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Abstract. In this paper we propose a microscopic model for description a twin boundary motion in 

Ni2MnGa Heusler alloy by means of the ab initio and Monte Carlo calculations. The tetragonal real 

lattice of martensite with c/a < 1 was used in our simulations. The variants of the low temperature 

martensite are separated by the twin boundary. The complex Hamiltonian consisting of the 

Heisenberg model and Blume-Emery-Griffiths one are considered. On the basis of the proposed 

Hamiltonian the influences of external magnetic field and anisotropy on the twin boundary motion 

are studied. It is shown that the theoretical picture of the twin boundary motion is analogous with 

experimental observations. 

Introduction 

Currently the ferromagnetic Heusler alloys have attracted a much attention in view of their unique 

properties such as shape memory effect, giant magnetocaloric effect, magnetostriction, 

superelasticity, motion of twinning martensitic variants [1]. As regards the last property the 

mechanism of deformation twinning by the external forces is interesting physical phenomenon 

suitable for device applications [2]. For example, in the martensitic state, the twin boundary motion 

due to the reorientation of variants can be induced reversibly by an external magnetic field. This 

effect is discovered in many Heusler alloys, for example in Ni-Mn-X (X= Ga, In, Sb, Sn) ones. In 

this paper we present the theoretical microscopic model for description of twin boundary motion in 

the stoichiometric Ni2MnGa compound. 

Theoretical model 

In the proposed model, we consider a three-dimensional real tetragonal lattice (c/a < 1) of 

Heusler alloys with periodic boundary conditions. We take into account the exchange nearest-

neighbor interactions in the first coordination shell of each atom only. The magnetic exchange 

interactions between the Ni and Mn atoms in Ni2MnGa alloy have been taken from our previous ab 

initio simulations using the spin-polarized relativistic Korringa-Kohn-Rostoker (SPR-KKR) 

package [3]. The effective Hamiltonian describing the system can be represented by two interacting 

contributions: one that describes the magnetic interactions and the other one taking care of the 

structural distortion. For the magnetic part, we have chosen the anisotropic Heisenberg model with 

ab initio exchange parameters. The structural part is described by the degenerated three-state 

Blume-Emery-Griffiths (BEG) model allowing for a structural transformation from the cubic 

(austenitic) phase to the tetragonal (martensitic) phase [4]. In our model, we consider only two 

variants of martensite with lattice deformation along one of axes, in spite of fact, that during 

cooling, the austenite may choose any of the six variants. So, in our case the cubic phase is a 
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double-degenerated phase. Since the Ga atoms are non-magnetic atoms, we do not take into account 

the Mn-Ga, Ni-Ga and Ga-Ga interactions in the magnetic subsystem. But in the structural 

subsystem we take into account the interactions between all atoms. 

The effective Hamiltonian (1) consists of three contributions, the magnetic part is described by 

Eq. (2), the structural part by Eq. (3), and the magnetostructural interaction is defined in Eq. (4), 

H = Hm + Hel + Hint,          (1) 
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 are the exchange constants in the magnetic subsystem, S is the spin, Hext is the external 

magnetic field; g is the Lande factor; µB is the Bohr’s magneton, Kx, Kz are the anisotropy constants 

along x and z axis, Jel and Kel are the exchange constants in elastic subsystem in the martensitic 

phase and austenitic one respectively, σi is a microdeformation variable which represents the 

deformation state on each site of the lattice, where σi = 0 denotes the undistorted (cubic) phase and 

σi = -1, 1 the distorted (martensitic) phase with two variants, kB is the Boltzmann constant, T is the 

temperature of system, p is the degeneracy factor, K1 is the dimensional magnetostuctural constant 

which describes the influence of the external magnetic field on the structural subsystem, σg is a 

deformation state, whose value is that of a structural variant in the external magnetic field (the 

positive field Hext favors deformation states coinciding with the σg deformation state), U is the 

magnetostructural constant.  

With respect to the elastic part of the Hamiltonian (3), the first and second terms characterize the 

interaction between single strains σi in the tetragonal phase and cubic one. The third term 

characterizes the degeneracy of cubic phase (we consider the degeneracy of the cubic phase equal p 

= 2). Finally, the fourth term describes the influence of a magnetic field on the subsystem [5]. The 

Magnetostructural contribution (4) characterizes the interactions between magnetic and structural 

degree of freedom.  

The corresponding equilibrium Monte Carlo simulations have been carried out by means of the 

Metropolis algorithm [6]. For application in the systems with structural and magnetic interactions it 

is fully described in the reference [5].  

