Thus, when layer thickness p changes from 0.1 to
0.9 (0.2 to 0.8) and, correspondingly, d changes from
0.9t00.1 (0.8 to 0.2) of the total thickness of the struc-
ture, the change of magnetic oscillation amplitudes
reaches 16% (decreases to 12%). The change of elastic
vibration amplitudes is 19% and 16%, respectively,
under the same conditions.

Thus, we can believe that the accuracy of magnetic
oscillation and elastic vibration amplitudes obtained
in this study is no worse than 12—19%, a value that
quite satisfactory for most applications (for example,
for excitation of hypersound in an exterior medium).

The simplest way to additionally enhance the cal-
culation accuracy is to take into account next series
terms. However, the most radical decision is to con-
sider the magnetization that is nonuniform across the
thickness of each layer; then, it will also be unneces-
sary to average the derivative of the displacement over
the thickness. Taking into account elastic displace-
ments perpendicular to the structure plane, we not
only enhance the accuracy but also can reveal the pos-
sibility of excitation of new elastic vibration modes
having a 3D character, a circumstance that can
improve the functional potentialities of technical
devices.

10. TIME EVOLUTION OF OSCILLATIONS

Consider the results of numerical computation of
the time evolution of oscillations for various frequen-
cies of magnetic resonances of individual layers. These
results are partly obtained in [21].

Time dependences of magnetization and displace-
ment components m,, 4, and u, 4, respectively, on the

exterior surfaces of the structure are depicted in Fig. 2
for the linear and nonlinear modes.

For the parameters of the material and structure
geometry indicated in the figure caption, the fre-
quency of the elastic resonance for the first mode of
the entire structure and the frequency of the linear
magnetic resonance in layer p are equal to the excita-
tion frequency 2800 MHz, while the frequency of the
linear magnetic resonance in layer d is lower:
2380 MHz. For the assumed attenuation parameters,
the times of formation of the stationary amplitudes of
both kinds of oscillations approach the value 2 x 10~?s.

It is seen from Figs. 2a and 2b that, in the linear
mode, both kinds of oscillations in layer p gradually
increase without beating; while, in layer d, oscillations
increase with slight beating. After stationary oscilla-
tions are formed, the amplitudes of both kinds of oscil-
lations in layer d are approximately half as high as
those in layer p. The advance of the magnetic oscilla-
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tion phase in layer d over the phase in layer p is about
90°, and the lag of the elastic vibration phase in layer d
behind the phase in layer p has the same value.

It is seen from Figs. 2c and 2d that magnetic oscil-
lations in both layers evolve with beating, while elastic
vibrations evolve without beating. After stationary
oscillations are formed, the amplitudes of both kinds
of oscillations in layer d exceed those in layer p: the
amplitude of magnetic oscillations is higher by a factor
of 1.2 and the amplitude of elastic vibrations is higher
by a factor of 1.5. The phases of magnetic oscillations
in both layers coincide, and the phases of elastic vibra-
tions in layers p and d differ by 180°; i.e., the opposite
surfaces of the structure move in antiphase.

The comparison of the modes show that

(i) the amplitude of magnetic oscillations in the
nonlinear mode exceeds the amplitude of these oscil-
lations in the linear mode by a factor of 38 in layer p
and 110 in layer d,

(ii) the amplitude of elastic vibrations in the non-
linear mode exceeds the amplitude of these oscilla-
tions in the linear mode by a factor of 33 in layer p and
71 in layer d.

These peculiarities are due to the fact that the lin-
ear-mode magnetic resonance characteristics in both
layers have a narrow symmetric bell-shaped form and
do not overlap. The resonance frequency in layer p
equals the excitation frequency, and the stationary
amplitude takes the maximum value possible for the
attenuation parameter. However, for layer d, the exci-
tation frequency is higher than the resonance fre-
quency, a circumstance that causes beating and do not
allow the amplitude to evolve to the maximum. The
elastic vibration amplitudes in both layers are propor-
tional to the magnetic oscillation amplitude, and,
therefore, the elastic vibration amplitude is lower in
layer d than in layer p.

