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We study surface states spectra in 2D topological insulators (TIs) based on HgTe/(Hg,Cd)Te quantum

wells and 3D Bi2Se3-type compounds by constructing a class of feasible time-reversal invariant boundary condi-

tions (BCs) for an effective kp-Hamiltonian and a tight-binding model of the topological insulators. The BCs

contain some phenomenological parameters which implicitly depend on both bulk Hamiltonian parameters

and crystal potential behavior near the crystal surface. Space symmetry reduces the number of the boundary

parameters to four real parameters in the 2D case and three in the 3D case. We found that the boundary

parameters may strongly affect not only an energy spectrum but even the very existence of these states inside

the bulk gap near the Brillouin zone center. Nevertheless, we reveal in frames of the tight-binding model that

when surface states do not exist in the bulk gap in the Brillouin zone center they cross the gap in other points

of the Brillouin zone in agreement with the bulk-boundary correspondence.

DOI: 10.7868/S0370274X15020058

Topological insulator (TI) is an intriguing quantum
state of matter which is insulating in its interior and
possesses surface states (SSs) crossing the bulk energy
gap [1–3]. The existence of the SSs is provided by a Z2

topological invariant and the bulk-boundary correspon-
dence. The Z2 invariant is a characteristic of the bulk
band structure of a crystal and it comprises no infor-
mation about the crystal surface. The bulk-boundary
correspondence asserts that the odd numbers of pairs of
gapless SSs should arise [1–5] at the interface between
two crystals with different values of the Z2 invariant,
for instance, between vacuum (with the Z2 index equals
zero) and the TI (with the Z2 index equals one), but it
does not characterize the dispersion of the SS spectra.

Topological SSs have been studied in a number of
papers in tight-binding approximations [4, 6] and in en-
velope function approximation [2, 7–12]. Nevertheless in
any approach spectra of the SSs should depend on de-
tails of crystal-vacuum interface structure. To take it
into account one usually chooses appropriate boundary
conditions (BCs) for a wave function of topological SSs
in a specific model. Most of authors use open BCs (wave
function vanishes at the surface) which guarantee mass-
less Dirac spectrum of SSs in TIs. However, open BCs
are not highlighted by nature and the other BCs might
be realized. There are few papers that address the prob-
lem of BCs for a wave function of SSs at the surface.

Within a 3D tight-binding model of TI [4] it was
shown that a strong topological insulator cannot be
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transformed into a trivial insulator by means of vary-
ing BCs. But that tight-binding model is a toy model
and does not describe any really existing 3D TIs. There-
fore, it is important to study BC influence on SSs in
frames of more realistic kp-Hamiltonian model though
it is only valid in a vicinity of Brillouin zone (BZ) cen-
ter. Refs. [10–12] analyzed dispersion dependence of SSs
on the BCs for envelope functions (eigenfunctions of the
kp-Hamiltonian). In this approach one should exploit a
matrix form of BCs with some unknown parameters [13]
that connect envelope functions and their derivatives on
the interface. The boundary parameters are determined
by the interface structure (on the atomic scale) as well
as bulk band parameters of materials. As microscopic
details of a real interface are unknown it is involved
problem to calculate values of the boundary parameters.
More reliable method to determine the parameters is to
extract them from experiment (for instance, in Ref. [14]
it was done for the most studied GaAs/AlGaAs inter-
face).

Aim of our paper is to demonstrate that the bound-
ary parameters play crucial role not only for the spec-
trum of topological SSs but also the very existence of SSs
in bulk gap near Brillouin zone center, where envelope
function approximation is valid. In addition, we show
that this is in agreement with the bulk-boundary corre-
spondence. To that end we consider a 2D tight-binding
model of TI with general BCs at the edge. Tuning the
boundary parameters in the model we can modify spec-
tra of SSs over the full BZ, for instance, so that they
cross the bulk gap at the edge of the BZ.
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The paper is organized as follows. First, we
derive general BCs for the envelope functions in
HgTe/(Hg,Cd)Te quantum wells and in Bi2Se3-type 3D
TI and analyze edge state (ES) spectra in 2D TI and
SS spectra in 3D TI. Then we study an effect of general
BCs within a tight-binding model of 2D TI that allows
us to clarify behavior of the SS spectra over the full
BZ.