Calculation details 

Since Monte Carlo method has the stochastic nature, we have done the independent series of 

calculations using the same model parameters. The number of series was equal of N = 8. For each 

case the magnetic field dependences of microdeformation, spin projection and their volume 

fractions (xi) at the constant temperature have been calculated. After that all calculated data have 

been averaged over eight series ( x ). Also we calculated the standard deviation of calculated 

dependences by following way: 

∑
= −
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xx
S
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)(
      (5) 

The Monte Carlo simulations of the temperature dependences of the magnetization and 

deformation were carried out for two cases. In the first case, calculations have carried out in the 

austenite (cubic) phase. In the second case, the calculations have carried out in the martensitic 

(tetragonal) phase with two martensite variants.  

So, for the temperature dependences of magnetic and structural order parameters, the 

calculations have started with follow initial configurations. In the structural subsystem the 

microdeformations for all atoms we have taken of σi = 1, whereas in the magnetic subsystem the 

spin projections for the Ni and Mn atoms we have taken of Sx = 0, Sy = 0, Sz = 1 and Sx = 0, Sy = 0, 

Sz = 0 for the Ga atoms, respectively.  
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For the twin motion modeling under influence of the external magnetic field at the constant 

temperature, the Monte Carlo simulations have started from five lattice blocks (the size of each 

lattice block is C) with different configurations of spins and strains: for z ∈  ([1, 1/5×C], [2/5×C, 

3/5×C], [4/5×C, C] we have taken σi = 1 for all sites, and Sz = 1, Sx = 0, Sy = 0 for magnetic sites and 

S = 0 for non-magnetic sites; for z ∈  ([1/5×C, 2/5×C], [3/5×C, 4/5×C] we have taken σi = -1 for all 

sites, and Sz = 0, Sx = 1, Sy = 0 for magnetic sites and S = 0 for non-magnetic sites. 

The motion of twin boundary has created by following way. At the constant temperature and 

given external magnetic field in each lattice plane (101) after 1000 Monte Carlo steps the average 

deformation of layer is fixed. If the average deformation of layer is in the interval from -1/3 to -1 

then the plane does not moved; if it is in the interval from -1/3 to 1/3 then the plane shifted along 

axis [101] on the distance which is equal half of diagonal of elementary lattice face in the plane (x, 

y); finally, if it is in the interval from 1/3 to 1 then the plane shifted along axis [101] on the distance 

which is equal diagonal of elementary lattice face in the plane (x, y). After this we have changed the 

external magnetic field and repeated the Monte Carlo cycle. So, using proposed trick, we can model 

the reorientation of martensitic variants and spins projections to the energetically favorable ones 

under influence of external magnetic field. Hence the twin boundary motion is appeared in the 

tetragonal lattice.  

Calculations have been performed for three different values of anisotropy constants, which are 

equal (in meV) for each site type:  

 1. Ga

xK  = 0, Ga

zK  = 0, Ni

xK  = 0, Ni

zK  = 0, Mn

xK  = 0, Mn

zK  = 0; 

2. Ga

xK  = 0, Ga

zK  = 0, Ni

xK  = 0.72, Ni

zK  = 0.36, Mn

xK  = 0.18, Mn

zK  = 0.09;                          (6) 

 3. Ga

xK  = 0, Ga

zK  = 0, Ni

xK  = 0.36, Ni

zK  = 0.18, Mn

xK  = 0.09, Mn

zK  = 0.045. 

The values of anisotropy constants were estimated from available experimental data for Ni-Mn-

Ga alloys [7]. 

Simulation results 

The Monte Carlo calculations have been performed on two lattices. The first lattice has the size 

N = a×a×4a,
 
where a = 6 is the number of unit cells of Heusler alloys. So in this case we have used 

the lattice with 4225 Mn, 7056 Ni, and 4225 Ga atoms. The second lattice has the size N = 

a/3×a/3×4a. In this case we have used the lattice with 625 Mn, 784 Ni, and 625 Ga atoms. The 

influence of size lattice on the twin boundary motion was studied on lattices with size N = a×a×2a 

and 2112 Mn, 3456 Ni, and 2113 Ga atoms and N = a×a×5a/6 with 845 Mn, 1296 Ni, and 845 Ga 

atoms. 

The magnetic exchange integrals have been taken from our ab initio calculations using SPR 

KKR package: JNi-Mn = 4.74 meV, JMn-Mn = 1.63 meV for nearest neighbors sites located in xy plane, 

JMn-Mn = -1.26 meV for neighbors sites located in xz and yz planes [5]. In the structural subsystem 

the exchange interactions have been taken for all type of atoms as in our previous works: Jel = 1.5 

meV, Kel = 0.5 meV, U = 3 meV, K1 = 0.5 meV [5, 8]. The Lande factor was taken as g = 2. 

