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Resonant electron scattering by graphene antidot
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The edge states which were observed on a linear edge of graphene may also persist on a curved
edge. We calculate the elastic transport scattering cross section on a graphene nanohole supporting
the edge states. Resonant peaks in the gate voltage dependence of conductivity of graphene with such
nanoholes are obtained. Position and height of the resonances are determined by the localization
depth of the quasibound edge states, and width – by their lifetime. The scattering amplitude
near the resonant energies has a strong valley asymmetry. We evaluate the effect of moderate
edge rippling, inhomogeneity of boundary parameter along the edge, and Coulomb effects (charged
nanohole) on the edge states and show that they do not affect the presence of the resonances, but
can substantially influence their position, height and width. The local density of states near the
nanohole also demonstrates a resonant dependence on gate voltage.

I. INTRODUCTION

Graphene with circular nanoholes, which are of-
ten called antidots, may be used for microelectronic
applications1–4, as a metamaterial in the terahertz
range5,6, or for the investigation of quantum coherence
effects like the Aharonov-Bohm one7,8. Even impurities
and defects in graphene can be treated as antidots with
a very small radius9–11.
To investigate the electronic properties of perforated

graphene structures one should first describe the edge
of the sample that emerges due to perforation. Two
types of graphene edges are often considered: zigzag and
armchair11–13. In the nearest-neighbor tight-binding ap-
proximation there exists dispersionless edge states (ESs)
at the ideal linear zigzag edge, and there are no ESs near
the armchair one. However, it is quite challenging to
control the edge orientation experimentally, and even if
the edges are macroscopically smooth and oriented at
some well-defined angles, they are not necessarily mi-
croscopically ordered14. Nevertheless, the ESs were de-
tected near the monoatomic steps on graphite surfaces15,
in graphene-hexagonal boron nitride interface16, and,
finally, in graphene structures17,18. More comprehen-
sive investigations predict that zigzag ESs acquire a
dispersion19, depend on chemical environment20, and
that the ESs may exist even on the armchair edge21.
Another actual problem for the nanohole is that the

edge orientation changes upon go-round the hole. To
avoid the difficulty, the nanohole is sometimes replaced
by a hexagon with the zigzag or armchair edges22,23. Sim-
ilar replacement is applied to a charged defect in contin-
uous description within the framework of the two-band
Dirac model10. In this model, electrons in a single valley
of graphene are described by the Weyl-Dirac equation

vσpψ = Eψ, (1)

where v is the Fermi velocity, and ψ = (ψ1, ψ2)
T is the

two component wave function. The same equation may
be used for the other graphene valley.

To describe the edge of graphene, one should supple-
ment the equation (1) by the boundary condition (BC).
Usually one uses the zigzag-like BC10,11,13 ψ2 = 0 (or
ψ1 = 0) or the Berry-Mondragon (infinite mass) BC24–26.
We consider a general BC to describe an edge which
may be relaxed, reconstructed, disordered, inhomoge-
neous, it also may have dangling bonds, band bending27

or impurities28. In the Dirac model such BC was dis-
cussed in Refs. [29,30,31,32] and in the single-valley ap-
proximation it has the following form19,33

(

ψ1 + iae−iϕψ2

)∣

∣

at edge
= 0. (2)

Here ϕ is the angle between the x-axes and the normal
to the edge point, a is a phenomenological boundary pa-
rameter characterizing the edge structure.
The BC stems from the fundamental physical require-

ments, namely, the absence of the normal component of
the current through the edge and the time reversal sym-
metry, and an additional assumption of the absence of
intervalley interaction (for generalization see Appendix
A). Therefore, it describes a general type of edge with-
out specifying its microscopic structure. The universality
is paid off by the unknown boundary parameter.
Another way to describe the edge of graphene is to

add to the Weyl-Dirac equation (1) the effective poten-
tial V (r), which is a combination of electrostatic and
staggered potentials,

V (r) =
m(r)

2
[(1− a2)σ0 + (1 + a2)σz ], (3)

where m(r) = 0 in the graphene. If the ”mass” m(r)
outside of graphene is much greater than the character-
istic energies of electrons in the graphene (width of the
conduction and valence bands), i.e. m(r) → ∞, then
the wave function almost does not penetrate the outside
and the matching condition for the wave function on the
boundary leads to the BC (2). The sign of the parameter
a is determined by the sign of m(r) outside of graphene.
The infinite mass BC, which is the same as the BC (2)
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with a = 1, was obtained in Ref. [24] by a similar proce-
dure for V (r) containing only the staggered potential. It
should be mentioned here that the reformulation of the
BC in terms of the effective potential V (r) takes into ac-
count only two bands, while the other bands may affect
the BC significantly.

When |a| 6= 1, the electron-hole symmetry is broken.
This can be easily understood if one considers the hete-
rocontact of two materials, both being described by the
Dirac equation with different electron affinity and band
gaps34.

The value of the parameter a can be found from a
comparison with experiments27,35 or from more rigor-
ous calculations19. It is worth noting that for any edge
parameter a, the effective potential V (r) necessarily in-
volves the staggered potential. Bound states cannot be
produced by a scalar potential, except the state with zero
energy36 or the quasistationary (or quasibound) state
near the overcritical Coulomb impurity10. It is the com-
bination of the scalar and staggered potential that allows
to describe the bound states.

The edges of graphene can be divided into two groups:
those supporting ESs (the parameter a varies smoothly
and |a| 6= 1) and those which do not (a varies greatly or
|a| = 1 in the case of constant a). We will consider the
edges of the first type, with smoothly varying (along the
edge) or constant parameter |a| 6= 1.