2D topological insulators. The phase of 2D TI
was obtained in HgTe/(Hg,Cd)Te quantum wells with
a certain thickness and composition [15]. The electronic
spectrum in the quantum wells near the critical thick-
ness is described by the effective 2D Hamiltonian [2, 16]

H2D = σ0⊗
[
m(k)τz − dk2τ0 + vkyτy

]
+vkxσz⊗τx. (1)

Here, ~k = ~(kx, ky) is the 2D momentum, k2 = k2x+k
2
y ,

v/~ is the effective speed of light (v > 0), σ0,x,y,z and
τ0,x,y,z are the Pauli matrices in the standard repre-
sentation acting in spin and orbital subspaces, and ⊗
is the symbol for the direct product. The parameters
b, d < 0 are responsible for the dispersion of the mass
m(k) = m0 − bk2, leading to the modification of the
Dirac spectrum E = ±

√
m2

0 + v2k2, and are expected
to have significant importance for the appearance of the
TI (m0 < 0 in TI phase) [2].

To use the Hamiltonian (1) in a restricted area, it
should be supplemented by the BCs at the edge of the
system. To do this, we use general physical requirements
that significantly restrict the form of the BCs. First of
all, since the Hamiltonian (1) is of the second order in
the momenta, we assume that the BCs are a linear com-
bination of the wave function and its first derivative

(F∂nψ +Gψ)|S = 0, (2)

where n = (cosα, sinα) is the outer normal to the edge,
and G is an arbitrary 4× 4 matrix. We introduce a ma-
trix F as follows

F =
b

v
σ0 ⊗ τ0 +

d

v
σ0 ⊗ τz (3)

to make G matrix dimensionless in BCs (2). Second,
we use the Hermiticity of the Hamiltonian in a re-
stricted area. Therefore, we perform partial integration
of 〈ψ|H2D|ϕ〉 for arbitrary wave functions ϕ, ψ, and
equating the surface term to zero, we find the restric-
tion

G+σ0 ⊗ τz − σ0 ⊗ τzG− iσz ⊗ (τ · n) = 0. (4)

It could be shown that Eq. (4) implies the absence of
current normal to the edge. Next, we take into consid-
eration the time-reversal symmetry with respect to the
operator

T̂ = iσy ⊗ τ0K̂, (5)

where K̂ is the operator of complex conjugation. Apply-
ing commutation of the operator T̂ with G and Eq. (4)
we obtain the matrix G of the most general form:



g1 g2+ig3 0 g5+ig6

i(eiα+g3)−g2 g4 g5+ig6 0

0 ig6−g5 g1 g2−ig3
ig6−g5 0 −i(e−iα+g3)−g2 g4



,

(6)
where g1,6 are dimensionless real phenomenological
boundary parameters, which depend both on the behav-
ior of the crystal potential near the edge and the bulk
Hamiltonian parameters. Their values should be deter-
mined by microscopic calculations or by experiments.
The open BCs correspond to g1, g4 → ∞. The “nat-
ural” BCs [10] correspond to g2 = i cosα + (sinα)/2,
g3 = −(cosα)/2, and the other parameters equal zero.

Consider two important particular cases. The first
case occurs when boundary potential does not mix the
spin of electrons. Since the upper (lower) two com-
ponents of the wave function correspond to spin-up
(down), this case results in g5 = g6 = 0. The second
case is when the edge, assumed as x = 0, possesses spa-
tial inversion, e.g. y → −y, which is described by the
operator

Iy = σx ⊗ τz îy, (7)

where îy is the coordinate inversion y → −y. The com-
mutation of the operator Iy with G gives g2 = g5 = 0
in (6) with α = 0.

To analyze the ES spectra, we solve the Schroedinger
equation H2Dψ = Eψ on the half-plane x > 0
with the BCs (2) and (6). The wave vector along the
edge, k||, is a good quantum number. The bulk so-
lutions are located in the energy region |E − dk2||| ≥
≥
√
(m0 − bk2||)

2 + (vk||)2, while the ES solutions are

situated outside the region. The wave function of the
ESs contains two exponents, exp(−κ1x) and exp(−κ2x).
The energy spectrum of the ESs is shown in Fig. 1. The
spectrum of the ESs corresponding to the open BCs
is shown by solid curves. In this case, the ESs have
a strictly linear dispersion and their decay lengths in
the bulk gap are estimated as 1/κ1 ≈