In the nonlinear mode, the magnetic resonance
curves in both layers substantially spread, are nonsym-
metric, and have the form of wide triangles with verti-
ces deflected toward high frequencies, which is due to
the traditional detuning mechanism [24, 25]. When
the excitation amplitude is high enough, the inclined
vertex of the resonance curve of layer d reaches the
excitation frequency. As a result, the magnetic oscilla-
tion amplitude in this layer abruptly increases leading
to the growth of the elastic vibration amplitude, a cir-
cumstance that accounts for the excess of the both
kinds of oscillations amplitudes in this layer over the
same oscillations in layer p.

The relative phase shift of linear magnetic oscilla-
tions in layers p and d is caused by the difference of
their resonance frequencies and corresponds to the
known phase shift of forced oscillations beyond the
resonance conditions [24]. The phase shift of elastic
vibrations is a result of the superposition of magnetic
oscillations in different layers and is observed when it
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Fig. 2. Magnetization oscillations m podx and displacement vibrations u pdx VS- time for layers (solid lines) p and (dashed lines) d in

the (a, b) linear and (c, d) nonlinear modes. The material parameters are as follows: 4nM 0 =1750 G, 4nM 4 =1900 G,

By =Bp= 13.92x10° Ergcm™, ¢y = 7.64x10"! Erg cm™3, Ky =Ky =00,=04=0048=2x 10° 571, The parameters
of the structure’s geometry are as follows: 2g = 0.6865 um, p = 0.3x2¢g =0.206 um, and d = 0.7 x2g = 0.481 um. The excita-
tion parameters are as follows: F = 2800 MHz, Hy = 2750 Oe, hy= (a,b) 1 and (c, d) 100 Oe, and the polarization of the alternate
field is circular such that &, = hy sin (2nFt) and h), = —hy cos(2nFr).

is taken into account that the structure is an entire
elastic vibrating system.

In the nonlinear mode, all of the three systems—
elastic and both magnetic ones—are excited under the
resonance conditions. Therefore, the magnetic oscil-
lation phases in both layers coincide and the elastic
vibration phases on the opposite surfaces of the struc-
ture are opposite, which resembles the character of the

first mode of vibrations of the ends of a string with free
ends [22].

Note a certain nonsymmetry in displacement
vibrations that is observed in Fig. 2d: the time sweep of
vibrations is shifted with respect to the center axis
downward in the figure by 107'° cm for layer p, and
upward by approximately the same value for layer d.
This nonsymmetry means that, in the nonlinear
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mode, the time-average thickness of the entire struc-
ture increases by approximately 3 x 10~ of its initial
value.

The nonsymmetry can apparently be attributed to
the nonsymmetry of the boundary conditions imposed
on different surfaces of each layer: the interior surfaces
of the layers contact, while the exterior ones are free.
The additional nonequivalence of the boundary con-
ditions for both layers is due to the difference of the
magnetizations, which is especially pronounced in the
nonlinear mode.

11. EXPERIMENTAL CONDITIONS
OF OBSERVATION
OF THE DESCRIBED PHENOMENA

The presented solution to the considered problem
enables us to determine the normalized oscillation
amplitudes for magnetizations m, and m, in each layer
and the vibration amplitudes for elastic displacements
u, and u, when the values of coordinate z in each indi-
vidual layer are specified. However, in real experi-
ments, it is of interest to control the total magnetiza-
tion of the entire structure regarded as a single sample
as well as the elastic displacements of the exterior sur-
faces of the structure relative to each other. Therefore,
it is important to find the coupling between really
measured amplitudes of total magnetization mg and
elastic displacement ug on the one hand and ampli-

tudes m, , and u,, , obtained above on the other hand.