Motivated by the recent progress in fabrication and
characterization of antidot nanostructures22,35, we are
aimed to show possible manifestations of the ESs, for ex-
ample, in transport and scanning tunneling microscopy
(STM) measurements of graphene with nanoholes. For
this purpose, we calculate the transport cross-section of
electrons on the nanohole in graphene and the local den-
sity of states (LDOS) near the antidot. Considerable ef-
forts were devoted to the conductivity of graphene with
scatterers described by scalar potentials37–41. A real (im-
penetrable for carriers) hole cannot be described by a
scalar potential, because electrons freely penetrate inside
the scalar potential region. As mentioned above, the BC
(2) necessarily contains the effective staggered potential.
Scattering by staggered potentials only was considered,
for example, in Refs. [1,4,42]. To the best of our knowl-
edge, the combination of scalar and staggered potential
has not been analyzed yet. We will show that it results
in the existence of the quasistationary ESs localized near
the nanohole. In turn, it leads to the peculiar peaks in
the dependence of transport cross section and the LDOS
on the electron energy and, therefore, in conductivity
and tunnel current vs. gate voltage. The resonances
in the transport cross-section correspond to the elastic
scattering of electron by the quasistationary ESs. We
will analyze the peaks and their robustness against inho-
mogeneity of the parameter a and Coulomb effects.

The paper is organized as follows. Firstly, we recall
the spectrum of the ESs on a graphene half-plane (Sec.
II) and discuss its robustness. Then, we analyze the qua-
sistationary states on the graphene antidot (Sec. III). In

Sec. IV and V, we calculate the transport cross section
and the LDOS respectively, which are our main results,
represented in Figs. 2 and 3. In Sec. VI, we consider the
scattering by a charged antidot. Conclusions are made
in the final section VII.

II. EDGE STATES ON GRAPHENE

HALF-PLANE

First, we recall the solutions of the Weyl-Dirac equa-
tion (1) on the graphene half-plane x ≥ 0 supplemented
by the BC (2) with a constant parameter a19,33. Momen-
tum along the boundary h̄ky measured from the projec-
tions of the valley centers on the edge (±h̄K0y) is a good
quantum number. The bulk wave function is a sum of
incident and reflected plane waves. The bulk spectrum
is located in the energy domain |E| ≥ vh̄|ky |, while the
ES spectrum is outside this region. The ES band in the
E(ky)-plane represents the rays starting from±h̄K0y and
described by the dispersion equations

Es = sh̄v
2a

1 + a2
ky, sky(1 − a2) > 0. (4)

s = ±1 is the valley index. The ES wave func-
tion exponentially decay away from the edge ψ(x) ∼
e−sx(1−a2)ky/(1+a2).
It is important that the ES band is ”chiral” (not sym-

metric about the center of a valley), but it is symmetric
about the center of the edge Brillouin zone in agreement
with the time reversal symmetry of spinless system. This
fact will lead to important consequences for scattering by
the antidot.
Inclusion of the intervalley interaction at the edge leads

to qualitatively the same results, see Appendix A. Be-
sides, for a wide class of the translationally invariant
edges, for example zigzag one, the distance between the
projections of the valley centers 2|K0y| is large in com-
parison with the electron momentum, hence, the edge
intervalley interaction is negligible19. For large electron
energy, the edge intervalley interaction is important and
results in connection between the rays of the ESs from
the different valleys, see Fig. 1b.
Moderate bending of graphene sheet near the edge,

which probably took place in Ref. [18], can be included
by means of renormalization of the parameter a, see Ap-
pendix B.
The feature of the graphene band structure is that the

ESs always coexist with the bulk states. It means that
they must be quasistationary with a finite lifetime, due to
the probability of decay into the bulk. The edge rough-
ness is one of the possible reasons of the decay. For small
wave vectors, we evaluate this probability using the Fer-
mis Golden Rule as (Appendix C)

w ∝ k4y, (5)

which implies that for small wave vectors the ESs near
a linear edge are quasistationary. Besides, it is expected
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that any deviation from linearity of the edge results in
finite life time of the ESs. In the next section we will
directly show it for a circular hole.

III. QUASISTATIONARY EDGE STATE AT

GRAPHENE NANOHOLE

We consider the ESs at a circular hole, depicted
schematically in Fig. 1c. The total angular momentum
j = l + 1/2 = ±1/2,±3/2... is conserved (we will call l
orbital angular momentum), therefore, in the polar co-
ordinate system (r, ϕ) the wave function ψ ∝ exp(ijϕ).
From here, without loss of generality, we will consider
negative electron energy E < 0. Introducing the wave
vector k = −E/(h̄v), one can obtain the Bessel equation
for each component of the wave function. For example,
the equation for the first component is

r2ψ′′
1 (r) + rψ′

1(r) +
[

(kr)2 − l2
]

ψ1 = 0. (6)

The solutions corresponding to the bulk states are merely
the Bessel functions or their combinations. There are no
localized stationary states. However, the quasistationary
states can exist. To show this, we consider complex en-
ergy E = E′ + iE′′ assuming E′′ ≪ E′, and E′′ > 0.
The imaginary part of the energy E′′ determines the life-
time of the quasistationary state with energy E′. Since
the wave function of the state is an outgoing wave, we
choose it in the following form

(

ψ1(r, ϕ)
ψ2(r, ϕ)

)

= C

(

eilϕH
(2)
l (kr)

−iei(l+1)ϕH
(2)
l+1(kr)

)

, (7)

where H
(2)
l (x) is the Hankel function of the second kind,

and C is the normalization constant. For positive energy
E′ > 0, the Hankel function of the first kind must be
used. Substituting the wave function (7) into the BC
(2), we obtain the dispersion equation

H
(2)
l (kR) = −aH(2)

l+1(kR). (8)

Expanding the Hankel functions into the Laurent series
about kR = 0, for l 6= 0 we find the low energy spectrum
(|la| ≪ 1/2) of the qusistationary ESs:

kR ≈ −2sla+ i
2π|a|(|la|)2l

[(l − 1)!]
2 , sla < 0. (9)

The equation describes the electron spectrum for both
valleys. The spectrum of the ESs in each valley is equidis-
tant. We stress that the ESs are chiral again, as the sign
of the ES total angular momentum j depends on the val-
ley index s, see second part of the equation (9). It is
positive in one valley, and negative in the other one. For
small parameter a, the real part of the energy can be
obtained quasiclassically from (4) by replacing the mo-
mentum ky with l/R.

