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A new four-dimensional model with quasi-periodic dynamics is suggested. The torus
attractor originates via the saddle-node bifurcation, which may be regarded as a member of
a bifurcation family embracing different types of blue sky catastrophes. Also the torus birth
through the Neimark-Sacker bifurcation occurs in some other region of the parameter space.
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Introduction

Quasi-periodic oscillations represent a wide-spread type of dynamical beha-
vior [1,2]. One of the important aspects for understanding these regimes concerns bi-
furcation scenarios of appearance of the quasi-periodic self-oscillations. Most commonly,
one can observe two bifurcation scenarios, which can give rise to a torus attractor, the
Neimark—Sacker bifurcation and the saddle-node bifurcation of invariant curves. It seems
disappointing that till now a very restricted number of simple model autonomous systems
with quasi-periodic dynamics were advanced and studied. In the present work we suggest
a four-dimensional dynamical system, in which the saddle-node bifurcation of invariant
curves producing a two-dimensional torus may be regarded as a member of the bifurcation
family of the blue sky catastrophes outlined by Turaev and Shilnikov [4,5].

Originally, the bifurcation of the blue sky catastrophe was described in [3]. In the
simplest case it can be explained as follows. The phase trajectory departs from a vicinity
of a semi-stable limit cycle existing at the threshold of the saddle-node bifurcation, goes
near a large-size loop along an unstable manifold, and turns back to the limit cycle from
the other side. At varying a control parameter in one direction, the semi-stable cycle
transforms into a pair of cycles, a stable and an unstable one. If we vary the control
parameter in opposite direction, two cycles collide forming the semi-stable cycle, and then
disappear, while the large-size limit cycle emerges in the domain containing the helical
coils. According to analysis developed in [4], one has to consider, in fact, a family of such
bifurcations distinguished by an integer index m. Actually, in general, as a phase trajectory
of the system departs from the saddle-node cycle attributed with some angular coordinate

© A1l Kysneyos, C.II. Kysueyos, H.B. Cmankesuu
W3B. By3oB «I[TH/I», T. 23, Ne 4, 2015 63



o, after a travel along the unstable manifold and subsequent return, it will be characterized
by the angular coordinate expressed by a relation containing an additive term me. For
three-dimensional phase space (minimal dimension where the blue-sky catastrophe may
occur) the integer m may be either 0, or 1. However, at higher dimensions, any integer
can occur. In particular, m = 2 corresponds to a birth of a hyperbolic strange attractor
represented by classic Smale—Williams solenoid.

Conditions and mechanisms of birth of limit cycles through the blue sky catastrophe
are described in details in [4,6-10]. In [11] one can find some results demonstrating
transition between tonic-spiking and bursting via the blue sky catastrophe in a model
of leech neuron. Also, in that paper it was mentioned that this kind of bifurcation can be
considered as the main mechanism for the onset of the burst-spike dynamics. In paper [12]
the bifurcation of the blue sky catastrophe has been found in binary mixture contained in
a laterally heated cavity at small Prandtl numbers.

In paper [13] a four-dimensional system was suggested, in which attractor of Smale—
Williams type appears as a result of the blue sky catastrophe with the Turaev—Shilnikov
index m = 2. Modifying this system one can easily obtain models with other integer
indices m representing various types of the blue-sky catastrophes. In this paper we
concentrate on the case m = 1. It occurs that in this case the bifurcation of collision
and disappearance of a pair of small-scale limit cycles leads to appearance of a torus
attractor. From a point of view of formal bifurcation theory, this bifurcation does not
differ from the saddle-node bifurcation of torus birth observed typically at crossing a
border of an Arnold tongue in parameter space of systems manifesting both periodic and
quasi-periodic behavior. In our setup, however, this bifurcation appears as a representative
of the family embracing the whole assortment of blue-sky catastrophes. It is interesting
both for understanding the place of the blue sky catastrophes in the whole picture of
bifurcations in dynamical systems and, pragmatically, as an approach to elaboration of
concrete realizable systems with definite types of dynamical behavior including quasi-
periodic self-oscillations and hyperbolic chaotic attractors.

1. The basic model and the saddle-node torus
bifurcation

The four-dimensional system with attractor of Smale—Williams type arising via the
blue sky catastrophe reads [13]:

. . 1 1 1
a1 = —iwgay + (1 — |az)? + Zla1)? — —|a1|*)a1 + =elm(a3),
2 50 2 (1)
. . 1 1
dy = —iwgag + (Ja1|*> —w+ §]a2\2 — %\agl‘l)ag + eRe(aq).