The investigation of the time evolution of oscilla-
tions shows that, when the magnetic and elastic reso-
nance frequencies are different, there are rather intri-
cate phase relationships between excited oscillations.
These relationships should be taken into account in
the calculation of the total amplitudes.

Thus, the total magnetization of the entire struc-
ture is determined by the sum of the relative contribu-
tions of the magnetizations of each layer with allow-
ance for the phase difference:

mgcos(of + ¢g) = m,—L—cos(wr +¢,)
p+d

(73)

cos(of +¢y),

where ¢, and @, are phase shifts of excited magnetiza-
tion oscillations in layers p and d relative to the alter-
nate field phase and mgand @g are the amplitude and
phase, respectively, of the resulting oscillations in the
entire structure.

When a double-layer structure is used for hyper-
sound excitation in the exterior medium, one of the sur-
faces should be rigidly fixed on a massive support, while
the other surface remains free and is an exciter of such a
kind. In this case, the vibrations of the unfixed surface
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are determined by the trigonometric sum of the oscilla-
tions on the opposite surfaces of the structure:

ugcos(or + @g) (74)
=u,cos(of +¢,)+u, cos(of +¢,).

As is seen from formulas (73) and (74), the ampli-
tude of excited vibrations depends on the phase rela-
tionships between the vibrations of individual layers.
In certain special cases, the phase relationships are
rather simple despite their intricate general character.

Case no. 1. The elastic resonance frequency and
the frequencies of both magnetic resonances are equal
to the excitation frequency. Then, the magnetic oscil-
lations in both layers are in phase, and the elastic
vibrations on the opposite surfaces of the structure are
in antiphase. This case is similar to the case of a single
magnetic plate considered in [20].

Case no. 2. The elastic resonance frequency is
equal to the excitation frequency, one of the magnetic
resonance frequencies is higher and the other one is
lower than the excitation frequency by equal values. In
the linear mode, the phase relationships are rather
intricate; however, in a strongly nonlinear mode, the
magnetic oscillations (elastic vibrations) of individual
layers approach the in-phase (antiphase) state; i.e.,
despite the difference of the layer magnetizations, the
phase relationships between oscillations become simi-
lar to those in the previous case.

Owing to the in-phase magnetic oscillations of the
layers, the amplitude of the total magnetic oscillations
in both of these cases takes the form

mS = mp L + md L

p+d p+d

Similarly, owing to the antiphase elastic vibrations

observed when one of the structure surfaces is fixed,

the amplitude of elastic vibrations on the free surface
has the form

(75)

(76)

Ug = up — Uy,
or
(77)

The time dependence of oscillations for case no. 1 (2)
is depicted in Figs. 3a and 3b (Figs. 3c and 3d). The
following conclusions can be drawn from Fig. 3. The
curves for m, and m, in Fig. 3a coincide because both
layers have identical parameters; in this situation, total
amplitude mg doubles. The curves for u, and u, in
Fig. 3b have identical amplitudes, are in antiphase,
and, as a result, total amplitude ug also doubles. The
curves for m, and m, in Fig. 3¢ remain in phase but
have different amplitudes, a circumstance that is due
to the different magnetizations of the layers; ampli-
tude myg is also the sum of amplitudes m, and m,. The
curves for u, and u, in Fig. 3d are also in antiphase but

P
have different amplitudes following the magnetization

Us = |up| + |ud|'
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Fig. 3. (a, ¢) Magnetization oscillations m, 4 s and (b, d) displacement vibrations u,, 4 5 vs. time for layers (dashed lines) p and
(dotted lines) d and for (solid lines) entire structure S. The parameters are as follows: (a, b) 4nM ,y =1750 G, 4nM 49 =1750 G,

and iy =10e€; (c,d) 4nM 5y = 1600 G, 4nM 49 = 1900 G, and iy =100 Oe; the layers’ thicknessesare p = d =0.5x 2g = 0.3432 pm;
and the remaining parameters are indicated in the caption of Fig. 2.

amplitudes of the corresponding layers. Oscillations ug
are also the algebraic sum of u, and u,, exhibit the shift of
the zero value by —0.68 x 10~'° cm relative to the equilib-
rium position. This shift is similar to that from Fig. 2d
and is attributed to the nonsymmetrical boundary condi-
tions on different surfaces of each layer.