FIG. 1. (a) Sketch of the graphene half-plane (b) Energy
spectrum E(ky) of the graphene half-plane. Here ky is the
momentum along the edge measured from the center of the
edge Brillouin zone. The shaded region corresponds to the
bulk states, the rays starting in the valley centers – to the
edge states. In the absence of intervalley interaction, the rays
are infinite while it inclusion results in the ”interaction” of
the rays near the Brilluoin zone center shown by the dashed
line. (c) Sketch of the graphene antidot (d) Energy spectrum
of the quasistationary edge states localized near the antidot
(only the real part of energy is shown). The sign of angular
momentum j is coupled to the valley index.

The energy of the ”ground” ES with l = 0 is deter-
mined by the transcendental equation

|a| = −kR ln
kR

2
. (10)

However, the ground state has a long lifetime only for
kR ≪ 0.1, otherwise, E′′ approximately equals E′. We
will directly show it in the next section. The spectrum of
the ESs including both graphene valleys is shown in Fig.
1d.
The ESs can be detected in measurements of conduc-

tivity. One of the ways to take into account the contribu-
tion of the ESs is to calculate the transport cross section
and the LDOS, which will be our foregoing goal.

IV. SCATTERING BY NEUTRAL ANTIDOT

We first consider the scattering of a plane wave by the
nanohole. We represent the wave function as a combina-
tion of the normalized plane wave propagating in the x
direction and the scattered cylindrical waves

ψscat =

(

1
1

)

e−ikx

√
2

+

∞
∑

l=−∞

Cl
eilϕ√
2

(

H
(2)
l (kr)

−ieiϕH(2)
l+1(kr)

)

.

(11)

In the case of E > 0 one must choose the H
(1)
l (x) Hankel

function.
The behaviour of the scattered wave function at large

distances determines the scattering amplitude

f(ϕ) =

√

2

πk

∞
∑

l=−∞

Cl exp

(

ilϕ+ i
lπ

2
+ i

π

4

)

. (12)
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kR

kR=0.1

kR=0.26

kR=0.57

FIG. 2. Dependence of the transport cross section σtr on
the electron wave vector k = |E|/h̄v for scattering by the
nanohole with raidus R and the constant boundary parameter
a = −0.15 (red solid line) and a(ϕ) = −0.15±0.04 cosϕ (black
dashed line). The resonances emerge due to the scattering
by the qusistationary edge states. Inset: (left) Polar plot
of the scattering amplitude in a valley for a = −0.15 and
different energies. The energies are highlighted on the main
figure by the vertical dashed lines. An electron is incident on
the antidot from the left. (right) Total scattering amplitude,
taking into account the contribution of two valleys.

FIG. 3. Dependence of the LDOS at different distances r from
the center of the circular hole with radius R on electron energy
(k = |E|/h̄v) for the constant boundary parameter a = −0.3.
Resonant peaks are clearly visible on the free LDOS trend
2k/(πh̄v). Inset: The transport cross section σtr vs. electron
energy for the same value of the parameter a.

Expanding the incident plane wave into the series of
cylindrical waves and substituting the full wave function
into the BC (2), we obtain

Cl = −(−i)l Jl(kR) + aJl+1(kR)

H
(2)
l (kR) + aH

(2)
l+1(kR)

, (13)

where Jl(x) is the Bessel function of the first kind.
It follows from (13) that Cl+1 6= C−l. Therefore, intro-

ducing the scattering phase e2iδj = 1+2ilCl (j = l+1/2),
one can show that δj 6= δ−j . This results in the asym-
metry of the scattering amplitude with respect to the re-
placement ϕ→ −ϕ, i.e f(ϕ) 6= f(−ϕ) in one valley. The

reason of this asymmetry is the lack of the time reversal
symmetry in one valley, which was mentioned in Secs.
II and III. The ES in a given valley has positive j and
rotates counterclockwise, in the other one it has negative
j and rotates clockwise. This chirality of the ES with
respect to the valley index leads to the asymmetry of the
scattering amplitude. It somehow resembles the classical
Magnus effect and this skew-symmetric scattering must
lead, in turn, to the valley Hall effect. Moreover, this
valley Hall effect should be resonant, because the mag-
nitude of the asymmetry strongly depends on the energy
and has maximum value in the vicinity of the ES en-
ergy. At the same time, the total scattering amplitude
including the contributions from both valleys is symmet-
ric, because the time reversal symmetry is restored, see
inset in Fig. 2.
It is also important to note, that the backscattering is

suppressed for the scattering by scalar potentials. How-
ever, the antidot is described by the combination of scalar
and staggered potentials thus allowing the backscatter-
ing.
To show a possible manifestation of the ESs in the

resistivity, we calculate the transport cross section on
the antidot

σtr =

2π
∫

0

(1− cosϕ) |f(ϕ)|2 dϕ =
4

k

∞
∑

l=−∞

(

|Cl|2 − Im(ClC
∗
l+1)

)

.

(14)
The energy dependence of the transport cross section is
shown in Fig. 2 and inset in Fig. 3. The resonant peaks
in these figures emerge because of the resonant electron
scattering by the quasistationary ESs and, therofore, are
almost equidistant in accordance with the ESs spectrum
obtained in the previous section.
Let us start analysis of the energy dependence of the

cross section with the low energy scattering kR ≪ 2|a|
and for small parameter |a| ≪ 1. In this case, the scatter-
ing is symmetrical (s-scattering) and it is the ground ES
that mainly contributes to the scattering cross section.
Expanding the Bessel functions, we find

C0 ≈ −(−i)l 1

1 + i 2π
[

a
kR − γ − ln

(

kR
2

)] , (15)

where γ is the Euler-Mascheroni constant. The cross
section has the form

σtr ≈ 4π2kR2

π2k2R2 + 4
[

kR ln
(

kR
2

)

− a
]2 . (16)

Formula (16) resembles equation (21) of Ref. [9] for
a general low energy scattering with the ”scattering
length” R/a.
The cross section (16) tends to zero for small energies

if a 6= 0. To clarify this, one can use the scattering phase
δ1/2, which is proportional to k for small energies as in

a general theory of non-relativistic scattering43. Then
the elastic cross section σel ∝ |1− e2iδ1/2 |2/k ∝ k, which
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implies that inelastic scattering dominates for small k.
The inelastic scattering phases are complex, and one
should expect that δ1/2 still will be proportional to k

with some complex coefficient43. The total cross section
which includes elastic and inelastic channels will be finite,
σtot ∝ [1− Re(e2iδ1/2)]/k ≈ const.