√
b2 − d2/v ≈ 1

nm (which is comparable to the atomic spacing) and
1/κ2 ≈ 50 nm with slight dependence on k|| (the bulk
parameters was taken from [2] for m0 = −0.01 eV).
However, if the parameter g1 significantly decreases the
ESs pushed out of the band gap, see the dashed curves.
To better understand this extraordinary behavior of the
ESs, we may note that usually the parameters b and
d, describing the quadratic in k terms of the Hamilto-
nian (1), are small enough we therefore consider a limit
b, d→ 0.
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Fig. 1. The electron spectrum E(k||) of semi-infinite

HgTe/(Hg,Cd)Te quantum well. The shaded region corre-

sponds to the continuous spectrum (bulk solutions). The

edge states are described by solid curves for open bound-

ary conditions (g1 = g4 = ∞, g2 = g3 = 0), and dashed

curves for g1 = −2, g4 = ∞ (all the other boundary pa-

rameters equal zero for both curves). Thus, the edge states

vanish from the gap of the TI for some values of the bound-

ary parameters. Nevertheless there are edge states in the

bulk gap but they cross the bulk gap at large momenta

that are beyond the scope of the envelope function ap-

proximation, see Fig. 4 further

At the limit, the bulk spectrum has exactly the 2D
Dirac form and it is instructive to compare our results
with known ES spectra for the 3D Dirac equation [17]
with kz = 0. We should point out that in this case,
κ1 → ∞ for open BCs, so that one of the ES decay
length is small by comparison to the atomic distance.
The part of the wave function exp(−κ1x) can not be
described by the effective Hamiltonian (1), but it might
be included in the BCs. We use the unitary transforma-
tion

U =
1

2

(
σ0 − σz −σx − iσy

σ0 + σz σx − iσy

)
, ψ̃ = Uψ (8)

of the Hamiltonian (1) and reduce it to another form:

UH2DU
−1 = m0σz ⊗ τ0 + vσx ⊗ (τ · k) . (9)

This is merely one of the standard forms of the 3D Dirac
equation with kz = 0. The time-reversal invariant BCs
for the Dirac Hamiltonian derived from Hermiticity have
the following form [17]:

[
−ia0

σ0 + σz
2

⊗ (τ · n) + σx + iσy
2

⊗ τ0

]
ψ̃

∣∣∣∣
S

= 0,

(10)

where a0 ∈ (−∞,∞) is a real dimensionless phenomeno-
logical parameter. Comparing the transformed BCs (2)
and (6) for the 2D TI when b, d = 0 (in this case the
normal derivative vanishes) with Eq. (10), we obtain

ia0e
iαg1 = (g2 + ig3),

− g4
a0

= 1 + e−iα(g3 + ig2), g5 = g6 = 0.
(11)

The remaining uncertainty in the parameters gi for fixed
a0 does not influence the ES spectra. The electronic
spectrum of the Hamiltonian (1) with the BCs on the
half-plane x > 0 is shown in Fig. 2. For small k, one may

Fig. 2. The electron spectrum of semi- infinite

HgTe/(Hg,Cd)Te quantum well, where the bound-

ary is described by the single parameter (the BCs (2),

(6), and (11)). The shaded region corresponds to the

continuous spectrum. The edge states are described by

solid curves for a0 = −2, dashed curves for a0 = 0.3 and

dash-dotted curves for a0 = 2

neglect the quadratic terms in k in the Hamiltonian (1).
Therefore the ES spectrum of the Dirac equation [17]

E =
1− a20
1 + a20

m0±
2a0

1 + a20
vk||,

2a0
1 + a20

m0∓
1− a20
1 + a20

vk|| < 0

(12)
is equivalent to that of the 2D TI. For large k, the
quadratic term dominates, but the Hamiltonian (1) and
the BCs have limited application in the area of k. The
key feature of the obtained ES spectrum is that if
m0a0 < 0 then the ESs are in the bulk gap near k = 0,
while if m0a0 > 0 there are no ESs near k = 0. This
means that massless ESs (Dirac cone) near k = 0 can
be found in the gap of the TI phase (m0 < 0) if a0 > 0,
as well as in the trivial phase (m0 > 0) if a0 < 0. It is
in agreement with the “inversion heterocontact” model
[18]. However, in the case m0 > 0 the ESs are not topo-
logically protected.
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To finally persuade the reader, let us simplify a gen-
eral dispersion equation that describe the ES spectra of
the Hamiltonian (1) on the half-plane with the BCs (2),
and (6), in the case d = 0 and small b. Without loss of
generality, we can consider the BCs which do not mix
the spin of electrons (i.e., g2 = g5 = 0) and possess spa-
tial inversion y → −y (i.e., g6 = 0). Then, in the first
order in the parameter b/v, one can obtain the spectra
of ESs again in the form (12), but with

a0 = −g1(g4 + 1) + (1 + g3)
2

g4(1 + g1) + g23
. (13)