12. AMPLITUDE-FREQUENCY
CHARACTERISICS

In practice, it is important to analyze the amplitude
of oscillations excited within a certain frequency inter-
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val, primarily, near the magnetic and elastic resonances.
In order to avoid the difficulties related with taking into
account complicated phase relationship, we restrict the
consideration to the two aforementioned cases: the first
case, when the resonance frequencies of all oscillations
coincide, and the second case, when one of the mag-
netic resonance frequencies is higher and the other one
is lower than the elastic resonance frequency by equal
values. Then, the first case is equivalent to the case of a
single-layer structure considered in [20] and the second
case characterizes the specificity of the double-layer
character of the structure.
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Fig. 4. Amplitude—frequency characteristics of the excitation of magnetic (m), 4 5) oscillations and elastic (u,, 4 5) vibrations for

the case when the frequencies of all resonances coincide in the (a, c) linear and (b, d) nonlinear modes: (/) layer p, (2) layer d,
and (3) the total amplitude for the entire structure. The amplitude of the alternate field is sy = (a, c) 1 and (b, d) 100 Oe and the

polarization is circular. The parameters are as follows: 4wM o =4nM 49 = 1750 G, p =d =0.5x 2g = 0.3432 um, Hy = 2750 Oe,
and the remaining parameters are indicated in the caption of Fig. 2.

The amplitude—frequency characteristics (AFCs)
of the linear- and nonlinear-mode excitations of mag-
netic oscillations and elastic vibrations are displayed in
Figs. 4 and 5.The layer thicknesses are assumed equal,
i.e., p = d. Curves I and 2 correspond to the oscilla-
tions for each individual layer, and curves 3 correspond
to the total oscillations. Curves 3 for magnetic reso-
nances are plotted as the sums of amplitudes m, + m,,
i.e., the values in these curves are twice the value of mg
corresponding to formula (75). Curves 3 for elastic

resonances are plotted as the sums u, +u,, corre-
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sponding to formula (77) taking into account that the
processes are in antiphase.

For the first case, when the frequencies of all of the
three resonances are identical and equal to 2.8 GHz,
the corresponding characteristics are shown in Fig. 4.
It is seen from the figure that the amplitudes of mag-
netic oscillations and elastic vibrations in individual
layers (/ and 2) coincide, a circumstance that is due to
the coincidence of the layers’ parameters. The double
dashed line for curves 7 and 2 is plotted for visualiza-
tion, both curves coincide).
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the case of different resonance frequencies in the (a, c) linear and (b, d) nonlinear modes: (/) layer p, (2) layer d, and (3) the total
amplitude for the entire structure. The amplitude of the alternate field is 4, = (a, ¢) 1 and (b, d) 100 Oe and the polarization is

circular. The parameters are as follows: 4nM o = 1600 G, 4nM 4y =1900G, p =d =0.5x2g = 0.3432 pm, H = 2750 Oe, and

the remaining parameters are indicated in the caption of Fig. 2.

In the linear mode, we have symmetric bell-shaped
AFCs of magnetic oscillations (see Fig. 4a); while, in
the nonlinear mode (see Fig. 4b), the vertices of the
resonance curves are substantially deflected toward
high frequencies, and, as a result, the AFCs acquire a
triangular shape. This shape of the resonance curve
corresponds to the amplitude limited because of the
detuning mechanism [24, 25].

In the nonlinear mode, the amplitude increases at
the linear resonance frequency 2.8 GHz by a factor of
18.5. Then, the AFC maximum moves to a frequency

of 4 GHz and exceeds the linear-mode maximum by a
factor of 30.9.