The energy of the first cross section maximum approx-
imately corresponds to the ground ES energy (10), the
height of the peak is σtr = 4/k0, the full width at half
maximum ∆ = πa/[π2 + 4 ln2(k0/2)], where k0 is the
root of the equation (10). It follows from these equations
that the ground state with l = 0 has long lifetime only if
kR ≪ 2 exp(−π) ≈ 0.1.

To analyze other resonances in the transport cross-
section we consider the energies in the vicinity of the
qusistationary ES with an orbital angular momentum l0,
i.e. kR ≈ 2|al0| ≪ 1. Then, it is the coefficient Cl0 that
has a resonant energy dependence

Cl0 ≈ − 1

1− il0!(l0−1)!
2π

(

2
kR

)2l0+1
(kR+ 2al0)

≈ −1,

(17)
while other Cl’s behave smoothly. The height of the peak
(measured from the background determined by other
Cl’s) approximately equals 2R/|al0|. Thus, for suffi-
ciently small |al0|, it can be several times larger than
2R, the geometrical cross section of the hole. The peak
has the Lorentzian shape, while its width is determined
by the lifetime of the ES.

Let us now estimate the contribution of the scattering
by antidots to the net resistivity of a sample, using the
parameters from experiments, Refs. [35,44]: the Fermi
energy EF ≈ 20 meV≫ kT , the concentration of the
antidots N ≈ 1010 cm−2. We use the Drude formula (if
the Fermi energy is sufficiently far away from the Dirac
point) with the scattering time τ = 1/(Nσtrv) and the
transport cross section σtr ≈ 2R ≈ 20 nm and obtain the
2D resistivity

ρ ≈ 2RN · πvh̄
2

EF e2
∼ 102 Ohm, (18)

which is a measurable value. Since the height of the
transport cross section resonances can greatly exceed 2R,
the resonant resistivity can be much higher than 100
Ohm and the ESs can be detected. Such measurements
allow to estimate the characteristics of the ESs and the
value of the boundary parameter.

Thus far we considered constant boundary parameter
a, though it may depend on the orientation of the edge
which varies upon go-round the circular nanohole. There-
fore, now we simulate this situation consider inhomogene-
ity of the parameter a along the edge, i.e. a = a(ϕ).
Expanding it in the Fourier series a(ϕ) =

∑

ane
inϕ and

substituting the wave function (11) into the BC (2), we

find

∑

n

an

[

(−i)l−nJl−n+1(kR) +H
(2)
l−n+1(kR)Cl−n

]

+

+H
(2)
l (kR)Cl + (−i)lJl(kR) = 0, ∀l.

It is merely an infinite matrix equation on the coeffi-
cients Cl. In the simplest case of harmonically modu-
lated parameter a(ϕ) = a0 + 2a1 cosϕ (|a1| ≪ |a0|) one
can cut off the resulting tridiagonal matrix for some suf-
ficiently large l and solve the reduced system. Numerical
results for a0 = −0.15 and a1 = 0.04, presented in Fig.
2, demonstrate a significant change in the position and
magnitude of the resonances away from the Dirac point
and, at the same time, the robustness of the resonance
effect against moderate inhomogeneity of the boundary
parameter a.

V. LOCAL DENSITY OF STATES NEAR

NANOHOLE

We have shown that the antidot ESs manifest them-
selves in the energy dependence of the transport cross-
section, and, therefore can be detected by measuring
the conductivity of graphene sample with such antidots.
However, high identity of the antidots is required for such
an experiment and other types of scatterers could mask
the effect. Another possible way to detect the ESs free
of these drawbacks is to measure the LDOS near a hole.
To this end, we calculate the LDOS near the nanohole.
In the following calculations, we impose non restrictions
on the partial (with total angular momentum j) wave
function at the infinity

ψk,l = Al(k)e
ilϕ

(

Jl(kr) +Bl(k)Yl(kr)
−ieiϕ [Jl+1(kr) +Bl(k)Yl+1(kr)]

)

,

(19)
where Yl(x) is the Bessel function of the second kind,
Al(k) is the normalization coefficient, and Bl(k) is ob-
tained by substituting the wave function into the BC
(2):

Bl(k) = −aJl+1(kR) + Jl(kR)

Yl(kR) + aYl+1(kR)
. (20)

To find Al(k), we use the normalization rule
for the eigenfunctions of a continuous spectrum
∞
∫

R

ψ+
k′,j′(r, ϕ)ψk,j(r, ϕ)d

2r = gδ(k− k′)δjj′ , where g is di-

mensional parameter determined from the free (without
a hole) DOS per unit area. Then, the LDOS including
spin and valley degeneracy is

ρ(k, r) =
k

πh̄v

∞
∑

l=−∞

1

1 + |Bl(k)|2
[

|Jl(kr) +Bl(k)Yl(kr)|2

+ |Jl+1(kr) +Bl(k)Yl+1(kr)|2
]