Thus, we have demonstrated that the open BCs for
the Hamiltonian (1) are not the only ones possible. The
solutions of the effective Hamiltonian (1) with the open
BCs have a limited range of applicability due to the in-
adequate profile of the wave function for small b and
d. In this case, it is more suitable and much easier to
use the Dirac equation with the BCs (10), which con-
tain only one boundary parameter, a0. We stress that
boundary parameters may remove ESs from the gap at
small momenta. Further we will show that in this case
the SSs will cross the bulk gap elsewhere in the BZ. It is
in agreement with the bulk-boundary correspondence.

3D topological insulators. Here, we consider a
simplified and isotropic kp-Hamiltonian of 3D TI Bi2Se3
near the center of the BZ. This is the 3D Dirac Hamil-
tonian with the momentum depending mass term [9]

H3D = m(k)σ0 ⊗ τz + v(σ · k) ⊗ τx, (14)

where m(k) = m0 + bk2, k = (kx, ky, kz) is the three-
dimensional momentum vector, v,m0, and b are the
model parameters. Let us consider BCs for eigenfunc-
tions of the Hamiltonian (14). As was noted in the pre-
vious section, the most general BCs have the following
form (

b

v
∂nΨ−QΨ

)∣∣∣∣
S

= 0, (15)

where Q is a 4 × 4 matrix with complex parameters
that phenomenologically describe the microscopic sur-
face potential, and Ψ = (Ψ1,Ψ2,Ψ3,Ψ4)

T is a bispinor
consisting of the four envelope functions.

One can reduce the number of parameters in the
BCs by applying symmetry considerations. Below, we
consider a surface with outer normal n = (0, 0,−1), and
assume that the BCs (15) possess symmetries of a semi-
infinite Bi2Se3 crystal with the (111) surface. They in-
clude the rotation R3,z of the coordinate system on the
angle 2π/3 about the z-axis, time-reversal symmetry T
and reflection Ix in yz plane. For the Hamiltonian [9]
(14), these operations of the symmetry are represented
by 4×4 matrices R̂3,z = eiσz⊗τ0π/3, T̂ = iσy⊗τ0K̂, and

Îx = iσx⊗ τz . The invariance of the BCs upon the sym-
metry operation, e.g., Ix, means that relation (15) with
the same boundary condition matrix Q can be applied
to the transformed bispinor

IxΓ̂(r)Ψ(r)|S = ÎxΓ̂(I
−1
x r̃)Î−1

x ÎxΨ(I−1
x r̃)|S =

= Γ̂(r̃)Ψ̃(r̃)|S = 0, (16)

where the boundary operator is denoted
Γ̂(r) = b∂n/v −Q. Applying the symmetry opera-
tions together with the requirement of the Hermiticity
of the Hamiltonian (14) in a half-space z ≥ 0, leads to
the following form for Q:

Q =




q1 iq2 +
i
2 0 0

iq2 − i
2 q3 0 0

0 0 q1 −iq2 − i
2

0 0 −iq2 + i
2 q3



,

(17)
where q1, q2, and q3 are real phenomenological bound-
ary parameters which implicitly characterize the micro-
scopic surface structure. The matrix Q would be exactly
the same if we used infinite order rotational symmetry
around z-axis instead of R̂3,z. BCs similar to the BCs
(15) were also considered in [11], but that matrix Q con-
tains 16 arbitrary complex parameters. By means of the
symmetry analysis we decreased the number of the pa-
rameters to the three real parameters. The authors of
the [11] analyzed the case of arbitrary q1 and q3 with
q2 = 0 and found that the Dirac point merged in the
bulk spectrum at certain values of q1 and q3.