For elastic vibrations, the AFC in both modes
(Figs. 4c, 4d) retains its more or less symmetric bell-
shaped form. In the nonlinear mode, the steepness of
its high-frequency slope exceeds the steepness of the
low-frequency slope; however, this nonsymmetry is
less pronounced than that for magnetic oscillations,
because, here, there is no detuning mechanism limit-
ing the amplitude.

The frequency of the resonance peak maximum is
retained in both modes at a value of 2.8 GHz, and the
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nonlinear-mode oscillation amplitude exceeds the
linear-mode amplitude by a factor of 17.3.

For the second case, when one of the magnetic res-
onance frequencies is higher and the other one is lower
than the elastic resonance frequency by equal values,
the corresponding characteristics are depicted in
Fig. 5. Here, due to the different magnetizations of the
layers, the magnetic resonance frequency is 3.22 GHz
in layer p and 2.38 GHz in layer d. The elastic reso-
nance frequency is 2.8 GHz; i.e., one of the magnetic
resonance frequencies is higher and the other one is
lower than the elastic resonance frequency by
0.42 GHz.

It is seen from the figure that the linear-mode AFC
of magnetic oscillations (see Fig. 5a) have a symmetric
bell-shaped form; while, in the nonlinear mode (see
Fig. 5b), the vertices of the resonance curves are sub-
stantially deflected toward high frequencies, and, as a
result, the AFCs acquire triangular shapes. This shape
is due to the detuning mechanism [24, 25]. Then, the
resonance maximum moves to the frequency
4.35 GHz for layer p and to 3.55 GHz for layer d, i.e.,
in both cases moves upwards by approximately
1.15 GHz. Thus, the total linear-mode AFC has a
double bell-shaped form with two maxima and a deep
minimum between them and the total nonlinear-
mode AFC has a triangular shape with one character-
istic pronounced maximum, a flat low-frequency
slope, and a double-step high-frequency slope.

The nonlinear-mode magnetic resonance ampli-
tude increases by a factor of 30.9 (22.7) in layer p (d).
The amplitude of total magnetic oscillations at a fre-
quency of 2.8 GHZ increases from 0.125 to 0.85, i.e.,
by a factor of 68.

The nonlinear-mode AFC for elastic vibrations
(see Fig. 5¢) for both layers has, besides the main max-
imum at 2.8 GHz, two additional maxima: near
3.15(2.4) GHz for layer p (d), a circumstance that
characterizes the maxima of excitation at the magnetic
resonance frequencies. As a result, the total AFC has a
shape of a wide trifolium with three rises at 2.4, 2.9,
and 3.2 GHz.

However, in the nonlinear mode (see Fig. 5d), the
bell-shaped form of elastic resonances is restored for
each layer and for the entire structure and acquires a
single maximum near 2.8 GHz. The nonlinear-mode
amplitude of total elastic vibrations at 2.8 GHz
exceeds the corresponding linear-mode amplitude by
a factor of 63.3.

It is interesting to examine the width of the fre-
quency interval of the excited oscillations in both of
the considered cases.

Thus, it is seen from Figs. 4a and 4b that, when the
frequencies coincide, the half-height-level width of
the AFC in the nonlinear-mode for magnetic oscilla-
tions (0.5 GHz) exceeds that of the linear-mode ACF
(1.5 GHz) by a factor of three. Similarly it is seen from
Figs. 5a and 5b that, in the case of different frequen-
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cies, the width of the AFC for each of the unit maxima
increases from 0.5 to 2.5 GHz, i.e., by a factor of 5,
when we pass from the linear to nonlinear mode.