This system is composed of two coupled self-oscillators with complex amplitudes
a1 and ao; wg is the natural frequency of the oscillators, and € is the coupling coefficient.
If we set the coupling equal to zero (¢ = 0), and consider the amplitude variables, this
system becomes a two-dimensional predator-pray model with some additional parameter .
This parameter is responsible for bifurcation of equilibrium states that creates conditions
for occurrence of the blue sky catastrophe in the full system. The coupling between the
subsystems is organized in some special way. In the systems there occurs alternating
excitation and dumping of self-oscillatory trains in each oscillator, with transformation of
the angular variable representing the phases of the excitation in correspondence with the
double-expanding circle map. Due to compression of the phase volume in the state space of
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the system in all other directions beside the angular variable, attractor of the stroboscopic
map is just the Smale—Williams solenoid. In [13] this mechanism of the system operation
is explained in detail.

Let us modify the system (1) providing linear coupling between the subsystems that
makes the equations even simpler:

. . 1 1 1
a1 = —iwpay + (1 — |as|?® + §|a1\2 — %]aﬂ‘l)al + isRe(ag),
(2)

. . 1 1
dy = —imgas + (|a1|? — u + §!a2|2 - %|a2]4)a2 + eRe(aq).

Then, the mechanism responsible for formation of the blue sky catastrophe occurs in
our system as well; but now it results in appearance of the two-frequency torus attractor
instead of the Smale-Williams attractor. The basic two frequencies of the motion on this
torus are (i) the natural oscillation frequency wg, and (ii) that of the long-period oscillatory
component, controlled by parameter u, corresponding to motion around the large-size loop
arising in the course of the bifurcation.

Let us turn to the numerical study of the system (2). In Fig. 1 the phase portraits
are shown in projections on the plane of real amplitudes of coupled oscillators. Panel (a)
relates to a subcritical value of u just before the bifurcation. The gray thin line corresponds
to a transient process. The thick dark line indicates the small-scale stable limit cycle. The
phase trajectory arrives there along the unstable manifold of the fixed point at the origin.
With increase of the control parameter, the small-scale stable limit cycle meets the small-
scale unstable limit cycle (approaching it from below in the used coordinates). After
the collision both cycles disappear leaving a channel nearby the domain of their former
occurrence, where the orbits pass relatively slowly, returning close to the origin and then
back to the input of the channel along the unstable manifold. The result is formation of the
large-size attractor represented by a two-frequency torus. Panel (b) shows this torus arisen
after the catastrophe due to the collision and disappearance of the stable and unstable
small-size limit cycles.
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Fig. 1. Phase portraits of the system (2) at ¢ = 1, wo = 27 : a — limit cycle and transient process before
the torus birth, u = 3.19; b — the torus born as result of the bifurcation similar to the blue sky catastrophe,
u=32
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2. Dynamics of the system in dependence
on control parameters

Let us consider some features of the dynamics of the system in dependence on
parameters, and start with the one-parameter analysis.

In Fig. 2 panel (a) shows the bifurcation diagram that presents dependence of
amplitude of the second subsystem on the control parameter w. Other parameters are
fixed: ¢ = 1, oy = 6m. Two special points are marked in the diagram: p. = uPS is
the critical point of the torus birth as a result of the bifurcation similar to the blue sky
catastrophe, and p. = u™ is the critical point of the torus birth as a result of the Neimark—
Sacker bifurcation. Panels (b) and (c) of Fig. 2 show phase portraits corresponding to these
two critical situations of the torus birth. Bold dark segment in the left diagram indicates
the small-size limit cycle just at the bifurcation situation, and gray color designates the
new-born torus. Qualitatively, in the diagram one can see clearly that at the blue sky
catastrophe, the trajectory which is situated transversally to the small-size limit cycle is
stabilized. In panel (¢) the limit cycle is shown as bold closed curve, and the torus born
via the Neimark—Sacker bifurcation is shown in gray.

As mentioned in [4,5], in the vicinity of the blue sky catastrophe the characteristic
time of returning of the phase trajectory in the Poincaré section depends on the control
parameter as:
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Fig. 2. a — Bifurcation diagram of the system (2) for ¢ = 1, mg = 67 and phase portraits: b — torus birth
via bifurcation similar to the blue sky catastrophe; the limit cycle before bifurcation is marked as bold dark
horizontal segment (i = 3.17), and the torus after bifurcation is shown in gray (u = 3.18); ¢ — the torus birth
via Neimark—Sacker bifurcation; the bold closed curve is the limit cycle (uw = 16.7), and gray color indicates
the torus (u = 16.65)
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To check this relation for the system (2), the returns were calculated nearby the
bifurcation point u?5. The Poincaré section was produced by a hypersurface defined by
the equation |az| = ¢ with the constant chosen ¢ = 2.1. In panel (a) of Fig. 3 we show the
plot for the average return times versus [. As seen, in the vicinity of the critical parameter
value uPS the dependence for the squared inverse return time is linear. In contrast, nearby
the Neimark—Sacker bifurcation uN° the dependence looks in absolutely different manner,
as seen from the plot on panel (), and it does not have any pronounced intervals of
linearity.