. (21)
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The energy dependence of the LDOS is shown in Fig.
3 for a = −0.3. Again, it demonstrates the resonances
for the energies in the vicinity of the ES energies. If kR
tends to zero, then all coefficients Cl → 0, and we obtain
the free DOS per unit area, ρfree(k) = 2k/(πh̄v).
The spatial dependence of the LDOS for any energy

demonstrates a power low decrease at small distances and
the Friedel oscillations far away from the nanohole with-
out any resonant peaks, however, the magnitude of the
LDOS near the nanohole significantly (resonantly) de-
pends on energy. For this reason, we analyze below only
the energy dependence of the LDOS near the nanohole.
For energies below the ground state energy, k < k0, for

a ≪ 1 and r ∼ R, the main contribution to the LDOS
comes from the terms with l = 0,−1 (j = ±1/2)

ρ(k, r) ≃ ρfree(k)

(

1 +
R2

2a2r2

)

. (22)

It is considerably greater then the free DOS, increases
with decreasing of the parameter a and diverges when
a → 0, which is the typical for the zigzag case. For the
linear ”reczag” edge, the LDOS demonstrates qualita-
tively the same behaviour19.
If the energy is close to the ground state energy k ≃ k0,

then the height of corresponding peak is

ρ(k0, r) ≃
4

π3h̄vk0r2
. (23)

In the vicinity of the ES energy with l0, kR ≃ 2|a|l0 ≪ 1,
the coefficient Bl0 is resonantly large, while the other Bl’s
are small. Then, the height of the l0th peak in the LDOS
is

ρ ≃ 2

π3h̄vR

l0!
2

(|a|l0)2l0+1

(

R

r

)2l0+2

. (24)

According to Eqs. (23, 24) the height of all resonances
decreases while moving away from the nanohole with a
power law profile. The greater the resonances number,
l0’s, the stronger is the spatial decay of the LDOS. For
a fixed distance from the antidot each subsequent en-
ergy peak is higher than the previous one. This behavior
of resonances in the LDOS obtained in low energy limit
kR ≪ 1 is in a qualitative agreement with the results for
wider energy range represented in Fig. 3.

VI. SCATTERING BY CHARGED ANTIDOT

In this section we consider scattering by a charged an-
tidot. This charge could appear naturally, for example,
in graphene sample deposited onto a substrate which pos-
sesses a large number of charged impurities45, or artifi-
cially by deposition of dimers46. The antidot may also
become charged while electrons occupy the ESs. Our
aim is to calculate the renormalization of the ESs energy
spectrum and modification of the transport cross section
due to the Coulomb effects.

The presence of the charge Q in the center of the an-
tidot leads to the presence of an extra Coulomb term
−eQ/r in the Weyl-Dirac equation (1). The edge of the
antidot is still described by the BC (2) with the constant
parameter a.
The spectrum of quasistationary ESs is determined by

the vanishing of incoming wave. Introducing dimension-
less charge q = eQ/h̄v, in the low-energy limit (kR ≪ 1)
and under conditions |q| ≪ 1, la < 0 for l 6= 0 we obtain
the spectrum

kR ≃ −2al+
l

l + 1/2
q+

+ i
|Γ(l + 1/2− iq)|2

8lΓ2(2l)
e−πq

(

−4al+
2l

l + 1/2
q

)2l+1

.

(25)

For l = 0, the real part of k is determined by

kR ≃ k0R− q

1 + a/k0R
, (26)

where k0 is the solution of the equation (10). The details
of the calculations are presented in Appendix D.
According to Eqs. (25, 26), the wave vector k of quasis-

tationary ESs decreases (increases) for negatively (posi-
tively) charged antidot when the absolute value of charge
increases. At the same time, the energy of quasistation-
ary ESs increases (decreases), because E = −h̄vk. This
result is intuitively clear, because negatively (positively)
charged antidot repels (attracts) electons, and, therefore,
the energy of the stationary states increases (decreases).
Similarly to the case of uncharged antidot, peculiar

peaks corresponding to the resonant scattering by qua-
sistationary ESs appear in the energy dependence of the
transport cross section, Fig. 4. For negatively (pos-
itively) charged antidot these peaks shift to the left
(right), when the absolute value of charge increases, in
agreement with the renormalization of ESs spectrum dis-
cussed above. The width of the peaks determined by the
imaginary part of the energy is also in qualitative agree-
ment with (25): at negative q the imaginary part of the
energy decreases when |q| increases and the peaks become
narrower, which corresponds to more stationary states;
at positive q, the imaginary part of the energy increases
when |q| increases, and the peaks become wider.

VII. CONCLUSION

We have described the electronic properties of
graphene with impenetrable (for carriers) nanoholes sup-
porting the localized (edge) states. The energies of these
states are almost equidistant. We have demonstrated a
strong asymmetry of the scattering amplitude near the
resonances in a given valley. It must lead to the resonant
valley Hall effect. The resonant scattering of graphene
electrons occurs when its energy coincides with the edge
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FIG. 4. Dependence of the transport cross section σtr on en-
ergy for the scattering by positively (upper panel, q > 0)
and negatively (lower panel, q < 0) charged antidot and
a = −0.15. When |q| increases, the resonant peaks, which
position is determined by the ESs spectrum, shift to the right
for positively charged antidot, and to the left if charge is neg-
ative in agreement with Eqs. (25,26). The width of the peaks
depends on the ESs lifetime and decreases when the antidot
is negatively charged.

state energy. Moderate edge rippling, inhomogeneity of
the boundary parameter and charge of the nanohole gen-
erally do not influence the very presence of the effect,
but can substantially influence the position of the res-
onant energies as well as the width and height of the
resonances.

One way to detect these resonanses is to measure the
conductivity of graphene sample with an array of identi-
cal nanoholes, another one is to measure the LDOS near
an antidot. We have calculated the LDOS and shown
that its dependence on the electron energy near the hole
also demonstrates resonances emerging due to the edge
states.