We can see for elastic vibrations from Figs. 4c and
4d that, in the case of coincident frequencies and
switching from the linear to nonlinear mode, the AFC
width increases from 0.4 to 0.6 GHz, i.e., increases by
a factor of 1.5. It is seen from Figs. 5¢ and 5d that, in
the case of different frequencies and switching from
the linear to nonlinear mode, the width of the same
oscillations decreases from 0.8 to 0.6 GHz, i.e.,
becomes smaller by the same factor 1.5. Thus, when
the frequencies are different, the width of the linear-
mode AFC of eclastic vibrations exceeds that of the
nonlinear-mode AFC by a factor of approximately 2.

At the same time, the nonlinear-mode maximum
amplitude of the elastic vibrations excited at the elastic
resonance frequency in the cases of equal and different
frequencies is about 1.9 x 10~ ¢cm and the AFC half-
height-level width is 0.6 GHz; i.e., the excited elastic
vibrations have close parameters for single- and dou-
ble-layer structures.

Thus, when we pass from a single-layer structure to
a double-layer one, the maximum intensity and the
width of excited elastic vibrations of the single-layer
structure change only slightly. However, the use of a
double-layer structure enables one to substantially
(no less than by a factor of two) extend the interval of
excited frequencies of magnetic oscillations and elas-
tic vibrations.

CONCLUSIONS

The main results of the study are as follows.

The nonlinear problem of hypersound excitation in
a normally magnetized double-layer structure has
been considered. The elastic properties are constant
across the entire thickness, but the magnetic and mag-
netoelastic properties of the layers can be different.
The layers of the structure exhibit cubic anisotropy
and magnetostriction.

The equations of motion and boundary conditions
for the magnetization components and elastic dis-
placement in both layers have been obtained for the
case of an arbitrary angle of the magnetization vector
precession. In order to satisfy the inhomogeneous
boundary conditions, the original problem is split into
two ones: a homogeneous problem with inhomoge-
neous boundary conditions and an inhomogeneous
problem with homogeneous boundary conditions. It
has been shown that, as a result of decomposition in
the eigenmodes of the entire structure’s elastic vibra-
tions, the problem is reduced to a system of the infinite
number of second-order differential equations for
elastic modes. In the special case when only the first
elastic mode is excited, the problem is simplified to a
system of 30 nonlinear first-order differential equa-
tions (six equations for the layers’ magnetizations and
24 equations for the elastic displacements).
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The obtained system of equations has been solved
numerically with the help of the Runge—Kutta
method. The time evolution of oscillations observed as
a result of enabling an alternate field has been consid-
ered. It has been shown that, in the case of excitation
at the elastic resonance frequency when the frequency
of the magnetic resonance in one of the layers coin-
cides with the excitation frequency in the linear mode
and the frequency of the magnetic resonance in the
other layer is below the excitation frequency, the elas-
tic vibrations have a higher amplitude in the layer
where the magnetic oscillation frequency coincides
with the excitation frequency. In a strongly nonlinear
mode, the elastic vibration amplitude in the other
layer abruptly grows and exceeds the elastic vibration
amplitude in the first layer. As a result, the total ampli-
tude of the excited hypersound substantially increases.

The complicated character of the phase relation-
ships between the excited oscillations and the alternate
field has been revealed. Two special cases with simple
phase relationships have been indicated. In the first
case, the frequencies of both magnetic and elastic res-
onances coincide; this case is equivalent to a single-
layer structure. In the second case, one of the mag-
netic resonance frequencies is higher and the other
one is lower than the elastic resonance frequency by
equal values.

The AFCs of the excited oscillations have been
investigated for these special cases. The analysis of
these characteristics has shown that, when the excita-
tion amplitude increases by two orders of magnitude,
the maximum intensity of elastic vibrations excited in
a strongly nonlinear mode in both the single- and dou-
ble-layer structures can exceed the amplitude of the
same vibrations in the linear mode by a factor of 30—
70. The mutual detuning of the layers’ magnetic reso-
nance frequencies enables one to increase the interval
of the exited frequencies of both magnetic oscillations
and elastic vibrations by a factor of 2—5 as compared
to the corresponding frequency interval for the single-
layer structure.
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