Now let us turn to two-parameter analysis of the system (2). In Fig. 4 the chart of
dynamical regimes is shown obtained numerically for the system (2) on the parameter
plane of the frequency of oscillations wg and the coefficient controlling the passage
through the blue sky catastrophe p. This chart was obtained in the following way. We scan
the parameter plane with horizontal and vertical steps small enough, and for each point
determine in computations a period of the respective sustained regime in the Poincaré
section. (The hypersurface of the Poincaré section was chosen as Re(a;) = 0.) The largest
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Fig. 3. The dependence of squared inverse averaged time of returns at the Poincaré section on the parameter
u for e = 1, wg = 6m: a — in the vicinity of the bifurcation similar to the blue sky catastrophe, where
solid line corresponds to numerical data and dotted line to the approximation (3); b — in the vicinity of the
Neimark—Sacker bifurcation
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Fig. 4. Chart of dynamical regimes (a) and its magnified fragment (b) for the system (2) at ¢ = 1; (c) palette
establishing correspondence of colors and periods of the regimes
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gray area in panels (a) and (b) correspond to the limit cycle of basic period equal to the
period of return to the Poincaré section. Other periods are multiples of the basic period
and are indicated in the parameter plane chart according to the palette shown in panel (c).
White areas relate to regimes without recognized finite periods that may represent either
quasi-periodic or chaotic oscillations.

In panel (a) one can see two bifurcation lines of disappearance of the limit cycles.
As mentioned, the lower line (u ~ 3) corresponds to the bifurcation of torus birth similar
to the blue sky catastrophe. The upper line (u = 16) corresponds to the Neimark—
Sacker bifurcation. One more circumstance confirming the nature of these bifurcations is
a characteristic intrinsic structure of the parameter plane in vicinities of the bifurcations.

Along the upper bifurcation line, the set of synchronization tongues is lined up
in correspondence to the rational frequency ratios intrinsic to them. Such structure of the
parameter plane is typical for situations associated with the Neimark—Sacker bifurcation. In
panel (b) a magnified fragment is presented shown a region near the line of the bifurcation
similar to the blue sky catastrophe. Observe that synchronization tongues approach the
bifurcation line being pulled together in the narrow beam. Analogous parameter plane
structures can be observed in different models of neurons, like Hindmarsh-Rose and
Sherman models [14, 15].

Conclusion

In the present paper we suggest a new system manifesting both transitions to quasi-
periodic self-oscillations via the bifurcation similar to the blue sky catastrophe and via
the Neimark—Sacker bifurcation. For this system main characteristics were calculated, like
squared inverse averaged time of returns at the Poincaré section for orbits on the attractor
which behaves in essentially different manner for both scenarios of the torus birth. Also,
the structure of parameter plane has been revealed for the system.

The proposed system may serve as initial object for construction other models
with blue-sky catastrophes generating attractors of various types characterized by different
values of the index m in the Turaev—Shilnikov theory [4,5]. This and similar examples may
be of interest for design of electronic devices generating quasi-periodic or chaotic signals,
as well as for understanding a variety of dynamical behaviors e.g. in neurodynamics.

The research was supported partially by the RFBR grant Ne 14-02-00085 and by
the Russian Federation President Program for leading Russian research schools, grant
Ne NSh-1726.2014.2.
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YETBIPEXMEPHAS CUCTEMA C TOPOM-ATTPAKTOPOM,
BO3HUKAIOIIAM ITIPA CEJIJIO-Y3JIOBOM BU®YPKAIIAU
HPEJEJBHBIX ITAKJIOB, B KOHTEKCTE CEMEHACTBA
KATACTPO® I'OJIYBOI'O HEBA

A Il Ky3H€l/;061, C. 11 Kysneuogl, H. B. Cmankesuu2

"Yucruryr paguorexnnky u anexrponukn uM. B.A. Korensunkosa PAH, Caparosckuii rtuan

2CapartoBckuii rocylapcTBEHHBII TeXHHUECKHiT yHuBepcuTeT uM. Larapuna FO.A.

IIpennoxena HOBast 4eThIpEXMEpPHAs MOJEIb C KBAa3HIIEPUOAUYECKON ITMHAMUKOM.

ATTpakTOp B BHJE TOpa BO3HHKACT B PE3yNbTaTe CEI0-y3JI0BOW OudypKaiyu, KoTopas
MOXKET paccMaTpuBaTbCs KakK IPeICTaBUTEIh CEMEHCTBA, OXBATHIBAIOIIETO pa3IMYHbIE
TUTIBL KatacTpod romyboro Heba. B Toii ke cucreMe B apyroil 00IacTH mapaMeTpoB TOP
poxnaetcs B pe3ynbTrare oudypkanun Heiimapka—Caxkepa.

Kurouesvie cnosa: Kazunepuoanyeckasi [MHAMUKA, TOP, aTTPAKTOP, KaTacTpoda roayooro
Heba, Oudypkanus Heifimapka—Cakepa.
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