The intervalley interaction at the curved edge of the
nanohole and strong inhomogeneity of the edge param-
eter a (or parameters if edge intervalley interaction is
included) are the subject of the further studies
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Appendix A: Edge intervalley interaction on

graphene half-plane

Edge intervalley interaction mixes the wave functions
from different valleys in BC

(ψ + igψ′)|at edge = 0. (A1)

Here ψ and ψ′ are two component wave functions from
the two valleys. The intervalley distance should be ex-
plicitly included either in the BC or in the bulk (Weyl-
Dirac) equation. We choose the second way and consider
modified Hamiltonian, describing a valley,

Ĥ = σ(p− h̄K0) (A2)

Then the requirement of absence of normal to the edge
current (hermiticity) and the time reversal symmetry30

restricts the matrix g as

g =
eiφ

sinβ

(

eiγ~σ~n + σ3 cosβ
)

, (A3)

where γ, β, φ are real phenomenological parameters,
which can be associated with the parameters from Ref.
[30]. The parameter γ is connected with the parameter
a as sin γ = 2a/(1 + a2).
Solving the Schrodinger equation with Hamiltonian

(A2) supplemented by the BC (A1) for the graphene
half-plane, we obtain the electronic spectrum, see Fig.
1b. For any β and near the projections of the valley cen-
ters, |ky + sK0y| ≪ |K0y|, the ESs spectrum is expressed
as

Es = sh̄v sin θ(ky + sK0y), s(ky + sK0y) cos θ < 0.
(A4)

Here cot θ/2 = (cosβ − cos γ)/ sin γ. Thus, ”rays” of
the ESs start in the ±K0y points even if intervalley in-
teraction is taken into account. Near the center of the
Brillioun zone the rays are transform to each other.

Appendix B: Rippling near edge

It is well known that ripples in graphene can be
treated by means of the effective electrical potential47

Φ(r) = −κ1
[

(∂2xh)
2 + (∂2yh)

2
]

and the vector-potential

A = (Ax, Ay), where Ax = −κ2
[

(∂2xh)
2 − (∂2yh)

2
]

, Ay =

2κ2
(

∂2xh+ ∂2yh
)

∂2x,yh, κ1 ≈ 40eV·A2, κ2 ≈ 6.2 eV·A2.
Position of a graphene list in three-dimensional space are
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determined by the function h(x, y) that determines dis-
tance of the list from the plane z = 0. In this section we
study how smooth ripples affect on the ESs spectrum.
First, we consider half-plane x ≥ 0 when the graphene

list is bended in perpendicular to the edge direction (i.e.
∂yh = 0). Therefore ky is a good quantum number. The
sfystem of equations for the electron wave function in a
valley reads as follows

{

−κ1h̃ψ1 + (−i∂x − iky)ψ2 − κ2h̃ψ2 = Eψ1

(−i∂x + ipy)ψ1 − κ2h̃ψ1 − κ1h̃ψ2 = Eψ2
, (B1)

where h̃ = (∂2xh)
2. After multiplying the first equation

by ψ1, the second one by ψ2 and subtracting them we
get the differential equation for the function η = ψ1/ψ2:

η′x − 2kyη − i(κ1h̃+ E)(1− η2) = 0. (B2)

We solve the equation with the BC (2)

η|x=0 + ia = 0. (B3)

We will perturbatevly treat h̃. Hence we look for the
wave function by means of series in powers of h̃, η =
η0 + η1 + . . . , where η1 ∝ h̃ etc. In the zero order η0 =

−i(ky +
√

k2y − E2)/E, in the first order we get

η1 = −iκ1(1−η20)
∫ +∞

x

h̃(x′) exp
{

−2
√

k2y − E2(x′ − x)
}

dx′.

(B4)
Substitution of the first-order wave function in the BC

(B3) results in a dispersion equation with the ES spec-
trum

E =
2a0ky

1+a2
0

+ 2κ1ky
1−a2

0

1+a2
0

∫ +∞

0 h̃(x′)e−2ky(1−a2
0)x

′

dx′,

(1− a20)ky ≥ 0.
(B5)

Thus, small edge rippling leads to the renormalization of
the parameter a. We can obtain spectrum of the ESs in
the antidot geometry via quasiclassical quantization of
parallel momentum ky = l/R.

Appendix C: Life time of edge states on half-plane

with rough boundary

Let us consider a rough linear edge that can be de-
scribed by the BC (2) determined on the curve x = δx(y),
where δx(y) is a random deviation of the edge from its
average position 〈δx〉 = 0 in the point y, Ref. [48].
The edge roughness is assumed to be smooth and δx(y)
has the Gaussian correlation function 〈δx(y1)δx(y2)〉 =
∆2 exp((y1 − y2)

2/l2c). We also assume electron wave-
length to be much greater than the correlation length
lc.
Firstly, we consider some definite realization of the

boundary x = δx(y). Using coordinates transformation

x′ = x − δx(y), y′ = y the Hamiltonian (1) with the BC
(ψ1 + iaψ2)|x=δx(y) = 0 can be transformed to the stan-
dart BC (ψ1 + iaψ2)|x=0 = 0 (dashes are skipped for
brevity) and the same Hamiltonian with additional part

δĤ = −v ∂δx(y)
∂y

σy p̂x. (C1)

The probability of transition from ES with momentum
along the edge h̄ky, wave function ψs and energy Es (for
definitness we consider the valey s = +1) to bulk state
with wave function ψb and energy Eb = ±vh̄k′ due to the
edge roughness can be evaluated using the Fermi golden-
rule:

dw =
2π

h̄
|〈ψs|δĤ |ψb〉|2δ(Eb − Es), (C2)

where

ψs =

√

2a2(1 − a2)

Ly(1 + a2)2
ky

(

1
ia−1

)

e
− 1−a2

1+a2 kyxeikyy, (C3)

ψb =
1

√

2LxLy

(

1
±eiφk′

)

eik
′

xxeik
′

yy. (C4)

For simplicity, here we neglect second bulk solution
∼ e−ik′

xx, because it doesn’t sugnificantly affect on final
result.
Integrating over k′ we obtain the probability of ES

decay for this realization of the boundary

w =
2v

πLy

a2|1− a2|3k2y
(1 + a2)3sgn[a]