We first study the case q1 = −q3 with arbitrary q2,
as it captures the main results of this section. We can
find the bispinor Ψ satisfying the Schroedinger equation
H3DΨ = EΨ in the following form

Ψ = h1(k||, E)e−κ1z + h2(k||, E)e−κ1z +

+ h3(k||, E)e−κ2z + h4(k||, E)e−κ2z, (18)

κ1,2(k||, E) =
1√
2b

(v2 + 2b2k2|| + 2m0b∓

∓
√
v4 + 4v2m0b + 4E2b2)1/2, (19)

where k|| = |k|||. Following [9] we imply m0 < 0,
b > 0 for the TI phase. The BCs (15) determine the
four-component vectors h1,2,3,4(k||, E) and the SS spec-
trum. Through algebra, one derives a dispersion equa-
tion, which for k|| = 0 reduces to

v2κ1κ2

[(
q2 +

1

2

)
F− +

(
q2 −

1

2

)
F+

]
− F+F− = 0,

(20)
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F± =
v2

b

(
q2 ∓

1

2

)
(m0 ± E)∓

∓
[
v2

b

(
q22 − q21 −

1

4
+
b2

v2
κ1κ2

)
(m0 ± E + bκ1κ2) ±

vq1(κ1 + κ2)(m0 ± E − bκ1κ2)

]
, (21)

where κ1,2 = κ1,2(0, E). Equation (20) determines an
energy dependence of the Dirac point on the values of
the parameters q1 and q2. When the value of the diago-

nal parameter q1 falls into two regions q
(1)
− ≤ q1 ≤ q

(1)
+ ,

q
(2)
− ≤ q1 ≤ q

(2)
+ , the Dirac point is removed from the

bulk gap. In addition, the very SSs can vanish from the
bulk gap at small momenta when the values of q1 are
those as illustrated in Fig. 3. We note that when the SSs

Fig. 3. Effect of boundary parameters on the SS energy

spectrum of the Bi2Se3-type 3D TI. Each curve corre-

sponds to a definite value of q1. Shaded regions are the

bulk states. Variation of the boundary parameters can lead

to the removal of the SSs or their Dirac point from the

bulk band gap. The spectrum was calculated at q2 = 1/2,

q3 = −q1, m0 = −0.28 eV, b = 6.86 eV·Å2, v = 5 eV·Å

absent in the bulk gap at small momenta, they cross
the gap at edges of BZ in a such a way that the bulk-
boundary correspondence to be valid (see next section).

Meanwhile, q
(1,2)
± have the following values:

q
(1,2)
− = −

√
m0b

2v2
+

1

4
∓
√
m0b

2v2
+

1

4
+

(
q2 +

1

2

)2

,

q
(1,2)
+ =

√
m0b

2v2
+

1

4
∓
√
m0b

2v2
+

1

4
+

(
q2 −

1

2

)2

.

(22)

We stress that the values of q
(1,2)
± are determined by

not only bulk parameters m0, v, and b but also by the
boundary parameter q2. For other values of q1, the Dirac
point is in the bulk gap in the BZ center.

If the boundary parameter q2 is much larger
than the other characteristic momenta (i.e.
|q2| ≫ max(1, (|m0|b/v2)1/2, |q1|)) then the SS spec-
trum is quasi-linear with a small deviation of the Dirac
point from the middle of the bulk gap

E = ±|v|k|| +
2

q2
(m0 + bk2||). (23)

The same spectrum (23) holds true when q2 is replaced
q1 and when the parameter q1 is the greatest in the BCs
(15) [11].

In the remainder of the section, we consider the
Hamiltonian (14) and the general BCs (15) when the
contribution of remote bands in (14) is small, i.e., v2 ≫
≫ 4|bm0|. This case is simply a case of the standard 3D
Dirac equation, for which a SS spectrum is described
by the single phenomenological parameter a0; see (12)
and [17]. Our aim is to express a0 in terms of the three
boundary parameters, q1, q2 and q3. In this case, the
wave function (18) includes a smooth exponent with

κ1(E) = −
√
m2

0 − E2 + v2k2||/v and a rapid exponent

with κ2 = −v/b. The former determines the spatial pro-
file of the wave function and the latter only contributes
to the BCs. Solving the dispersion equation with the
above-mentioned values of κ1,2 in leading order to b (im-
plying |q1,2,3| ≫ bκ1/v) results in the SS spectrum (12),
where

a0 =
(2q2 + 1)2 + 4q3(q1 − 1)

(2q2 − 1)
2 − 4q1(q3 − 1)

. (24)

From Eq. (24), we can conclude that in this limit (v2 ≫
≫ 4|bm0|), the SSs near k = 0 exist in the bulk gap
at (i) a0 > 0 if m0 < 0 and (ii) a0 < 0 if m0 > 0 (see
(12)). However, in the case (ii) the massless SSs are not
protected by the topological arguments as the Hamilto-
nian (14) describes a trivial insulator phase for m0 > 0,
b > 0.