Both the Curie temperature and the martensitic transition one of Ni2MnGa with cubic lattice 

have been estimated from temperature dependences of magnetization and deformation at zero 

magnetic field [9]. Our theoretical results are closed to experimental data for Ni2MnGa alloy [10]. 

The kinetic of twin motion and magnetic field dependences of the volume fraction of martensitic 

variants and volume fraction of spin projections have been investigated using the tetragonal lattice 

in the first case at the constant temperature T = 120 K and different sets of anisotropy constants. In 

the second case we have taken the different temperatures and lattice sizes with zero magnetic 

anisotropy. The calculations have been performed with the number of Monte Carlo steps equal 

1000. 
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Fig. 1. Magnetic field dependences of volume fraction of martensitic variants (left) and volume 

fraction of spin projections (right) at the temperature T = 120 K and the first set of anisotropy 

constants (6). 
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Fig. 2. Magnetic field dependences of dispersions of fraction of martensitic variants (left) and 

fraction of spin projections (right) at the temperature T = 120 K and the first set of anisotropy 

constants (6). The dispersions have been calculated using Eq. (5). 
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Fig. 3. Magnetic field dependences of volume fraction of martensitic variants (left) and volume 

fraction of spin projections (right) at the temperature T = 120 K and the second set of anisotropy 

constants (6).  
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Fig. 4. Magnetic field dependences of volume fraction of martensitic variants (left) and volume 

fraction of spin projections (right) at the temperature T = 120 K and the third set of anisotropy 

constants (6).  

464 European Symposium on Martensitic Transformations



In the Fig. 1,3,4 we present magnetic field dependences of volume fraction of martensitic 

variants (left) and volume fraction of spin projections (right) at the temperature T = 120 K, 

calculated for lattice N = 6×6×24 cubic unit cells. We can see, that increasing of anisotropy in 

magnetic subsystem leads to competition between x and z spin projections and to delay reorientation 

of the spin projection along the direction of the external magnetic field and almost no effect on 

transition in elastic subsystem. 

In the Fig. 2 we show magnetic field dependences of dispersions of fraction of martensitic 

variants (left) and fraction of spin projections (right) at the temperature T = 120 K. We can see that 

dispersion of all types of strains in the structural subsystem after phase transition in fact equal zero 

(although there may be small deviations due to thermal fluctuations as on H=1.7 T), while in 

magnetic subsystem after phase transition dispersion of z spin projection tends to zero under 

influence of external magnetic field and dispersions of x and y spin projections remain nonzero due 

to thermal fluctuations A similar behavior of dependences of fraction of martensitic variants and 

spin projections is observed for all presented here dependences of fraction of martensitic variants 

and fraction of spin projections from external magnetic field. 
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Fig. 5. Dependences of fraction of martensitic variants (left) and fraction of spin projections (right) 

from external magnetic field at temperature T = 120 at first set of anisotropy constants (6) for N = 

6×6×12 cubic unit cells. 

 

The fig. 5 shows, that decreasing of lattice size (from N = 6×6×24 cubic unit cells to N = 6×6×12 

cubic unit cells) leads to acceleration of phase transitions in elastic and magnetic subsystems due to 

decreases total number of sites with energy unfavorable martensitic variants and directions of spins. 
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Fig. 6. Dependences of fraction of martensitic variants (left) and fraction of spin projections (right) 

from external magnetic field at temperature T = 80 at first set of anisotropy constants (6). 

 

The fig. 6 shows, that reduction of temperature (from T=120 K to T=80 K) leads to slowdown of 

phase transitions in elastic and magnetic subsystems and speed of twins boundary moving due to 

decrease of thermal fluctuations in system. 
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Fig. 7. Dependance of critical magnetic field in elastic subsystem for different temperatures for first 

set of anisotropy constants (6). 

 

The fig. 7 shows, that value of critical magnetic field for elastic subsystem and speed of twins 

boundary moving decrease with temperature growning due to increase of thermal fluctuations in 

system. Critical values of magnetic field for different temperatures obtained from dependence of 

dispersion of fraction of martensitic variants from external magnetic field as values, at which 

dispersion of summary microdeformation of lattice turns to zero.  

 

 

 
Fig. 8. Image of lattice at external magnetic field (from left to right) H=0 T (starting configuration), 

H=1 T, H=1.1 T, H=1.2 T. 

 

The fig. 8 show the kinetic of twin motion under influence of external magnetic field at constant 

temperature T = 120 K. Here small circles corresponds the atoms of Ni, medium circles denotes the 

atoms of Ga, big circles are the atoms of Mn. Note that temperature have significant effect on the 

system, what leads to fluctuation and changing values of spins projections and microdeformations 

and to changing normalized microdeformation of layers and their spacing. 