×
∫ 2π

0

dφ

(

1 + a2

2a
+ 2sgn[a] sinφ

) |F (ky − 2|a|
1+a2 ky sinφ)|2

(1− a2)2 + 4a2 cos2 φ
,

(C5)

where

F (k) =

∫ ∞

−∞

eiky
∂δx(y)

∂y
dy. (C6)

Then we average w over all possible realizations of the
boundary using following relation

〈|F (k)|2〉 = lc∆
2Lyk

2e−l2k2/4. (C7)

Finally, we obtain

〈w〉 = 2vlc∆
2a2|1− a2|3

π(1 + a2)3sgn[a]
k2y

∫ 2π

0

dφ

[

(

1 + a2

2a
+ 2sgn[a] sinφ

)

(ky − 2|a|
1+a2 ky sinφ)

2

(1− a2)2 + 4a2 cos2 φ
exp

(

− l
2
c

4

(

ky −
2|a|

1 + a2
ky sinφ

)2)
]

,

(C8)

In the limit a ≪ 1 the probability of decay (C8) has
simple form:

〈w〉 = vlc∆
2|a|k4ye−l2ck

2
y/4 (C9)
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Appendix D: Scattering by charged antidot

In the polar coordinates the Weyl-Dirac equation with
Coulomb potential can be represented as:

(

0 −ie−ϕ∂r − e−iϕ

r ∂ϕ
−ieϕ∂r + eiϕ

r ∂ϕ 0

)

ψ =
(

−k + q

r

)

ψ.

(D1)

Following Refs. [38,10], we seek the solution with total
angular momentum j = l + 1/2 for energy E < 0 in the
following form:

ψ(l)(r, ϕ) =

(

φ(r) + χ(r)
(φ(r) − χ(r))eiϕ

)

rs−
1
2 eilϕeikr , (D2)

where s =
√

(l + 1
2 )

2 + q2.

The functions φ(r) and χ(r) are determined by the
following expressions:

χ(r) = AM(s+iq, 2s+1,−2ikr)+BU(s+iq, 2s+1,−2ikr),
(D3)

φ(r) =
A(s+ iq)

(l + 1
2 )

M(s+ iq + 1, 2s+ 1,−2ikr)−

−B

(

l +
1

2

)

U(s+ iq + 1, 2s+ 1,−2ikr), (D4)

whereM(a, b, z) and U(a, b, z) are the Confluent hyperge-
ometric function of the first and second kind respectively.
The coefficients A and B are related by the BC:

B

A
=

(1− ia) s+iq
l+ 1

2

M(s+ iq + 1, 2s+ 1,−2ikR0) + (1− ia)M(s+ iq, 2s+ 1,−2ikR0)

(1 + ia)(l + 1
2 )U(s+ iq, 2s+ 1,−2ikR0)− (1− ia)U(s+ iq, 2s+ 1,−2ikR0)

. (D5)

To find the renormalization of the quasistationary ES
spectrum, we eliminate the incoming wave and obtain
the dispersion equation

[

(1 + ia)
s+ iq

l + 1/2
M(s+ iq + 1, 2s+ 1, z)+

+ (1 − ia)M(s+ iq, 2s+ 1, z)

]

+

+

[

(1 + ia)(l + 1/2)U(s+ iq + 1, 2s+ 1, z)−

− (1− ia)U(s+ iq, 2s+1, z)

]

Γ(2s+ 1)eiπ(−s−iq)

Γ(s− iq + 1)
= 0.

(D6)

In the low-energy limit (kR ≪ 1) and under condition
|q| ≪ 1 for l 6= 0 we obtain (25).
Now we turn to the solution of scattering problem. The

transport cross section can be expressed in terms of the
Coulomb scattering phases δl,

σtr =
2

k

∞
∑

l=−∞

sin2(δl − δl+1), (D7)

where the scattering phases is defined in conventional

manner:

χ

φ
|r→∞ = e2ikr+2iβln(2kr)−πi(l+ 1

2
)+2iδl(k). (D8)

To find the Coulomb scattering phases we write our
solution for χ(r) and φ(r) in the limit r → ∞:

χ(r) ∼ A
Γ(2s+ 1)

Γ(s− iq + 1)
ei

π
2
(s+iq)(2kr)−se−iqln(2kr)+

+Be−iπ
2
(s+iq)(2kr)−se−iqln(2kr), (D9)

φ(r) ∼ A(s+ iq)Γ(2s+ 1)

(l + 1
2 )Γ(s+ iq + 1)

ei
π
2
(s−iq)−2ikr+iqln(2kr)(2kr)−s.

(D10)
Comparing (D8) with (D9) and (D10) we find

e2iδl(k) =
l + 1

2

s+ iq

Γ(s+ iq + 1)

Γ(s− iq + 1)
eiπ((l+

1
2
)−s)+

+
B

A

l + 1
2

s+ iq

Γ(s+ iq + 1)

Γ(2s+ 1)
eiπ((l+

1
2
)+iq) (D11)

The results for the transport cross section are pre-
sented in Fig. 4.

∗ igor.zagorodnev@gmail.com
1 M. R. Thomsen, S. J. Brun and T. G. Pedersen, J. Phys.:
Condens. Matter 26, 335301 (2014).

2 M. Dvorak, W. Oswald, Z. Wu, Scientific Reports 3, 2289

(2013).
3 C.-H. Park, L. Yang, Y.-W. Son, M.L. Cohen, S.G. Louie,
Nat. Phys. 4, 213 (2008).

4 S.R. Power and A.-P. Jauho, Phys. Rev. B 90, 115408

mailto:igor.zagorodnev@gmail.com


10

(2014).
5 A. Yu. Nikitin, F. Guinea, L. Martin-Moreno, Appl. Phys.

Lett. 101, 151119 (2012).
6 D. Svintsov, T. Otsuji, V. Mitin, M. S. Shur and V. Ryzhii,
Appl. Phys. Lett. 106, 113501 (2015).