Tight-binding model of 2D TI. Here, we study
how general BCs affect ES spectra in a simplified tight-
binding model of 2D TI in a similar way as it was done
in a model of 3D TI [4]. This model allows us to cal-
culate ES spectra over the entire BZ. We consider two-
dimensional square lattice with lattice constant a = 1
and four states per atom |s, ↑〉, (1/

√
2)|px+ipy, ↑〉, |s, ↓〉,

(1/
√
2)|px − ipy, ↓〉, where ↑ (↓) means spin-up (spin-

down) states [15]. Neglecting terms that break e–h sym-
metry, one could obtain the Hamiltonian of the tight-
binding model:
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H = Ψ†
i{σ0 ⊗ [(m0 − 4b)τz − 4dτ0]}Ψi −

− i
v

2
[Ψ†

i (σ0 ⊗ τye
iθy

i Ψxi,yi+1 +

+ σz ⊗ τxe
iθx

i Ψxi+1,yi
)− h.c.] +

+
∑

µ

{
Ψ†

i [σ0 ⊗ (bτz + dτ0)] e
iθµ

i Ψi+µ + h.c.
}
, (25)

where subindex i = (xi, yi) enumerates sites of the
square lattice, i + µ = µi + 1 with µ = x, y, θµi is a
U(1) gauge field, Ψi is four component operator, which
annihilate electron on site i. It is well known that this
tight-binding model describe a 2D topological insulator
phase when 0 < m0/(2b) < 4, m0 6= 4b and a trivial
insulator phase in the other cases [19].

We now consider a half-infinite square lattice that
occupies xi > 0 with edge at xi = 0. Using H we can
derive expression for current in x direction as variation
of H with respect to the gauge field θxi :

jxi =
δH

δθxi

∣∣∣∣
θx
i
=0

=

= i
[
Ψ†

iσ0 ⊗ (bτz + dτ0)Ψxi+1,yi
− h.c.

]
+

+
v

2

(
Ψ†

iσz ⊗ τxΨxi+1,yi
+ h.c.

)
. (26)

At the edge single-particle wave function ψi obeys
BCs of the next form
[
iσ0 ⊗ (bτz + dτ0) +

v

2
σz ⊗ τx

]
ψ1,yi

= Gψ0,yi
, (27)

where G is a 4×4 matrix, ψi consists of four amplitudes
of the corresponding orbitals. Vanishing jx at the edge
fixes the form of the matrix G: G = G†. Time-reversal
symmetry and inversion result in

G =




g1 g2 0 −ig3
g2 g4 −ig3 0

0 ig3 g1 −g2
ig3 0 −g2 g4



, (28)

where g1,4 are real parameters (which in general differ
from the similar parameters in Sec. II). Further, we re-
strict ourselves by the case of block-diagonal matrix G
in spin space (i.e. g3 = 0) and put d = 0. This assump-
tion will not influence main conclusions and allow us to
study ES spectra separately for each spin.

In order to study ES spectra we follow the method of
analytical continuation of the bulk band structure [20].
The bulk spectrum of H is

E =

±
√
[m0+2b(coskx+cos ky−2)]2+v2(sin2 kx+sin2 ky).