Summary 

In this work we have proposed the microscopic model based on the real lattice of Ni-Mn-X 

(X=Ga, In, Sn, Sb) alloys and classical Heisenberg and Blume-Emery-Griffiths models with 

magnetoelastic interaction for description of the twin boundary motion in Ni2MnGa alloy under 

z 

x 

y 
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influence of an external magnetic field. On the base of this model the temperature dependences of 

magnetization and microdeformations at zero magnetic field have been investigated. The kinetic of 

twin boundary motion under influence of external magnetic field at constant temperatures has been 

studied with the help of proposed model. Our simulations have shown that an applying of the 

external magnetic field at constant low temperatures leads to moving of twin boundary. The motion 

of twin boundary undergoes during transformation an unfavorable martensitic variant in another 

variant, which has the same direction as an external magnetic field. We have found that the velocity 

of twin motion depends on the external magnetic field and temperature. It should be noted that the 

theoretical investigation of twin boundary motion agree with experimental results [11, 12]. 

Acknowledgments 

This work was supported by RFBR (grants 11-02-00601, and 12-02-31129), and RF President MK-

6278.2012.2, and Federal Program “Scientific and scientific-pedagogical personnel” RF 

14.132.21.1414. 

References 

[1] Planes, L. Mañosa, and M. Acet, Magnetocaloric effect and its relation to shape-memory 

properties in ferromagnetic Heusler alloys J. Phys.: Condens. Matter 21 (2009) 233201.  

[2] K. Ullakko, I. Aaltio, P. Yakovenko, A. Sozinov, A.A. Likhachev and O. Heczko, Magnetic 

shape memory effect progress from idea to first actuators and sensors, J. Phys. IV France 11 

(2001) Pr8-243 . 

[3] H. Ebert, in Electronic Structure and Physical Properties of Solids, Lecture Notes in Physics 

Vol. 535, edited by H. Dreyssé (Springer, Berlin, 1999), p. 191; Rep. Prog. Phys. 59 (1996) 

1665. 

[4] T. Cástan, E. Vives, and P.-A. Lindgård, Modeling premartensitic effects in Ni2MnGa: A 

mean-field and Monte Carlo simulation study Phys. Rev. B 60 (1999) 7071. 

[5] V. D. Buchelnikov, V. V. Sokolovskiy, H. C. Herper, H. Ebert, M. E. Gruner, S. V. Taskaev, 

V. V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, and P. Entel, A 

First_Principles and Monte Carlo Study of Magnetostructural Transition and Magnetic 

Properties of Ni2 + xMn1 – xGa, Phys. Rev. B: Condens. Matter Phys. 81 (2010) 094411. 

[6] D.P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 

Cambridge Univesity Press, Cambridge, 2000. 

[7] F. Albertini, A. Paoluzi, L. Pareti, M. Solzi, L. Righi, E. Villa, S. Besseghini, and F. Passaretti, 

Phase transitions and magnetic entropy change in Mn-rich Ni2MnGa alloys, Journal of applied 

100, (2006), 023908  

[8] V.D. Buchelnikov, V.V. Sokolovskiy, S.V. Taskaev, V.V. Khovaylo, A.A. Aliev, L.N. 

Khanov, A.B. Batdalov, P. Entel, H. Miki and T. Takagi, Monte Carlo simulations of the 

magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys, J. Phys. D: Appl. 

Phys. 44, (2011) 064012. 

[9] K.I Kostromitin, V.D. Buchelnikov, V.V. Sokolovsky, P. Entel, Theoretical study of magnetic 

prooerties and twin boundary motion in Heusler Ni-Mn-X shape memory alloys using first 

principles and Monte Carlo method, Advances in Science and Technology Vol. 78, (2013), pp 

7-12. 

[10] P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Magnetic order and phase 

transformation in Ni2MnGa, Philos. Mag. B 49 (1984) 295. 

[11] Q. Pan, R.D. James, Micromagnetic study of Ni2MnGa under applied field, J. Appl. Phys. 87 

(2000) 4702. 

[12] H.D. Chopra, C. Ji, V.V. Kokorin, Magnetic-field-indused twin boundary motion in magnetic 

shape-memory alloys, Phys. Rev. B 61 (2000) R14913.  

Materials Science Forum Vols. 738-739 467



European Symposium on Martensitic Transformations 
10.4028/www.scientific.net/MSF.738-739 

 

 

Theoretical Study of Magnetic Properties and Multiple Twin Boundary Motion in
Heusler Ni-Mn-X Shape Memory Alloys Using First Principles and Monte Carlo
Method 

10.4028/www.scientific.net/MSF.738-739.461 

http://dx.doi.org/10.4028/www.scientific.net/MSF.738-739
http://dx.doi.org/10.4028/www.scientific.net/MSF.738-739.461