7 T. Shen, Y. Q. Wu, M. A. Capano, L. P. Rokhinson, L. W.
Engel and P. D. Ye, Appl. Phys. Lett. 93, 122102 (2008).

8 S. Russo, J.B. Oostinga, D. Wehenkel, H.B. Heersche, S.S.
Sobhani, L.M.K. Vandersypen, A.F. Morpurgo, Phys. Rev.
B 77, 085413 (2008).

9 D. M. Basko Phys. Rev. B 78, 115432 (2008).
10 A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Phys.

Rev. Lett. 99, 236801 (2007).
11 V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A.

H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).
12 K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus,

Phys. Rev. B 54, 17954 (1996).
13 C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
14 C. Casiraghi, A.Hartshu, H.Qian, S.Pisanec, C.Georgi, K.

S. Novoselov, D. M. Basko, A. C. Ferrari, Nano Lett. 9,
1433 (2009).

15 Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada,
and Hiroshi Fukuyama Phys. Rev. B 73, 085421 (2006).

16 J. Park, J. Lee, L. Liu, K.W. Clark, C. Durand, C Park,
B.G. Sumpter, A.P. Baddorf, A. Mohsin, M. Yoon, G. Gu,
A.-P. Li, Nature Communications 5, 5403 (2014).

17 K.A. Ritter, J.W. Lyding, Nature Materials 8, 235 (2009).
18 C. Tao, L. Jiao, O.V. Yazyev, Y.-C. Chen, J. Feng, X.

Zhang, R.B. Capaz, J.M. Tour, A. Zettl, S.G. Louie, H.
Dai, M.F. Crommie, Nat. Phys. 7, 616 (2011).

19 J.A.M. van Ostaay, A.R. Akhmerov, C.W.J. Beenakker,
M. Wimmer, Phys. Rev. B 84, 195434 (2011).

20 S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M.
Kiguchia and Toshiaki Enoki, Farad. Discuss. 173, 173
(2014).

21 P.A. Maksimov, A.V. Rozhkov, A.O. Sboychakov, Phys.
Rev. B 88, 245421 (2013).

22 F. Oberhuber, S. Blien, S. Heydrich, F. Yaghobian, T.
Korn, C. Schuller, C. Strunk, D. Weiss, and J. Eroms,
Appl. Phys. Lett. 103, 143111 (2013).

23 S.J. Brun, M. R. Thomsen, T. G. Pedersen, J. Phys.: Con-

dens. Matter 26, 265301 (2014).
24 M.V. Berry and R.J. Mondragon, Proc. Roy. Soc. Lond. A

412, 53 (1987).
25 P. Rakyta, M. Vigh, A. Csordas, and J. Cserti, Phys. Rev.

B 91, 125412 (2015).
26 C.G. Beneventano, I.V. Fialkovsky, E.M. Santangelo,

arXiv:1407.0615 (accepted to Theoretical and Mathemati-
cal Physics, 2015).

27 M.T. Allen, O. Shtanko, I.C. Fulga, A. Akhmerov, K.
Watanabi, T. Taniguchi, P. Jarillo-Herrero, L.S. Levitov,
A. Yacoby arXiv:1504.07630 (2015).

28 M. Wimmer, A. R. Akhmerov, F. Guinea, Phys. Rev. B

82, 045409 (2010).
29 E. McCann and V. I. Fal’ko, J. Phys.: Condens. Matter

16, 2371 (2004).
30 A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B

77, 085423 (2008).
31 D. M. Basko, Phys. Rev. B 79, 205428 (2009).
32 G. Tkachov, Phys. Rev. B 79, 045429 (2009).
33 V. A. Volkov and I. V. Zagorodnev, Low Temp. Phys. 35,

2 (2009).
34 B.A. Volkov, B.G. Idlis, M.Sh. Usmanov, PhysicsUspekhi

38, 761 (1995).
35 Yu.I. Latyshev, A.P. Orlov, V.A. Volkov, V.V. Enaldiev

I.V. Zagorodnev, O.F. Vyvenko, Yu.V. Petrov, P. Mon-
ceau, Scientific Reports 4, 7578 (2014).

36 C.A. Downing, A.R. Pearce, R.J. Churchill, M. E. Portnoi
arXiv:1503.08200 (2015).

37 S. Das Sarma, S. Adam, E.H. Hwang, and E. Rossi, Rev.
Mod. Phys. 83, 407 (2011).

38 D.S. Novikov, Phys. Rev. B 76, 245435 (2007).
39 M. Titov, P. M. Ostrovsky, I.V. Gornyi, A. Schuessler, and

A. D. Mirlin, Phys. Rev. Lett. 104, 076802 (2010).
40 R.L. Heinisch, F.X. Bronold, H. Fehske, Phys. Rev. B 87,

155409 (2013).
41 J.-S. Wu, M.M. Fogler, Phys. Rev. B 90, 235402 (2014).
42 M.R. Masir, A. Matulis, F.M. Peeters, Phys. Rev. B 84,

245413 (2011).
43 L. D. Landau, E.M. Lifshitz, Quantum Mechanics (Perga-

mon, London, 1977), 3rd ed., Chap. XVIII, §142.
44 Yu.I. Latyshev, A.P. Orlov, A.V. Frolov, V.A. Volkov, I.V.

Zagorodnev, V.A. Skuratov, Yu.V. Petrov, O.F. Vyvenko,
D.Yu. Ivanov, M. Konczykowski, P. Monceau, JETP Let-

ters 98, 214 (2013).
45 J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E.D.

Williams, M. Ishigami, Nature Physics 4, 377 (2008).
46 Y. Wang, D. Wong, and A.V. Shytov, Science 340, 734

(2013).
47 Eun-Ah Kim and A. H. Castro Neto, Europhys. Lett. 84,

57007 (2008).
48 F.T. Vasko, O.E. Raichev, Quantum Kinetic Theory and

Applications (Springer, New York, 2004), Chap. 9, §44.