(29)

The ESs possess complex momentum kx = k + iq, but
real energy E. It leads to (i) k = 0 and k = π, (ii)
cos k cosh q = 2bm0 + 2b(cosky − 2)/(v2 − 4b2). Only in
the case (i) an energy lies inside the band gap. There-
fore, a general wave function of spin-up ES is expressed
by

ψi = C1

(
−E −M1

iv(sinh q1 − sin ky)

)
e−q1xi+ikyyi +

+ C2

(
−E −M2

−iv(sinh q2 + sinky)

)
eiπxi−q2xi+ikyyi , (30)

where M1,2 = m0+2b(± coshq1,2 +cosky − 2), C1,2 are
arbitrary coefficients. Inverse decay lengths q1,2 > 0 are
determined by the energy and the momentum ky:

cosh q1,2 =
±[2bm0+4b2(cos ky−2)]

v2−4b2 +

+

√
v2[m0+2b(cos ky−2)]2+(v2−4b2)[v2(sin2 ky+1)−E2]

v2−4b2 . (31)

Dispersion equation results from satisfying the wave
function (30) the BCs (27). For the spin-up wave func-
tion it yields

[(g1 −Be−q1)(E +M1)−
− 2A(sinh q1 − sinky)(Ae

−q1 + g2)]×
× [(g2 −Ae−q2)(E +M2) +

+ 2A(sinh q2 + sin ky)(g4 −Be−q2)] +

+ [(Ae−q1 − g2)(E +M1) +

+ 2A(sinh q1 − sin ky)(Be
−q1 + g4)]×

× [(Be−q2 + g1)(E +M2)−
− 2A(sinh q1 + sin ky)(Ae

−q2 − g2)] = 0. (32)

Dispersion equation for spin-down ESs is given by
the same equation (32) with replacement ky → −ky. In
Fig. 4 we plot spectra of the ESs in the topological insu-
lator phase. Tuning the boundary parameters g1, g2, g4
we can strongly affect the ES spectra (see Fig. 4). It is
even possible to destroy the massless ESs (dash-dotted
curve) or remove it from the BZ center (dashed curves),
however, the boundary parameters cannot change the
hallmark of topological insulators – the odd number of
ES pairs in the bulk gap. In case of a trivial insulator one
can easily remove ESs from the bulk gap by changing
boundary parameters.

Conclusions. We derived the BCs for the envelope
functions and found SS (ES) spectra of semi-infinite 2D
TI based on an HgTe/(Hg,Cd)Te quantum well and a
3D TI of Bi2Se3-type. In the 2D TI with the Hamil-
tonian (1) and the bulk parameters from [2], the open
BCs may be not suitable for the small Hamiltonian pa-
rameters b and d. In that case, we showed that it is

Письма в ЖЭТФ том 101 вып. 1 – 2 2015 7
∗



100 V. V. Enaldiev, I. V. Zagorodnev, V. A. Volkov

Fig. 4. The electron spectrum E(ky) of semi-infinite 2D

quadratic lattice. The shaded region corresponds to the

continuous spectrum (bulk solutions). The edge states are

described by solid curves for open boundary conditions

(g1 = g4 = ∞, g2 = g3 = 0), and dashed curves for

g2 = 0.5, g1 = 0.1, g3 = g4 = 0, and dash-dotted curve

for g2 = g3 = 0, g4 = ∞, g1 = −0.05. Tuning the bound-

ary parameters modifies edge state spectra end even re-

moves the Dirac point of ES (dash-dotted curve). How-

ever, boundary parameters cannot change the odd number

of edge state pairs in the bulk gap in TI phase

more appropriate to use the one-parameter BCs (10)
for small k. In the general case (when b and d are large
enough), the BCs contain six real phenomenological pa-
rameters, two of which equal zero if a boundary does
not mix the spins of an electron or if it possesses spatial
inversion. In frames of the envelope function approx-
imation we showed how boundary parameters modify
spectra of SSs in the center of BZ. Some values of the
parameters move the Dirac point in the SS spectra to
the edges of BZ, other values destroy the massless SSs.
Using the tight-binding model of 2D TI we revealed that
boundary parameters cannot violate the bulk-boundary
correspondence, i.e. there is always odd number of SS
pairs in the bulk gap, see also [6]. But boundary param-
eters may strongly affect the SS spectra. In addition, we
showed that non-protected massless SSs may be in the
gap even in normal insulator phase (m0 > 0).

At (111) surface of Bi2Se3, the BCs are described by
the three real parameters. The SS spectrum again de-
pends a great deal on the parameter values. When the
parameters are large compared with the decay length of
the SSs (e.g., in the case of the open BCs), the Dirac
point of the SS spectrum is nearly in a middle of the gap

in the BZ center with almost linear dispersion. We found
regions of the boundary parameter values for which the
SSs are pushed out the gap for small momenta. This
means that they cross the bulk gap at large momenta
for these boundary parameters to make bulk-boundary
correspondence valid.
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